Citation: |
M. Benaicha, L. Dehimi, F. Pezzimenti, F. Bouzid. Simulation analysis of a high efficiency GaInP/Si multijunction solar cell[J]. Journal of Semiconductors, 2020, 41(3): 032701. doi: 10.1088/1674-4926/41/3/032701
****
M Benaicha, L Dehimi, F Pezzimenti, F Bouzid, Simulation analysis of a high efficiency GaInP/Si multijunction solar cell[J]. J. Semicond., 2020, 41(3): 032701. doi: 10.1088/1674-4926/41/3/032701.
|
Simulation analysis of a high efficiency GaInP/Si multijunction solar cell
doi: 10.1088/1674-4926/41/3/032701
More Information-
Abstract
The solar power conversion efficiency of a gallium indium phosphide (GaInP)/silicon (Si) tandem solar cell has been investigated by means of a physical device simulator considering both mechanically stacked and monolithic structures. In particular, to interconnect the bottom and top sub-cells of the monolithic tandem, a gallium arsenide (GaAs)-based tunnel-junction, i.e. GaAs(n+)/GaAs(p+), which assures a low electrical resistance and an optically low-loss connection, has been considered. The J–V characteristics of the single junction cells, monolithic tandem, and mechanically stacked structure have been calculated extracting the main photovoltaic parameters. An analysis of the tunnel-junction behaviour has been also developed. The mechanically stacked cell achieves an efficiency of 24.27% whereas the monolithic tandem reaches an efficiency of 31.11% under AM1.5 spectral conditions. External quantum efficiency simulations have evaluated the useful wavelength range. The results and discussion could be helpful in designing high efficiency monolithic multijunction GaInP/Si solar cells involving a thin GaAs(n+)/GaAs(p+) tunnel junction.-
Keywords:
- GaInP/Si,
- tandem solar cells,
- power efficiency,
- numerical simulations
-
References
[1] Asadpour R, Chavali R V K, Khan M R, et al. Bifacial Si heterojunction-perovskite organic-inorganic tandem to produce highly efficient (ηT* ~ 33%) solar cell. Appl Phys Lett, 2015, 106, 243902 doi: 10.1063/1.4922375[2] Bencherif H, Dehimi L, Pezzimenti F, et al. Multiobjective optimization of design of 4H-SiC power MOSFETs for specific applications. J Electron Mater, 2019, 48, 3871 doi: 10.1007/s11664-019-07142-5[3] De Martino G, Pezzimenti F, Della Corte F G. Interface trap effects in the design of a 4H-SiC MOSFET for low voltage applications. Proc International Semiconductor Conference – CAS, 2018: 147[4] Bouzid F, Dehimi L, Pezzimenti F, et al. Numerical simulation study of a high efficient AlGaN-based ultraviolet photodetector. Superlattice Microstruct, 2018, 122, 57 doi: 10.1016/j.spmi.2018.08.022[5] Bouzid F, Dehimi L, Pezzimenti F. Performance analysis of a Pt/n-GaN Schottky barrier UV detector. J Electron Mater, 2017, 46, 6563 doi: 10.1007/s11664-017-5696-1[6] Megherbi M L, Pezzimenti F, Dehimi L, et al. Analysis of the forward I–V characteristics of Al-implanted 4H-SiC p–i–n diodes with modeling of recombination and trapping effects due to intrinsic and doping-induced defect states. J Electron Mater, 2018, 47, 1414 doi: 10.1007/s11664-017-5916-8[7] Fritah A, Dehimi L, Pezzimenti F, et al. Analysis of I–V–T characteristics of Au/n-InP Schottky barrier diodes with modeling of nanometer-sized patches at low temperature. J Electron Mater, 2019, 48, 3692 doi: 10.1007/s11664-019-07129-2[8] Megherbi M L, Pezzimenti F, Dehimi L, et al. Analysis of trapping effects on the forward current-voltage characteristics of Al-implanted 4H-SiC p–i–n diodes. IEEE Trans Electron Devices, 2018, 65, 3371 doi: 10.1109/TED.2018.2849693[9] Bencherif H, Dehimi L, Pezzimenti F, et al. Temperature and SiO2/4H-SiC interface trap effects on the electrical characteristics of low breakdown voltage MOSFETs. Appl Phys A, 2019, 125, 294 doi: 10.1007/s00339-019-2606-9[10] Olson J M, Friedman D J, Kurtz S. High efficiency III–V multi-junction solar cells. In: Handbook of Photovoltaic Science and Engineering. New York: John Wiley & Sons, 2003[11] Zheng Y, Mihara A, Yamamoto A. Analysis of In xGa1– xN/Si p–n heterojunction solar cells and the effects of spontaneous and piezoelectric polarization charges. Appl Phys Lett, 2013, 103, 153509 doi: 10.1063/1.4824885[12] Green M A, Emery K, Hishikawa Y, et al. Solar cell efficiency tables (ver. 39). Prog Photovolt: Res Appl, 2012, 20, 12 doi: 10.1002/pip.2163[13] Connolly J P, Mencaraglia D, Renard C, et al. Designing III–V