J. Semicond. > 2021, Volume 42 > Issue 2 > 023104

REVIEWS

Towards electronic-photonic-converged thermo-optic feedback tuning

Min Tan1, 2, , Kaixuan Ye1, Da Ming1, Yuhang Wang1, Zhicheng Wang1, Li Jin3 and Junbo Feng3

+ Author Affiliations

 Corresponding author: Min Tan, mtan@hust.edu.cn

DOI: 10.1088/1674-4926/42/2/023104

PDF

Turn off MathJax

Abstract: As Moore’s law approaching its end, electronics is hitting its power, bandwidth, and capacity limits. Photonics is able to overcome the performance limits of electronics but lacks practical photonic register and flexible control. Combining electronics and photonics provides the best of both worlds and is widely regarded as an important post-Moore’s direction. For stability and dynamic operations considerations, feedback tuning of photonic devices is required. For silicon photonics, the thermo-optic effect is the most frequently used tuning mechanism due to the advantages of high efficiency and low loss. However, it brings new design requirements, creating new design challenges. Emerging applications, such as optical phased array, optical switches, and optical neural networks, employ a large number of photonic devices, making PCB tuning solutions no longer suitable. Electronic-photonic-converged solutions with compact footprints will play an important role in system scalability. In this paper, we present a unified model for thermo-optic feedback tuning that can be specialized to different applications, review its recent advances, and discuss its future trends.

Key words: power management ICintegrated photonicselectronic-photonic convergencethermo-optic tuningfeedback



