Citation: |
Ling Liu, Zuo Xiao, Chuantian Zuo, Liming Ding. Inorganic perovskite/organic tandem solar cells with efficiency over 20%[J]. Journal of Semiconductors, 2021, 42(2): 020501. doi: 10.1088/1674-4926/42/2/020501
****
L Liu, Z Xiao, C T Zuo, L M Ding, Inorganic perovskite/organic tandem solar cells with efficiency over 20%[J]. J. Semicond., 2021, 42(2): 020501. doi: 10.1088/1674-4926/42/2/020501.
|
Inorganic perovskite/organic tandem solar cells with efficiency over 20%
doi: 10.1088/1674-4926/42/2/020501
More Information-
References
[1] Xiao Z, Yang S, Yang Z, et al. Carbon-oxygen-bridged ladder-type building blocks for highly efficient nonfullerene acceptors. Adv Mater, 2019, 31, e1804790 doi: 10.1002/adma.201804790[2] Jia X, Zuo C, Tao S, et al. CsPb(IxBr1−x)3 solar cells. Sci Bull, 2019, 64, 1532 doi: 10.1016/j.scib.2019.08.017[3] Chen W, Chen H, Xu G, et al. Precise control of crystal growth for highly efficient CsPbI2Br perovskite solar cells. Joule, 2019, 3, 191 doi: 10.1016/j.joule.2018.10.011[4] He J, Liu J, Hou Y, et al. Surface chelation of cesium halide perovskite by dithiocarbamate for efficient and stable solar cells. Nat Commun, 2020, 11, 4237 doi: 10.1038/s41467-020-18015-5[5] Zeng Q, Liu L, Xiao Z, et al. A two-terminal all-inorganic perovskite/organic tandem solar cell. Sci Bull, 2019, 64, 885 doi: 10.1016/j.scib.2019.05.015[6] Xu J, Boyd C C, Yu Z J, et al. Triple-halide wide-bandgap perovskites with suppressed phase segregation for efficient tandems. Science, 2020, 367, 1097 doi: 10.1126/science.aaz5074[7] Al-Ashouri A, Magomedov A, Roß M, et al. Conformal monolayer contacts with lossless interfaces for perovskite single junction and monolithic tandem solar cells. Energy Environ Sci, 2019, 12, 3356 doi: 10.1039/C9EE02268F[8] Xiao K, Lin R, Han Q, et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat Energy, 2020, 5, 870 doi: 10.1038/s41560-020-00705-5[9] Chen X, Jia Z, Chen Z, et al. Efficient and reproducible monolithic perovskite/organic tandem solar cells with low-loss interconnecting layers. Joule, 2020, 4, 1594 doi: 10.1016/j.joule.2020.06.006[10] Fang Z, Zeng Q, Zuo C, et al. Perovskite-based tandem solar cells. Sci Bull, 2020 doi: 10.1016/j.scib.2020.11.006[11] Xie S, Xia R, Chen Z, et al. Efficient monolithic perovskite/organic tandem solar cells and their efficiency potential. Nano Energy, 2020, 78, 105238 doi: 10.1016/j.nanoen.2020.105238[12] Liu Q, Jiang Y, Jin K, et al. 18% efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001[13] Jin K, Xiao Z, Ding L. D18, an eximious solar polymer!. J Semicond, 2021, 42, 010502 doi: 0.1088/1674-4926/42/1/010502[14] Yuan J, Zhang Y, Zhou L, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule, 2019, 3, 1140 doi: 10.1016/j.joule.2019.01.004[15] Li Y, Lin J D, Liu X, et al. Near-infrared ternary tandem solar cells. Adv Mater, 2018, 30, e1804416 doi: 10.1002/adma.201804416[16] Meng L, Yi Y Q, Wan X, et al. A tandem organic solar cell with PCE of 14.52% employing subcells with the same polymer donor and two absorption complementary acceptors. Adv Mater, 2019, 31, e1804723 doi: 10.1002/adma.201804723[17] Liu G, Jia J, Zhang K, et al. 15% efficiency tandem organic solar cell based on a novel highly efficient wide-bandgap nonfullerene acceptor with low energy loss. Adv Energy Mater, 2019, 9, 1803657 doi: 10.1002/aenm.201803657[18] Ramírez Quiroz C O, Spyropoulos G D, Salvador M, et al. Interface molecular engineering for laminated monolithic perovskite/silicon tandem solar cells with 80.4% fill factor. Adv Funct Mater, 2019, 29, 1901476 doi: 10.1002/adfm.201901476[19] Li N, Brabec C J. Air-processed polymer tandem solar cells with power conversion efficiency exceeding 10%. Energy Environ Sci, 2015, 8, 2902 doi: 10.1039/C5EE02145F[20] Li W, Furlan A, Hendriks K H, et al. Efficient tandem and triple-junction polymer solar cells. J Am Chem Soc, 2013, 135, 5529 doi: 10.1021/ja401434x[21] Cheng P, Liu Y, Chang S, et al. Efficient tandem organic photovoltaics with tunable rear sub-cells. Joule, 2019, 3, 432 doi: 10.1016/j.joule.2018.11.011[22] Seo J, Moon Y, Lee S, et al. High efficiency tandem polymer solar cells with MoO3/Ni/ZnO:PEOz hybrid interconnection layers. Nanoscale Horiz, 2019, 4, 1221 doi: 10.1039/C9NH00209J[23] Li M, Gao K, Wan X, et al. Solution-processed organic tandem solar cells with power conversion efficiencies > 12%. Nat Photonics, 2016, 11, 85 doi: 10.1038/nphoton.2016.240[24] Meng L, Zhang Y, Wan X, et al. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science, 2018, 361, 1094 doi: 10.1126/science.aat2612[25] Cui Y, Yao H, Gao B, et al. Fine-tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell. J Am Chem Soc, 2017, 139, 7302 doi: 10.1021/jacs.7b01493[26] Aqoma H, Imran I F, Wibowo F T A, et al. High-efficiency solution-processed two-terminal hybrid tandem solar cells using spectrally matched inorganic and organic photoactive materials. Adv Energy Mater, 2020, 10, 2001188 doi: 10.1002/aenm.202001188[27] Lang K, Guo Q, He Z, et al. High performance tandem solar cells with inorganic perovskite and organic conjugated molecules to realize complementary absorption. J Phys Chem Lett, 2020, 11, 9596 doi: 10.1021/acs.jpclett.0c02794 -
Supplements
21010016suppl.pdf -
Proportional views