multijunction solar cells on silicon. Prog Photovolt: Res Appl, 2014, 22, 810 doi: 10.1002/pip.2463[14] Bencherif H, Dehimi L, Pezzimenti F, et al. Improving the efficiency of a-Si: H/c-Si thin heterojunction solar cells by using both antireflection coating engineering and diffraction grating. Optik, 2019, 182, 682 doi: 10.1016/j.ijleo.2019.01.032[15] Green M A. Silicon wafer-based tandem cells: The ultimate photovoltaic solution. Proc SPIE Physics, Simulation, and Photonic Engineering of Photovoltaic Devices III, 2014: 89810[16] Bencherif H, Dehimi L, Pezzimenti F, et al. Analytical model for the light trapping effect on ZnO: Al/c-Si/SiGe/c-Si solar cells with an optimized design. Proc 2018 International Conference on Applied Smart Systems, ICASS, 2019, 8651990[17] Liu H, Ren Z, Liu Z, et al. The realistic energy yield potential of GaAs on Si tandem solar cells: a theoretical case study. Opt Express, 2015, 23, 382 doi: 10.1364/OE.23.00A382[18] Hsu L, Walukiewicz W. Modeling of InGaN/Si tandem solar cells. J Appl Phys, 2008, 104, 024507 doi: 10.1063/1.2952031[19] Benaicha M, Dehimi L, Sengouga N. Simulation of double junction InGaN/Si tandem solar cell. J Semicond, 2017, 38, 044002 doi: 10.1088/1674-4926/38/4/044002[20] Lachaume R, Carioub R, Decobertb J, et al. Performance analysis of AlxGaAs/epi-Si(Ge) tandem solar cells: a simulation study. Energy Procedia, 2015, 84, 41 doi: 10.1016/j.egypro.2015.12.293[21] Essig S, Ward S, Steiner M A. Progress towards a 30% efficient GaInP/Si tandem solar cell. Energy Procedia, 2015, 77, 464 doi: 10.1016/j.egypro.2015.07.066[22] Baudrit M, Algora C. Theoretical optimization of GaInP/GaAs dual-junction solar cell: Toward a 36% efficiency at 1000 suns. Phys Status Solidi A, 2010, 207, 474 doi: 10.1002/pssa.200925210[23] Kınacı B, Özen Y, Asar T, et al. Effect of alloy composition on structural, optical and morphological properties and electrical characteristics of GaxIn1–xP/GaAs structure. J Mater Sci Mater Electron, 2013, 24, 3269 doi: 10.1007/s10854-013-1242-y[24] Marouf Y, Dehimi L, Bouzid F, et al. Theoretical design and performance of In xGa1– xN single junction solar cell. Optik, 2018, 163, 22 doi: 10.1016/j.ijleo.2018.02.106[25] Bouzid F, Pezzimenti F, Dehimi L, et al. Numerical simulations of the electrical transport characteristics of a Pt/n-GaN Schottky diode. Jpn J Appl Phys, 2017, 56, 094301 doi: 10.7567/JJAP.56.094301[26] Zeghdar K, L Dehimi L, Pezzimenti F, et al. Simulation and analysis of the current-voltage-temperature characteristics of Al/Ti/4H-SiC Schottky barrier diodes. Jpn J Appl Phys, 2019, 58, 014002 doi: 10.7567/1347-4065/aaf3ab[27] Marouf Y, Dehimi L, Pezzimenti F. Simulation study for the current matching optimization in In0.48Ga0.52N/In0.74Ga0.26N dual junction solar cells. Superlattice Microstruct, 2019, 130, 377 doi: 10.1016/j.spmi.2019.05.004[28] Walker A W, Wheeldon J F, Valdivia C E, et al. Simulation, modeling and comparison of III–V tunnel junction designs for high efficiency metamorphic multi-junction solar cells. Proc of SPIE, Photonics North, 2010: 7750[29] Bouzid F, Pezzimenti F, Dehimi L, et al. Analytical modeling of dual-junction tandem solar cells based on an InGaP/GaAs heterojunction stacked on a Ge substrate. J Electron Materials, 2019, 48, 4107 doi: 10.1007/s11664-019-07180-z[30] Haas A, Wilcox J, Gray J, et al. Design of A GaInP/GaAs tandem solar cell for maximum daily, monthly, and yearly energy output. J Photon Energy, 2011, 1, 180011 doi: 10.1117/1.3633244[31] Goldberg Y A. Handbook series on semiconductor parameters. Vol. 2. London: World Scientific, 1999[32] Brozel M R, Stillman G E. Properties of gallium arsenide. 3rd ed. London: Institution of Electrical Engineers, 1996[33] Adachi S. Optical constants of semiconductors in tables and figures: Handbook. London: World Scientific, 2012[34] Sze S M. Physics of semiconductors devices. 2nd ed. New York: John Wiley & Sons, 2001[35] Michael S, Lavery J. Multi-junction photovoltaic model optimization for space and solar concentrator applications. Proc 23rd European Photovoltaic Solar Energy Conference, 2008, 790[36] Hegedus S. Handbook of photovoltaic science and engineering. New York: John Wiley & Sons, 2003[37] Geisz J F, Steiner M A, I Garcia I, et al. Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells. Appl Phys Lett, 2013, 103, 0411181 doi: 10.1063/1.4816837 -
Proportional views