[1]
Mashanovich G Z. Electronics and photonics united. Nature, 2018, 556, 316 doi: 10.1038/d41586-018-04443-3
[2]
Tan M, Ming D, Wang Z C. From photonic integration to electronic-photonic heterogeneously-converging integrated circuits: A case study of wavelength locking of microrings. Micro/nano Electronics and Intelligent Manufacturing, 2019, 1(3), 40 (in Chinese)
[3]
Shen Y, Harris N C, Skirlo S, et al. Deep learning with coherent nanophotonic circuits. Nat Photonics, 2017, 11, 441 doi: 10.1038/nphoton.2017.93
[4]
Chung S, Abediasl H, Hashemi H. A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS. IEEE J Solid-State Circuits, 2018, 53, 275 doi: 10.1109/JSSC.2017.2757009
[5]
Wang J, Paesani S, Ding Y, et al. Multidimensional quantum entanglement with large-scale integrated optics. Science, 2018, 360, 285 doi: 10.1126/science.aar7053
[6]
Malik A, Dwivedi S, Landschoot L V, et al. Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared. Opt Express, 2014, 22, 28479 doi: 10.1364/OE.22.028479
[7]
Hashizume Y, Katayose S, Tsuchizawa T, et al. Low-power silicon thermo-optic switch with folded waveguide arms and suspended ridge structures. Electron Lett, 2012, 48, 1234 doi: 10.1049/el.2012.1564
[8]
Qiu H, Liu Y, Luan C, et al. Energy-efficient thermo-optic silicon phase shifter with well-balanced overall performance. Opt Lett, 2020, 45, 4806 doi: 10.1364/OL.400230
[9]
Miller S A, Chang Y C, Phare C T, et al. Large-scale optical phased array using a low-power multi-pass silicon photonic platform. Optica, 2020, 7, 3 doi: 10.1364/OPTICA.7.000003
[10]
Watts M R, Sun J, DeRose C, et al. Adiabatic thermo-optic Mach-Zehnder switch. Opt Lett, 2013, 38, 733 doi: 10.1364/OL.38.000733
[11]
Campenhout J V, Green W M J, Assefa S, et al. Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices. Opt Lett, 2010, 35, 1013 doi: 10.1364/OL.35.001013
[12]
Fang Q, Song J F, Liow T, et al. Ultralow power silicon photonics thermo-optic switch with suspended phase arms. IEEE Photon Technol Lett, 2011, 23, 525 doi: 10.1109/LPT.2011.2114336
[13]
Chung S, Nakai M, Hashemi H. Low-power thermo-optic silicon modulator for large-scale photonic integrated systems. Opt Express, 2019, 27, 13430 doi: 10.1364/OE.27.013430
[14]
Jacques M, Samani A, El-Fiky E, et al. Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform. Opt Express, 2019, 27, 10456 doi: 10.1364/OE.27.010456
[15]
Baets R, Baets R, Subramanian A Z, et al. Silicon photonics: Silicon nitride versus silicon-on-insulator. Optical Fiber Communication Conference, 2016, Th3J.1
[16]
Chen Y, Whitehead J, Ryou A, et al. A large thermal tuning of a polymer-embedded silicon nitride nanobeam cavity. Opt Lett, 2019, 44, 3058 doi: 10.1364/OL.44.003058
[17]
Bauters J F, Heck M J R, John D, et al. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt Express, 2011, 19, 3163 doi: 10.1364/OE.19.003163
[18]
Hosseini E S, Yegnanarayanan S, Atabaki A H, et al. A high quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range. Opt Express, 2009, 17, 14543 doi: 10.1364/OE.17.014543
[19]
Sun Y, Cao Y, Wang Q, et al. Polymer thermal optical switch for a flexible photonic circuit. Appl Opt, 2018, 57, 14 doi: 10.1364/AO.57.000014
[20]
Liu Y F, Wang X B, Sun J W, et al. Improved performance of thermal-optic switch using polymer/silica hybrid and air trench waveguide structures. Opt Lett, 2015, 40, 1888 doi: 10.1364/OL.40.001888
[21]
Masood A, Pantouvaki M, Lepage G, et al. Comparison of heater architectures for thermal control of silicon photonic circuits. 10th International Conference on Group IV Photonics, 2013, 83
[22]
Ye K, Tan M. A dual-channel digital low dropout regulator with time-division-multiplexing scheme. IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), 2019, 29
[23]
Bahadori M, Gazman A, Janosik N, et al. Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform. J Light Technol, 2018, 36, 773 doi: 10.1109/JLT.2017.2781131
[24]
Zecevic N, Hofbauer M, Zimmermann H. Integrated pulsewidth modulation control for a scalable optical switch matrix. IEEE Photon J, 2015, 7, 1 doi: 10.1109/jphot.2015.2506153
[25]
Zhu Q, Qiu C, He Y, et al. Self-homodyne wavelength locking of a silicon microring resonator. Opt Express, 2019, 27, 36625 doi: 10.1364/OE.27.036625
[26]
Gatdula R, Kim K, Melikyan A, et al. Simultaneous four-channel thermal adaptation of polarization insensitive silicon photonics WDM receiver. Opt Express, 2017, 25, 27119 doi: 10.1364/OE.25.027119
[27]
Hattink M, Zhu Z, Bergman K. Automated tuning and channel selection for cascaded micro-ring resonators. Metro and Data Center Optical Networks and Short-Reach Links III, 2020, 11308, 113080P
[28]
Agarwal S, Ingels M, Pantouvaki M, et al. Wavelength locking of a Si ring modulator using an integrated drop-port OMA monitoring circuit. IEEE J Solid-State Circuits, 2016, 51, 2328 doi: 10.1109/JSSC.2016.2592691
[29]
Dong P, Gatdula R, Kim K, et al. Simultaneous wavelength locking of microring modulator array with a single monitoring signal. Opt Express, 2017, 25, 16040 doi: 10.1364/OE.25.016040
[30]
AlTaha M W, Jayatilleka H, Lu Z, et al. Monitoring and automatic tuning and stabilization of a 2 × 2 MZI optical switch for large-scale WDM switch networks. Opt Express, 2019, 27, 24747 doi: 10.1364/OE.27.024747
[31]
Saeedi S, Emami A. Silicon-photonic PTAT temperature sensor for micro-ring resonator thermal stabilization. Opt Express, 2015, 23, 21875 doi: 10.1364/OE.23.021875
[32]
Yang S, Zhu X, Zhang Y, et al. Thermal stabilization of a microring resonator using bandgap temperature sensor. IEEE Optical Interconnects Conference (OI), 2015, 44
[33]
Kim M, Kim M H, Jo Y, et al. A fully integrated 25 Gb/s Si ring modulator transmitter with a temperature controller. Optical Fiber Communication Conference, 2020, T3H.7
[34]
Jayatilleka H, Murray K, Guillén-Torres M Á, et al. Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters. Opt Express, 2015, 23, 25084 doi: 10.1364/OE.23.025084
[35]
Jayatilleka H, Shoman H, Boeck R, et al. Automatic configuration and wavelength locking of coupled silicon ring resonators. J Lightwave Technol, 2018, 36, 210 doi: 10.1109/JLT.2017.2769962
[36]
Jayatilleka H, Shoman H, Chrostowski L, et al. High quantum efficiency photoconductive heaters enable control of large-scale silicon photonic ring resonator circuits. Optica, 2019, 6, 84 doi: 10.1364/OPTICA.6.000084
[37]
Morichetti F, Grillanda S, Carminati M, et al. A non-invasive on-chip light observation by contactless waveguide conductivity monitoring. IEEE J Sel Top Quantum Electron, 2014, 20, 292 doi: 10.1109/JSTQE.2014.2300046
[38]
Zanetto F, Grimaldi V, Moralis-Pegios M, et al. A WDM-based silicon photonic multi-socket interconnect architecture with automated wavelength and thermal drift compensation. J Lightwave Technol, 2020, 38, 6000 doi: 10.1109/JLT.2020.3008001
[39]
Grillanda S, Carminati M, Morichetti F, et al. A non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica, 2014, 1, 129 doi: 10.1364/OPTICA.1.000129
[40]
Zhu Q, Jiang X, Yu Y, et al. Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators. IEEE Photon J, 2018, 10, 1 doi: 10.1109/JPHOT.2018.2791561
[41]
Guglielmi E, Carminati M, Zanetto F, et al. 16-channel modular platform for automatic control and reconfiguration of complex photonic circuits. IEEE International Symposium on Circuits and Systems (ISCAS), 2017, 1
[42]
Moralis-Pegios M, Pitris S, Alexoudi T, et al. 4-channel 200 Gb/s WDM O-band silicon photonic transceiver sub-assembly. Opt Express, 2020, 28, 5706 doi: 10.1364/OE.373454
[43]
Kim M H, Zimmermann L, Choi W Y. A temperature controller IC for maximizing Si micro-ring modulator optical modulation amplitude. J Lightwave Technol, 2019, 37, 1200 doi: 10.1109/JLT.2018.2889899
