J. Semicond. > 2021, Volume 42 > Issue 9 > 091901

REVIEWS

Chip-based quantum communications

Qingqing Wang1, Yun Zheng1, Chonghao Zhai1, Xudong Li1, Qihuang Gong1, 2, 3, 4 and Jianwei Wang1, 2, 3, 4,

+ Author Affiliations

 Corresponding author: Jianwei Wang, jianwei.wang@pku.edu.cn

DOI: 10.1088/1674-4926/42/9/091901

PDF

Turn off MathJax

Abstract: Quantum communications aim to share encryption keys between the transmitters and receivers governed by the laws of quantum mechanics. Integrated quantum photonics offers significant advantages of dense integration, high stability and scalability, which enables a vital platform for the implementation of quantum information processing and quantum communications. This article reviews recent experimental progress and advances in the development of integrated quantum photonic devices and systems for quantum communications and quantum networks.

Key words: quantum communicationsquantum networksintegrated quantum photonics



[1]
Gisin N, Thew R. Quantum communication. Nat Photonics, 2007, 1, 165 doi: 10.1038/nphoton.2007.22
[2]
Wootters W K, Zurek W H. A single quantum cannot be cloned. Nature, 1982, 299, 802 doi: 10.1038/299802a0
[3]
Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. Theor Comput Sci, 2014, 560, 7 doi: 10.1016/j.tcs.2014.05.025
[4]
Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol. Phys Rev Lett, 2000, 85, 441 doi: 10.1103/PhysRevLett.85.441
[5]
Ekert. Quantum cryptography based on Bell's theorem. Phys Rev Lett, 1991, 67, 661 doi: 10.1103/PhysRevLett.67.661
[6]
Curty M, Lewenstein M, Lütkenhaus N. Entanglement as a precondition for secure quantum key distribution. Phys Rev Lett, 2004, 92, 217903 doi: 10.1103/PhysRevLett.92.217903
[7]
Liao S K, Cai W Q, Liu W Y, et al. Satellite-to-ground quantum key distribution. Nature, 2017, 549, 43 doi: 10.1038/nature23655
[8]
Bennett C H, Bessette F, Brassard G, et al. Experimental quantum cryptography. J Cryptol, 1992, 5, 3 doi: 10.1007/BF00191318
[9]
Chen Y A, Zhang Q, Chen T Y, et al. An integrated space-to-ground quantum communication network over 4, 600 kilometres. Nature, 2021, 589, 214 doi: 10.1038/s41586-020-03093-8
[10]
Honjo T, Inoue K, Takahashi H. Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer. Opt Lett, 2004, 29, 2797 doi: 10.1364/OL.29.002797
[11]
Sibson P, Kennard J E, Stanisic S, et al. Integrated silicon photonics for high-speed quantum key distribution. Optica, 2017, 4, 172 doi: 10.1364/OPTICA.4.000172
[12]
Ma C X, Sacher W D, Tang Z Y, et al. Silicon photonic transmitter for polarization-encoded quantum key distribution. Optica, 2016, 3, 1274 doi: 10.1364/OPTICA.3.001274
[13]
Bunandar D, Lentine A, Lee C, et al. Metropolitan quantum key distribution with silicon photonics. Phys Rev X, 2018, 8, 021009 doi: 10.1103/PhysRevX.8.021009
[14]
Avesani M, Calderaro L, Schiavon M, et al. Full daylight quantum-key-distribution at 1550 nm enabled by integrated silicon photonics. npj Quantum Inf, 2021, 7, 93 doi: 10.1038/s41534-021-00421-2
[15]
Orieux A, Diamanti E. Recent advances on integrated quantum communications. J Opt, 2016, 18, 083002 doi: 10.1088/2040-8978/18/8/083002
[16]
Sibson P, Erven C, Godfrey M, et al. Chip-based quantum key distribution. Nat Commun, 2017, 8, 1 doi: 10.1038/s41467-016-0009-6
[17]
Lydersen L, Wiechers C, Wittmann C, et al. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat Photonics, 2010, 4, 686 doi: 10.1038/nphoton.2010.214
[18]
Zhao Y, Fung C H F, Qi B, et al. Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys Rev A, 2008, 78, 042333 doi: 10.1103/PhysRevA.78.042333
[19]
Makarov V, Anisimov A, Skaar J. Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys Rev A, 2006, 74, 022313 doi: 10.1103/PhysRevA.74.022313