[44]
Li C, Bai R, Shafik A, et al. Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS. IEEE J Solid-State Circuits, 2014, 49, 1419 doi: 10.1109/JSSC.2014.2321574
[45]
Li H, Xuan Z, Titriku A, et al. A 25 Gb/s, 4.4 V-swing, AC-coupled ring modulator-based WDM transmitter with wavelength stabilization in 65 nm CMOS. IEEE J Solid-State Circuits, 2015, 50, 3145 doi: 10.1109/JSSC.2015.2470524
[46]
Sun C, Wade M, Georgas M, et al. A 45 nm CMOS-SOI monolithic photonics platform with bit-statistics-based resonant microring thermal tuning. IEEE J Solid-State Circuits, 2016, 51, 893 doi: 10.1109/JSSC.2016.2519390
[47]
Yu K, Li C, Li H, et al. A 25 Gb/s hybrid-integrated silicon photonic source-synchronous receiver with microring wavelength stabilization. IEEE J Solid-State Circuits, 2016, 51, 2129 doi: 10.1109/JSSC.2016.2582858
[48]
Padmaraju K, Logan D F, Shiraishi T, et al. Wavelength locking and thermally stabilizing microring resonators using dithering signals. J Light Technol, 2014, 32, 505 doi: 10.1109/JLT.2013.2294564
[49]
Annoni A, Guglielmi E, Carminati M, et al. Automated routing and control of silicon photonic switch fabrics. IEEE J Sel Top Quantum Electron, 2016, 22, 169 doi: 10.1109/JSTQE.2016.2551943
[50]
Wang L L, Kowalcyzk T. A versatile bias control technique for any-point locking in lithium niobate Mach–Zehnder modulators. J Light Technol, 2010, 28, 1703 doi: 10.1109/JLT.2010.2048553
[51]
Wang Z, Yu Y, Xiao X, et al. A time-division-multiplexing scheme for simultaneous wavelength locking of multiple silicon micro-rings. IEEE International Symposium on Circuits and Systems (ISCAS), 2018, 1
[52]
Mak J C C, Sacher W D, Xue T, et al. Automatic resonance alignment of high-order microring filters. IEEE J Quantum Electron, 2015, 51, 1 doi: 10.1109/JQE.2015.2479939
[53]
Milanizadeh M, Aguiar D, Melloni A, et al. Canceling thermal cross-talk effects in photonic integrated circuits. J Light Technol, 2019, 37, 1325 doi: 10.1109/JLT.2019.2892512
[54]
Milanizadeh M, Ahmadi S, Petrini M, et al. Control and calibration recipes for photonic integrated circuits. IEEE J Sel Top Quantum Electron, 2020, 26, 1 doi: 10.1109/JSTQE.2020.2975657
[55]
Ming D, Wang C, Wang Y, et al. First demonstration of closed-loop PWM wavelength locking of a microring resonator in a monolithic photonic-BiCMOS platform. IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), 2020
[56]
Padmaraju K, Logan D F, Zhu X, et al. Integrated thermal stabilization of a microring modulator. Opt Express, 2013, 21, 14342 doi: 10.1364/OE.21.014342
[57]
Li H, Balamurugan G, Kim T, Sakib M N, et al. A 3-D-integrated silicon photonic microring-based 112-Gb/s PAM-4 transmitter with nonlinear equalization and thermal control. IEEE J Solid-State Circuits, 2020, 1 doi: 10.1109/JSSC.2020.3022851
[58]
Amberg P, Chang E, Liu F, et al. A sub-400 fJ/bit thermal tuner for optical resonant ring modulators in 40 nm CMOS. IEEE Asian Solid State Circuits Conference (A-SSCC), 2012, 29
[59]
Tan M. A precoding closed-loop feedback thermal control method and system for microring modulator. Chinese Patent, 2017, 201711029849.1 (in Chinese)
[60]
Nagata H, Kiuchi K, Saito T. Studies of thermal drift as a source of output instabilities in Ti:LiNbO3 optical modulators. J Appl Phys, 1994, 75, 4762 doi: 10.1063/1.355906
[61]
Wooten E L, Kissa K M, Yi-Yan A, et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quantum Electron, 2000, 6, 69 doi: 10.1109/2944.826874
[62]
Chen H, Zhang B, Ma W, et al. Study on auto bias control of a silicon optical modulator in a four-level pulse amplitude modulation format. Appl Opt, 2019, 58, 3986 doi: 10.1364/AO.58.003986
[63]
Švarný J. Limited applicability of the constant optical power controller to the integrated intensity electro-optic modulator. Proc 10th World Scientific Engineering Academy Society, 2011, 108
[64]
Švarný J. Analysis of quadrature bias-point drift of Mach-Zehnder electro-optic modulator. 12th Biennial Baltic Electronics Conference, 2010, 231
[65]
Fu Y, Zhang X, Hraimel B, et al. Mach-Zehnder: A review of bias control techniques for Mach-Zehnder modulators in photonic analog links. IEEE Microw Mag, 2013, 14, 102 doi: 10.1109/MMM.2013.2280332
[66]
Kim M H, Jung H Y, Zimmermann L. An integrated Mach-Zehnder modulator bias controller based on eye-amplitude monitoring. Smart Photonic and Optoelectronic Integrated Circuits XVIII, 2016, 9751, 97510X
[67]
Kim M, Yu B, Choi W. A Mach-Zehnder modulator bias controller based on OMA and average power monitoring. IEEE Photon Technol Lett, 2017, 29, 2043 doi: 10.1109/LPT.2017.2762331
[68]
Barwicz T, Watts M R, Popović M A, et al. Polarization-transparent microphotonic devices in the strong confinement limit. Nat Photonics, 2007, 1, 57 doi: 10.1038/nphoton.2006.41
[69]
Caspers J N, Wang Y, Chrostowski L, et al. Active polarization independent coupling to silicon photonics circuit. Silicon Photonics and Photonic Integrated Circuits IV, 2014, 9133, 91330G
[70]
Velha P, Sorianello V, Preite M V, et al. Wide-band polarization controller for Si photonic integrated circuits. Opt Lett, 2016, 41, 5656 doi: 10.1364/OL.41.005656
[71]
Ma M, Murray K, Ye M, et al. Silicon photonic polarization receiver with automated stabilization for arbitrary input polarizations. Conference on Lasers and Electro-Optics, 2016, STu4G.8
[72]
Cao R, He Y, Zhu Q, et al. Multi-channel 28-GHz millimeter-wave signal generation on a silicon photonic chip with automated polarization control. J Semicond, 2019, 40, 052301 doi: 10.1088/1674-4926/40/5/052301
[73]
Ma M, Shoman H, Tang K, et al. Automated control algorithms for silicon photonic polarization receiver. Opt Express, 2020, 28, 1885 doi: 10.1364/OE.380121
[74]
Ma M, Shoman H, Shekhar S, et al. Automated adaptation and stabilization of a tunable WDM polarization-independent receiver on active silicon photonic platform. IEEE Photon J, 2020, 12, 4900411 doi: 10.1109/JPHOT.2020.3012097
[75]
Sun S, He M, Xu M, et al. Bias-drift-free Mach-Zehnder modulators based on heterogeneous silicon and lithium niobate platform. Photonics Res, 2020, 8, 1958 doi: 10.1364/PRJ.403167
[76]
Fatemi R, Khachaturian A, Hajimiri A. A nonuniform sparse 2-D large-FOV optical phased array with a low-power PWM drive. IEEE J Solid-State Circuits, 2019, 54, 1200 doi: 10.1109/JSSC.2019.2896767
[77]
Kim T, Bhargava P, Poulton C V, et al. A single-chip optical phased array in a wafer-scale silicon photonics /CMOS 3D-integration platform. IEEE J Solid-State Circuits, 2019, 54, 3061 doi: 10.1109/JSSC.2019.2934601
[78]
Ashtiani F, Aflatouni F. N x N optical phased array with 2N phase shifters. Opt Express, 2019, 27, 27183 doi: 10.1364/OE.27.027183
[79]
Ashtiani F, Aflatouni F. Monolithic optical phased-array transceiver in a standard SOI CMOS process. Opt Express, 2015, 23, 6509 doi: 10.1364/OE.23.006509
[80]
Zhang Q, Zhang L, Li Z, et al. An antenna array initial condition calibration method for integrated optical phased array. Acta Photonica Sinica, 2020, 49(7), 726001 doi: 10.3788/gzxb20204907.0726001
[81]
Hutchisonetal D, Sun J, Doylend J, et al. High-resolution aliasing-free optical beam steering. Optica, 2016, 8, 887 doi: 10.1364/OPTICA.3.000887
[82]
Zhang H, Zhang Z, Peng C, et al. Phase calibration of on-chip optical phased arrays via interference technique. IEEE Photon J, 2020, 12, 6600210 doi: 10.1109/JPHOT.2020.2968002
[83]
Komljenovic T, Pintus P. On-chip calibration and control of optical phased arrays. Opt Express, 2018, 26, 3199 doi: 10.1364/OE.26.003199
Fig. 1.  (Color online) (a) The convergence of electronics and photonics. (b) Design hierarchy of electronic-photonic convergence[2].