[20]
Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution. Phys Rev Lett, 2012, 108, 130503 doi: 10.1103/PhysRevLett.108.130503
[21]
Hong C K, Ou Z Y, Mandel L. Measurement of subpicosecond time intervals between two photons by interference. Phys Rev Lett, 1987, 59, 2044 doi: 10.1103/PhysRevLett.59.2044
[22]
Agnesi C, da Lio B, Cozzolino D, et al. Hong–Ou–Mandel interference between independent III–V on silicon waveguide integrated lasers. Opt Lett, 2019, 44, 271 doi: 10.1364/OL.44.000271
[23]
Rarity J G, Tapster P R, Loudon R. Non-classical interference between independent sources. J Opt B, 2005, 7, S171 doi: 10.1088/1464-4266/7/7/007
[24]
Wei K J, Li W, Tan H, et al. High-speed measurement-device-independent quantum key distribution with integrated silicon photonics. Phys Rev X, 2020, 10, 031030 doi: 10.1103/PhysRevX.10.031030
[25]
Semenenko H, Sibson P, Thompson M G, et al. Interference between independent photonic integrated devices for quantum key distribution. Opt Lett, 2019, 44, 275 doi: 10.1364/OL.44.000275
[26]
Semenenko H, Sibson P, Hart A, et al. Chip-based measurement-device-independent quantum key distribution. Optica, 2020, 7, 238 doi: 10.1364/OPTICA.379679
[27]
Wehner S, Elkouss D, Hanson R. Quantum Internet: A vision for the road ahead. Science, 2018, 362, eaam9288 doi: 10.1126/science.aam9288
[28]
Clauser J F, Horne M A, Shimony A, et al. Proposed experiment to test local hidden-variable theories. Phys Rev Lett, 1969, 23, 880 doi: 10.1103/PhysRevLett.23.880
[29]
Acín A, Massar S, Pironio S. Efficient quantum key distribution secure against no-signalling eavesdroppers. New J Phys, 2006, 8, 126 doi: 10.1088/1367-2630/8/8/126
[30]
Acín A, Brunner N, Gisin N, et al. Device-independent security of quantum cryptography against collective attacks. Phys Rev Lett, 2007, 98, 230501 doi: 10.1103/PhysRevLett.98.230501
[31]
McKague M. Device independent quantum key distribution secure against coherent attacks with memoryless measurement devices. New J Phys, 2009, 11, 103037 doi: 10.1088/1367-2630/11/10/103037
[32]
Vazirani U, Vidick T. Fully device-independent quantum key distribution. Phys Rev Lett, 2014, 113, 140501 doi: 10.1103/PhysRevLett.113.140501
[33]
Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers. Science, 2017, 356, 1140 doi: 10.1126/science.aan3211
[34]
Liu J, Su R B, Wei Y M, et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat Nanotechnol, 2019, 14, 586 doi: 10.1038/s41565-019-0435-9
[35]
Zhao J, Ma C X, Rüsing M, et al. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys Rev Lett, 2020, 124, 163603 doi: 10.1103/PhysRevLett.124.163603
[36]
Duan J C, Zhang J N, Zhu Y J, et al. Generation of narrowband counterpropagating polarization-entangled photon pairs based on thin-film lithium niobate on insulator. J Opt Soc Am B, 2020, 37, 2139 doi: 10.1364/JOSAB.395108
[37]
Autebert C, Bruno N, Martin A, et al. Integrated AlGaAs source of highly indistinguishable and energy-time entangled photons. Optica, 2016, 3, 143 doi: 10.1364/OPTICA.3.000143
[38]
Wang J W, Paesani S, Ding Y H, et al. Multidimensional quantum entanglement with large-scale integrated optics. Science, 2018, 360, 285 doi: 10.1126/science.aar7053
[39]
Corrielli G, Crespi A, Geremia R, et al. Rotated waveplates in integrated waveguide optics. Nat Commun, 2014, 5, 4249 doi: 10.1038/ncomms5249
[40]
Zhang X, Bell B A, Mahendra A, et al. Integrated silicon nitride time-bin entanglement circuits. Opt Lett, 2018, 43, 3469 doi: 10.1364/OL.43.003469
[41]
Li C L, Liu D J, Dai D X. Multimode silicon photonics. Nanophotonics, 2018, 8, 227 doi: 10.1515/nanoph-2018-0161
[42]