Fig. 2.  (Color online) The unified model of a thermo-optic feedback tuning system.

Fig. 3.  (Color online) TOPS structures of (a) conventional[6], (b) air-trench[7], (c) multi-bend[8], and (d) multi-pass[9].

Fig. 4.  Block diagrams of (a) multiple LDOs and (b) a TDM LDO that drives multiple TOPS.

Fig. 5.  Driving the TOPS with (a) DAC and (b) PWM generator.

Fig. 6.  (Color online) (a) Cross-section of a photoconductive n-doped silicon waveguide and its integration into a ring resonator to form an IRPH. (b) IV characteristics of an IRPH with the input laser turned off and on. (c) Calibrated drop-port transmission and photocurrent of a single ring resonator filter relative to its resonance wavelength[35].

Fig. 7.  (Color online) Left: Cross-section of the Si core waveguide, with the CLIPP electrode deposited on top of the SiO2 cladding. Right: Longitudinal profile of the Si waveguide showing the CLIPP equivalent circuit in the electrical domain[39].

Fig. 8.  (Color online) Operating principle of a pipelined TDM scheme[51].

Fig. 9.  (Color online) The general model for thermo-optic feedback wavelength control of a high-order MR filter.

Fig. 10.  (Color online) The general model for thermo-optic feedback wavelength locking of an MR modulator.

Fig. 11.  Bias control schemes. (a) Output power monitor method. (b) Dithering method. (c) OMA monitor methods.

Fig. 12.  The general model for feedback polarization control.

Fig. 13.  (Color online) The proof-of-concept prototype in Ref. [69].

Fig. 14.  (Color online) A tunable WDM polarization-independent receiver with active polarization control[74].

Fig. 15.  The general model for the closed-loop optical phased array.

Table 1.   Summary of TOPS designs.

Ref. Undercut Heater Pπ (mW) Size (µm2) Bandwidth (kHz) Loss (dB) Resistance (Ω)
[7] Yes TiN 0.4 500 × 20 0.2 0.55
[8] No Ti 3.0 67 × 28 39 0.9
[9] No Metal 1.7 880 × 365 53.8 6
[13] No TiN 2.56 109 × 21 10.1 1.23 249.5
[14] No TiN 21.4 320 × 2.5 62.5 < 0.4 540
No N++Si 22.8 320 × 2.0 159 < 0.4 1100
DownLoad: CSV

Table 2.   Summary of wavelength control of MR filters.

Ref. Monitor Controller PMC TOPS Photonic device Integration method
[52] Photodiode Lock to Max. PCB solution Doping heater 5-order MR filter PCB
[34, 35] IRPHs Lock to Ref. PCB solution Doping heater 4-order MR filter PCB/Computer
[54] Photodiode Lock to Min. PCB solution Metal heater 3-order MR filter PCB
[55] Photodiode Lock to Max. PWM Doping heater Single MR filter Monolithic
DownLoad: CSV

Table 3.   Summary of wavelength locking of a Si MR Modulator.

Ref. Monitor Controller PMC TOPS Photonic device Integration method
[45] Photodiode Lock to Ref./Average power detection DAC Doping heater Depletion MRM Wire-bonding
[56] Photodiode Lock to Ref./Average power detection PCB solution Metal heater Depletion MRM Off-chip
[28] Photodiode Lock to Max./OMA maximum DAC Metal heater Depletion MRM Flip-chip
[46] Photodiode Lock to Ref./Eye maximum DAC c-Si heater Depletion MRM Monolithic
[33] Photodiode/Temperature sensor Lock to Ref./OMA maximum DAC Doping heater Depletion MRM Monolithic
[57] Photodiode Lock to Ref./OMA maximum Power DAC Metal heater Depletion MRM Cu-pillar 3D integration
DownLoad: CSV

Table 4.   Summary of bias control schemes.