Feng L T, Zhang M, Xiong X, et al. On-chip transverse-mode entangled photon pair source. npj Quantum Inf, 2019, 5, 2 doi: 10.1038/s41534-018-0121-z
[43]
Silverstone J W, Bonneau D, Ohira K, et al. On-chip quantum interference between silicon photon-pair sources. Nat Photonics, 2014, 8, 104 doi: 10.1038/nphoton.2013.339
[44]
Silverstone J W, Santagati R, Bonneau D, et al. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip. Nat Commun, 2015, 6, 7948 doi: 10.1038/ncomms8948
[45]
Grassani D, Azzini S, Liscidini M, et al. Micrometer-scale integrated silicon source of time-energy entangled photons. Optica, 2015, 2, 88 doi: 10.1364/OPTICA.2.000088
[46]
Mazeas F, Traetta M, Bentivegna M, et al. High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip. Opt Express, 2016, 24, 28731 doi: 10.1364/OE.24.028731
[47]
Paesani S, Borghi M, Signorini S, et al. Near-ideal spontaneous photon sources in silicon quantum photonics. Nat Commun, 2020, 11, 2505 doi: 10.1038/s41467-020-16187-8
[48]
Suo J, Dong S, Zhang W, et al. Generation of hyper-entanglement on polarization and energy-time based on a silicon micro-ring cavity. Opt Express, 2015, 23, 3985 doi: 10.1364/OE.23.003985
[49]
Wang F X, Wang W Q, Niu R, et al. Quantum key distribution with on-chip dissipative kerr soliton. Laser Photonics Rev, 2020, 14, 1900190 doi: 10.1002/lpor.201900190
[50]
Wang J W, Sciarrino F, Laing A, et al. Integrated photonic quantum technologies. Nat Photonics, 2020, 14(5), 273 doi: 10.1038/s41566-019-0532-1
[51]
Wang J W, Bonneau D, Villa M, et al. Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica, 2016, 3, 407 doi: 10.1364/OPTICA.3.000407
[52]
Ren J G, Xu P, Yong H L, et al. Ground-to-satellite quantum teleportation. Nature, 2017, 549, 70 doi: 10.1038/nature23675
[53]
Gottesman D, Chuang I L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature, 1999, 402, 390 doi: 10.1038/46503
[54]
Metcalf B J, Spring J B, Humphreys P C, et al. Quantum teleportation on a photonic chip. Nat Photonics, 2014, 8, 770 doi: 10.1038/nphoton.2014.217
[55]
Lu X Y, Li Q, Westly D A, et al. Chip-integrated visible–telecom entangled photon pair source for quantum communication. Nat Phys, 2019, 15, 373 doi: 10.1038/s41567-018-0394-3
[56]
Dutt M V G, Childress L, Jiang L, et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science, 2007, 316, 1312 doi: 10.1126/science.1139831
[57]
Gaebel T, Domhan M, Popa I, et al. Room-temperature coherent coupling of single spins in diamond. Nat Phys, 2006, 2, 408 doi: 10.1038/nphys318
[58]
Hanson R, Mendoza F M, Epstein R J, et al. Polarization and readout of coupled single spins in diamond. Phys Rev Lett, 2006, 97, 087601 doi: 10.1103/PhysRevLett.97.087601
[59]
Epstein R J, Mendoza F M, Kato Y K, et al. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond. Nat Phys, 2005, 1, 94 doi: 10.1038/nphys141
[60]
Maurer P C, Kucsko G, Latta C, et al. Room-temperature quantum bit memory exceeding one second. Science, 2012, 336, 1283 doi: 10.1126/science.1220513
[61]
Togan E, Chu Y, Trifonov A S, et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature, 2010, 466, 730 doi: 10.1038/nature09256
[62]
He Y, He Y M, Wei Y J, et al. Quantum state transfer from a single photon to a distant quantum-dot electron spin. Phys Rev Lett, 2017, 119, 060501 doi: 10.1103/PhysRevLett.119.060501
[63]
Rozpędek F, Yehia R, Goodenough K, et al. Near-term quantum-repeater experiments with nitrogen-vacancy centers: Overcoming the limitations of direct transmission. Phys Rev A, 2019, 99, 052330 doi: 10.1103/PhysRevA.99.052330
[64]
Lodahl P, Mahmoodian S, Stobbe S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev Mod Phys, 2015, 87, 347 doi: 10.1103/RevModPhys.87.347
[65]