Ref. Monitor Controller PMC TOPS Photonic device Integration method
[63] Photodiode (power detection) Lock to Ref PCB solution LiNbO3 MZM Computer
[64] Photodiode (power detection) Lock to Ref PCB solution LiNbO3 MZM PCB
[50, 65] Photodiode (dithering detection) Lock to Ref PCB solution LiNbO3 MZM Computer
[62] Photodiode (dithering detection) Lock to Ref PCB solution Metal heater Silicon MZM PCB
[66] Photodiode (OMA detection) Max search Charge pump LiNbO3 MZM Integrated controller
[67] Photodiode OMA + power detection) Max search and PID control DAC LiNbO3 MZM Integrated controller
DownLoad: CSV

Table 5.   Summary of feedback polarization control schemes.

Ref. Monitor Controller PMC TOPS Photonic device Integration method
[69] Powermeter Manual Metal heater 2DGC/3 dB coupler
[71] Photodiode Min search PCB solution Metal heater Edge coupler/PSR/TOPS/3 dB coupler/PD Computer
[70] Photodiode Min search1 PCB solution 2DGC/GC/OTPS/MMI/PD Computer
[73] Photodiode Min search2 PCB solution Metal heater Edge coupler/TOPS/PSR/3 dB asymmetric coupler/PD Computer
[74] Photodiode Min search3 PCB solution Metal heater Edge coupler/TOPS/PSR/3 dB coupler/Micro-ring/Crossing/PD Computer
1. GLD control algorithm.
2. Two-point step size gradient descent-based and two-stage optimization method-based control algorithms.
3. Two-point step size gradient descent-based control algorithms.
DownLoad: CSV

Table 6.   Summary of the optical phased arrays.

Ref. Monitor Controller PMC TOPS Photonic device Integration method
[4] Powermeter DAC Metal heater Grating coupler optical antenna Monolithic
[76] IR camera PWM driver Doping heater Grating coupler optical antenna Integrated drivers
[77] Photodetector DAC Doping heater Apodized grating antenna 3D Integrated
[78] IR camera PCB solution Metal heater Grating coupler optical antenna PCB
[79] Photodetector DAC Doping heater Grating coupler optical antenna Monolithic
[81] IR CCD Gradient-search algorithm Doping heater Emitter
[82] IR CCD Interference technique Grating coupler optical antenna
[83] Photodetector DSGD2 DAC Emitter
DownLoad: CSV
[1]
Mashanovich G Z. Electronics and photonics united. Nature, 2018, 556, 316 doi: 10.1038/d41586-018-04443-3
[2]
Tan M, Ming D, Wang Z C. From photonic integration to electronic-photonic heterogeneously-converging integrated circuits: A case study of wavelength locking of microrings. Micro/nano Electronics and Intelligent Manufacturing, 2019, 1(3), 40 (in Chinese)
[3]
Shen Y, Harris N C, Skirlo S, et al. Deep learning with coherent nanophotonic circuits. Nat Photonics, 2017, 11, 441 doi: 10.1038/nphoton.2017.93
[4]
Chung S, Abediasl H, Hashemi H. A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS. IEEE J Solid-State Circuits, 2018, 53, 275 doi: 10.1109/JSSC.2017.2757009
[5]
Wang J, Paesani S, Ding Y, et al. Multidimensional quantum entanglement with large-scale integrated optics. Science, 2018, 360, 285 doi: 10.1126/science.aar7053
[6]
Malik A, Dwivedi S, Landschoot L V, et al. Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared. Opt Express, 2014, 22, 28479 doi: 10.1364/OE.22.028479
[7]
Hashizume Y, Katayose S, Tsuchizawa T, et al. Low-power silicon thermo-optic switch with folded waveguide arms and suspended ridge structures. Electron Lett, 2012, 48, 1234 doi: 10.1049/el.2012.1564
[8]
Qiu H, Liu Y, Luan C, et al. Energy-efficient thermo-optic silicon phase shifter with well-balanced overall performance. Opt Lett, 2020, 45, 4806 doi: 10.1364/OL.400230
[9]
Miller S A, Chang Y C, Phare C T, et al. Large-scale optical phased array using a low-power multi-pass silicon photonic platform. Optica, 2020, 7, 3 doi: 10.1364/OPTICA.7.000003
[10]
Watts M R, Sun J, DeRose C, et al. Adiabatic thermo-optic Mach-Zehnder switch. Opt Lett, 2013, 38, 733 doi: 10.1364/OL.38.000733
[11]
Campenhout J V, Green W M J, Assefa S, et al. Integrated NiSi waveguide heaters for CMOS-compatible silicon thermo-optic devices. Opt Lett, 2010, 35, 1013 doi: 10.1364/OL.35.001013
[12]
Fang Q, Song J F, Liow T, et al. Ultralow power silicon photonics thermo-optic switch with suspended phase arms. IEEE Photon Technol Lett, 2011, 23, 525 doi: 10.1109/LPT.2011.2114336
[13]
Chung S, Nakai M, Hashemi H. Low-power thermo-optic silicon modulator for large-scale photonic integrated systems. Opt Express, 2019, 27, 13430 doi: 10.1364/OE.27.013430
[14]
Jacques M, Samani A, El-Fiky E, et al. Optimization of thermo-optic phase-shifter design and mitigation of thermal crosstalk on the SOI platform. Opt Express, 2019, 27, 10456 doi: 10.1364/OE.27.010456
[15]
Baets R, Baets R, Subramanian A Z, et al. Silicon photonics: Silicon nitride versus silicon-on-insulator. Optical Fiber Communication Conference, 2016, Th3J.1
[16]
Chen Y, Whitehead J, Ryou A, et al. A large thermal tuning of a polymer-embedded silicon nitride nanobeam cavity. Opt Lett, 2019, 44, 3058 doi: 10.1364/OL.44.003058
[17]
Bauters J F, Heck M J R, John D, et al. Ultra-low-loss high-aspect-ratio Si3N4 waveguides. Opt Express, 2011, 19, 3163 doi: 10.1364/OE.19.003163
[18]
Hosseini E S, Yegnanarayanan S, Atabaki A H, et al. A high quality planar silicon nitride microdisk resonators for integrated photonics in the visible wavelength range. Opt Express, 2009, 17, 14543 doi: 10.1364/OE.17.014543
[19]
Sun Y, Cao Y, Wang Q, et al. Polymer thermal optical switch for a flexible photonic circuit. Appl Opt, 2018, 57, 14 doi: 10.1364/AO.57.000014
[20]
Liu Y F, Wang X B, Sun J W, et al. Improved performance of thermal-optic switch using polymer/silica hybrid and air trench waveguide structures. Opt Lett, 2015, 40, 1888 doi: 10.1364/OL.40.001888
[21]
Masood A, Pantouvaki M, Lepage G, et al. Comparison of heater architectures for thermal control of silicon photonic circuits. 10th International Conference on Group IV Photonics, 2013, 83
[22]
Ye K, Tan M. A dual-channel digital low dropout regulator with time-division-multiplexing scheme. IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), 2019, 29
[23]
Bahadori M, Gazman A, Janosik N, et al. Thermal rectification of integrated microheaters for microring resonators in silicon photonics platform. J Light Technol, 2018, 36, 773 doi: 10.1109/JLT.2017.2781131
[24]
Zecevic N, Hofbauer M, Zimmermann H. Integrated pulsewidth modulation control for a scalable optical switch matrix. IEEE Photon J, 2015, 7, 1 doi: 10.1109/jphot.2015.2506153
[25]
Zhu Q, Qiu C, He Y, et al. Self-homodyne wavelength locking of a silicon microring resonator. Opt Express, 2019, 27, 36625 doi: 10.1364/OE.27.036625
[26]
Gatdula R, Kim K, Melikyan A, et al. Simultaneous four-channel thermal adaptation of polarization insensitive silicon photonics WDM receiver. Opt Express, 2017, 25, 27119 doi: 10.1364/OE.25.027119
[27]
Hattink M, Zhu Z, Bergman K. Automated tuning and channel selection for cascaded micro-ring resonators. Metro and Data Center Optical Networks and Short-Reach Links III, 2020, 11308, 113080P
[28]
Agarwal S, Ingels M, Pantouvaki M, et al. Wavelength locking of a Si ring modulator using an integrated drop-port OMA monitoring circuit. IEEE J Solid-State Circuits, 2016, 51, 2328 doi: 10.1109/JSSC.2016.2592691
[29]
Dong P, Gatdula R, Kim K, et al. Simultaneous wavelength locking of microring modulator array with a single monitoring signal. Opt Express, 2017, 25, 16040 doi: 10.1364/OE.25.016040
[30]
AlTaha M W, Jayatilleka H, Lu Z, et al. Monitoring and automatic tuning and stabilization of a 2 × 2 MZI optical switch for large-scale WDM switch networks. Opt Express, 2019, 27, 24747 doi: 10.1364/OE.27.024747
[31]
Saeedi S, Emami A. Silicon-photonic PTAT temperature sensor for micro-ring resonator thermal stabilization. Opt Express, 2015, 23, 21875 doi: 10.1364/OE.23.021875
[32]
Yang S, Zhu X, Zhang Y, et al. Thermal stabilization of a microring resonator using bandgap temperature sensor. IEEE Optical Interconnects Conference (OI), 2015, 44
[33]
Kim M, Kim M H, Jo Y, et al. A fully integrated 25 Gb/s Si ring modulator transmitter with a temperature controller. Optical Fiber Communication Conference, 2020, T3H.7
[34]
Jayatilleka H, Murray K, Guillén-Torres M Á, et al. Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters. Opt Express, 2015, 23, 25084 doi: 10.1364/OE.23.025084
[35]
Jayatilleka H, Shoman H, Boeck R, et al. Automatic configuration and wavelength locking of coupled silicon ring resonators. J Lightwave Technol, 2018, 36, 210 doi: 10.1109/JLT.2017.2769962
[36]
Jayatilleka H, Shoman H, Chrostowski L, et al. High quantum efficiency photoconductive heaters enable control of large-scale silicon photonic ring resonator circuits. Optica, 2019, 6, 84 doi: 10.1364/OPTICA.6.000084
[37]
Morichetti F, Grillanda S, Carminati M, et al. A non-invasive on-chip light observation by contactless waveguide conductivity monitoring. IEEE J Sel Top Quantum Electron, 2014, 20, 292 doi: 10.1109/JSTQE.2014.2300046
[38]
Zanetto F, Grimaldi V, Moralis-Pegios M, et al. A WDM-based silicon photonic multi-socket interconnect architecture with automated wavelength and thermal drift compensation. J Lightwave Technol, 2020, 38, 6000 doi: 10.1109/JLT.2020.3008001
[39]
Grillanda S, Carminati M, Morichetti F, et al. A non-invasive monitoring and control in silicon photonics using CMOS integrated electronics. Optica, 2014, 1, 129 doi: 10.1364/OPTICA.1.000129
[40]
Zhu Q, Jiang X, Yu Y, et al. Automated wavelength alignment in a 4 × 4 silicon thermo-optic switch based on dual-ring resonators. IEEE Photon J, 2018, 10, 1 doi: 10.1109/JPHOT.2018.2791561
[41]
Guglielmi E, Carminati M, Zanetto F, et al. 16-channel modular platform for automatic control and reconfiguration of complex photonic circuits. IEEE International Symposium on Circuits and Systems (ISCAS), 2017, 1
[42]
Moralis-Pegios M, Pitris S, Alexoudi T, et al. 4-channel 200 Gb/s WDM O-band silicon photonic transceiver sub-assembly. Opt Express, 2020, 28, 5706 doi: 10.1364/OE.373454
[43]
Kim M H, Zimmermann L, Choi W Y. A temperature controller IC for maximizing Si micro-ring modulator optical modulation amplitude. J Lightwave Technol, 2019, 37, 1200 doi: 10.1109/JLT.2018.2889899
[44]
Li C, Bai R, Shafik A, et al. Silicon photonic transceiver circuits with microring resonator bias-based wavelength stabilization in 65 nm CMOS. IEEE J Solid-State Circuits, 2014, 49, 1419 doi: 10.1109/JSSC.2014.2321574
[45]
Li H, Xuan Z, Titriku A, et al. A 25 Gb/s, 4.4 V-swing, AC-coupled ring modulator-based WDM transmitter with wavelength stabilization in 65 nm CMOS. IEEE J Solid-State Circuits, 2015, 50, 3145 doi: 10.1109/JSSC.2015.2470524
[46]
Sun C, Wade M, Georgas M, et al. A 45 nm CMOS-SOI monolithic photonics platform with bit-statistics-based resonant microring thermal tuning. IEEE J Solid-State Circuits, 2016, 51, 893 doi: 10.1109/JSSC.2016.2519390
[47]
Yu K, Li C, Li H, et al. A 25 Gb/s hybrid-integrated silicon photonic source-synchronous receiver with microring wavelength stabilization. IEEE J Solid-State Circuits, 2016, 51, 2129 doi: 10.1109/JSSC.2016.2582858
[48]
Padmaraju K, Logan D F, Shiraishi T, et al. Wavelength locking and thermally stabilizing microring resonators using dithering signals. J Light Technol, 2014, 32, 505 doi: 10.1109/JLT.2013.2294564
[49]
Annoni A, Guglielmi E, Carminati M, et al. Automated routing and control of silicon photonic switch fabrics. IEEE J Sel Top Quantum Electron, 2016, 22, 169 doi: 10.1109/JSTQE.2016.2551943
[50]
Wang L L, Kowalcyzk T. A versatile bias control technique for any-point locking in lithium niobate Mach–Zehnder modulators. J Light Technol, 2010, 28, 1703 doi: 10.1109/JLT.2010.2048553
[51]
Wang Z, Yu Y, Xiao X, et al. A time-division-multiplexing scheme for simultaneous wavelength locking of multiple silicon micro-rings. IEEE International Symposium on Circuits and Systems (ISCAS), 2018, 1
[52]
Mak J C C, Sacher W D, Xue T, et al. Automatic resonance alignment of high-order microring filters. IEEE J Quantum Electron, 2015, 51, 1 doi: 10.1109/JQE.2015.2479939
[53]
Milanizadeh M, Aguiar D, Melloni A, et al. Canceling thermal cross-talk effects in photonic integrated circuits. J Light Technol, 2019, 37, 1325 doi: 10.1109/JLT.2019.2892512
[54]
Milanizadeh M, Ahmadi S, Petrini M, et al. Control and calibration recipes for photonic integrated circuits. IEEE J Sel Top Quantum Electron, 2020, 26, 1 doi: 10.1109/JSTQE.2020.2975657
[55]
Ming D, Wang C, Wang Y, et al. First demonstration of closed-loop PWM wavelength locking of a microring resonator in a monolithic photonic-BiCMOS platform. IEEE International Conference on Integrated Circuits, Technologies and Applications (ICTA), 2020
[56]
Padmaraju K, Logan D F, Zhu X, et al. Integrated thermal stabilization of a microring modulator. Opt Express, 2013, 21, 14342 doi: 10.1364/OE.21.014342
[57]
Li H, Balamurugan G, Kim T, Sakib M N, et al. A 3-D-integrated silicon photonic microring-based 112-Gb/s PAM-4 transmitter with nonlinear equalization and thermal control. IEEE J Solid-State Circuits, 2020, 1 doi: 10.1109/JSSC.2020.3022851
[58]
Amberg P, Chang E, Liu F, et al. A sub-400 fJ/bit thermal tuner for optical resonant ring modulators in 40 nm CMOS. IEEE Asian Solid State Circuits Conference (A-SSCC), 2012, 29
[59]
Tan M. A precoding closed-loop feedback thermal control method and system for microring modulator. Chinese Patent, 2017, 201711029849.1 (in Chinese)
[60]
Nagata H, Kiuchi K, Saito T. Studies of thermal drift as a source of output instabilities in Ti:LiNbO3 optical modulators. J Appl Phys, 1994, 75, 4762 doi: 10.1063/1.355906
[61]
Wooten E L, Kissa K M, Yi-Yan A, et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quantum Electron, 2000, 6, 69 doi: 10.1109/2944.826874
[62]
Chen H, Zhang B, Ma W, et al. Study on auto bias control of a silicon optical modulator in a four-level pulse amplitude modulation format. Appl Opt, 2019, 58, 3986 doi: 10.1364/AO.58.003986
[63]
Švarný J. Limited applicability of the constant optical power controller to the integrated intensity electro-optic modulator. Proc 10th World Scientific Engineering Academy Society, 2011, 108
[64]
Švarný J. Analysis of quadrature bias-point drift of Mach-Zehnder electro-optic modulator. 12th Biennial Baltic Electronics Conference, 2010, 231
[65]
Fu Y, Zhang X, Hraimel B, et al. Mach-Zehnder: A review of bias control techniques for Mach-Zehnder modulators in photonic analog links. IEEE Microw Mag, 2013, 14, 102 doi: 10.1109/MMM.2013.2280332
[66]
Kim M H, Jung H Y, Zimmermann L. An integrated Mach-Zehnder modulator bias controller based on eye-amplitude monitoring. Smart Photonic and Optoelectronic Integrated Circuits XVIII, 2016, 9751, 97510X
[67]
Kim M, Yu B, Choi W. A Mach-Zehnder modulator bias controller based on OMA and average power monitoring. IEEE Photon Technol Lett, 2017, 29, 2043 doi: 10.1109/LPT.2017.2762331
[68]
Barwicz T, Watts M R, Popović M A, et al. Polarization-transparent microphotonic devices in the strong confinement limit. Nat Photonics, 2007, 1, 57 doi: 10.1038/nphoton.2006.41
[69]
Caspers J N, Wang Y, Chrostowski L, et al. Active polarization independent coupling to silicon photonics circuit. Silicon Photonics and Photonic Integrated Circuits IV, 2014, 9133, 91330G
[70]
Velha P, Sorianello V, Preite M V, et al. Wide-band polarization controller for Si photonic integrated circuits. Opt Lett, 2016, 41, 5656 doi: 10.1364/OL.41.005656
[71]
Ma M, Murray K, Ye M, et al. Silicon photonic polarization receiver with automated stabilization for arbitrary input polarizations. Conference on Lasers and Electro-Optics, 2016, STu4G.8
[72]
Cao R, He Y, Zhu Q, et al. Multi-channel 28-GHz millimeter-wave signal generation on a silicon photonic chip with automated polarization control. J Semicond, 2019, 40, 052301 doi: 10.1088/1674-4926/40/5/052301
[73]
Ma M, Shoman H, Tang K, et al. Automated control algorithms for silicon photonic polarization receiver. Opt Express, 2020, 28, 1885 doi: 10.1364/OE.380121
[74]
Ma M, Shoman H, Shekhar S, et al. Automated adaptation and stabilization of a tunable WDM polarization-independent receiver on active silicon photonic platform. IEEE Photon J, 2020, 12, 4900411 doi: 10.1109/JPHOT.2020.3012097
[75]
Sun S, He M, Xu M, et al. Bias-drift-free Mach-Zehnder modulators based on heterogeneous silicon and lithium niobate platform. Photonics Res, 2020, 8, 1958 doi: 10.1364/PRJ.403167
[76]
Fatemi R, Khachaturian A, Hajimiri A. A nonuniform sparse 2-D large-FOV optical phased array with a low-power PWM drive. IEEE J Solid-State Circuits, 2019, 54, 1200 doi: 10.1109/JSSC.2019.2896767
[77]
Kim T, Bhargava P, Poulton C V, et al. A single-chip optical phased array in a wafer-scale silicon photonics /CMOS 3D-integration platform. IEEE J Solid-State Circuits, 2019, 54, 3061 doi: 10.1109/JSSC.2019.2934601
[78]
Ashtiani F, Aflatouni F. N x N optical phased array with 2N phase shifters. Opt Express, 2019, 27, 27183 doi: 10.1364/OE.27.027183
[79]
Ashtiani F, Aflatouni F. Monolithic optical phased-array transceiver in a standard SOI CMOS process. Opt Express, 2015, 23, 6509 doi: 10.1364/OE.23.006509
[80]
Zhang Q, Zhang L, Li Z, et al. An antenna array initial condition calibration method for integrated optical phased array. Acta Photonica Sinica, 2020, 49(7), 726001 doi: 10.3788/gzxb20204907.0726001
[81]
Hutchisonetal D, Sun J, Doylend J, et al. High-resolution aliasing-free optical beam steering. Optica, 2016, 8, 887 doi: 10.1364/OPTICA.3.000887
[82]
Zhang H, Zhang Z, Peng C, et al. Phase calibration of on-chip optical phased arrays via interference technique. IEEE Photon J, 2020, 12, 6600210 doi: 10.1109/JPHOT.2020.2968002
[83]
Komljenovic T, Pintus P. On-chip calibration and control of optical phased arrays. Opt Express, 2018, 26, 3199 doi: 10.1364/OE.26.003199
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3981 Times PDF downloads: 214 Times Cited by: 0 Times

    History

    Received: 19 November 2020 Revised: 28 December 2020 Online: Accepted Manuscript: 18 January 2021Uncorrected proof: 21 January 2021Published: 08 February 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Min Tan, Kaixuan Ye, Da Ming, Yuhang Wang, Zhicheng Wang, Li Jin, Junbo Feng. Towards electronic-photonic-converged thermo-optic feedback tuning[J]. Journal of Semiconductors, 2021, 42(2): 023104. doi: 10.1088/1674-4926/42/2/023104 ****M Tan, K X Ye, D Ming, Y H Wang, Z C Wang, L Jin, J B Feng, Towards electronic-photonic-converged thermo-optic feedback tuning[J]. J. Semicond., 2021, 42(2): 023104. doi: 10.1088/1674-4926/42/2/023104.
      Citation:
      Min Tan, Kaixuan Ye, Da Ming, Yuhang Wang, Zhicheng Wang, Li Jin, Junbo Feng. Towards electronic-photonic-converged thermo-optic feedback tuning[J]. Journal of Semiconductors, 2021, 42(2): 023104. doi: 10.1088/1674-4926/42/2/023104 ****
      M Tan, K X Ye, D Ming, Y H Wang, Z C Wang, L Jin, J B Feng, Towards electronic-photonic-converged thermo-optic feedback tuning[J]. J. Semicond., 2021, 42(2): 023104. doi: 10.1088/1674-4926/42/2/023104.

      Towards electronic-photonic-converged thermo-optic feedback tuning

      DOI: 10.1088/1674-4926/42/2/023104
      More Information
      • Min Tan:received the Ph.D. degree from The Hong Kong University of Science and Technology in 2015. In 2016, he joined the Huazhong University of Science and Technology, where he is currently a Professor with the School of Electronic and Optical Information. His current research interests include circuit-level convergence of electronics and photonics
      • Corresponding author: mtan@hust.edu.cn
      • Received Date: 2020-11-19
      • Revised Date: 2020-12-28
      • Published Date: 2021-02-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return