Thiel C W, Böttger T, Cone R L. Rare-earth-doped materials for applications in quantum information storage and signal processing. J Lumin, 2011, 131, 353 doi: 10.1016/j.jlumin.2010.12.015
[66]
Lauritzen B, Minář J, de Riedmatten H, et al. Approaches for a quantum memory at telecommunication wavelengths. Phys Rev A, 2011, 83, 012318 doi: 10.1103/PhysRevA.83.012318
[67]
Afzelius M, Simon C, de Riedmatten H, et al. Multimode quantum memory based on atomic frequency combs. Phys Rev A, 2009, 79, 052329 doi: 10.1103/PhysRevA.79.052329
[68]
Sangouard N, Simon C, Afzelius M, et al. Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening. Phys Rev A, 2007, 75, 032327 doi: 10.1103/PhysRevA.75.032327
[69]
Damon V, Bonarota M, Louchet-Chauvet A, et al. Revival of silenced echo and quantum memory for light. New J Phys, 2011, 13, 093031 doi: 10.1088/1367-2630/13/9/093031
[70]
Jobez P, Timoney N, Laplane C, et al. Towards highly multimode optical quantum memory for quantum repeaters. Phys Rev A, 2016, 93, 032327 doi: 10.1103/PhysRevA.93.032327
[71]
Sabooni M, Beaudoin F, Walther A, et al. Storage and recall of weak coherent optical pulses with an efficiency of 25%. Phys Rev Lett, 2010, 105, 060501 doi: 10.1103/PhysRevLett.105.060501
[72]
Yang T S, Zhou Z Q, Hua Y L, et al. Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory. Nat Commun, 2018, 9, 1 doi: 10.1038/s41467-017-02088-w
[73]
Davidson J H, Lefebvre P, Zhang J, et al. Improved light-matter interaction for storage of quantum states of light in a thulium-doped crystal cavity. Phys Rev A, 2020, 101, 042333 doi: 10.1103/PhysRevA.101.042333
[74]
Amari A, Walther A, Sabooni M, et al. Towards an efficient atomic frequency comb quantum memory. J Lumin, 2010, 130, 1579 doi: 10.1016/j.jlumin.2010.01.012
[75]
Askarani M F, Puigibert M L G, Lutz T, et al. Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide. Phys Rev Appl, 2019, 11, 054056 doi: 10.1103/PhysRevApplied.11.054056
[76]
Liu C, Zhou Z Q, Zhu T X, et al. Reliable coherent optical memory based on a laser-written waveguide. Optica, 2020, 7, 192 doi: 10.1364/OPTICA.379166
[77]
Liu C, Zhu T X, Su M X, et al. On-demand quantum storage of photonic qubits in an on-chip waveguide. Phys Rev Lett, 2020, 125, 260504 doi: 10.1103/PhysRevLett.125.260504
[78]
Saglamyurek E, Sinclair N, Jin J, et al. Broadband waveguide quantum memory for entangled photons. Nature, 2011, 469, 512 doi: 10.1038/nature09719
[79]
Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys Rev Lett, 1992, 69, 2881 doi: 10.1103/PhysRevLett.69.2881
[80]
Craiciu I, Lei M, Rochman J, et al. Nanophotonic quantum storage at telecommunication wavelength. Phys Rev Appl, 2019, 12, 024062 doi: 10.1103/PhysRevApplied.12.024062
[81]
Liu H Y, Tian X H, Gu C S, et al. Drone-based entanglement distribution towards mobile quantum networks. Natl Sci Rev, 2020, 7, 921 doi: 10.1093/nsr/nwz227
[82]
Wang B X, Mao Y Q, Shen L, et al. Long-distance transmission of quantum key distribution coexisting with classical optical communication over a weakly-coupled few-mode fiber. Opt Express, 2020, 28, 12558 doi: 10.1364/OE.388857
[83]
Mao Y Q, Wang B X, Zhao C X, et al. Integrating quantum key distribution with classical communications in backbone fiber network. Opt Express, 2018, 26, 6010 doi: 10.1364/OE.26.006010
[84]
Cai C, Sun Y M, Zhang Y R, et al. Experimental wavelength-space division multiplexing of quantum key distribution with classical optical communication over multicore fiber. Opt Express, 2019, 27, 5125 doi: 10.1364/OE.27.005125
Fig. 1.  (Color online) Integrated silicon photonic QKD transmitters. (a) Polarization-encoding PM-QKD transmitter, consisting of ring modulators, VOAs, and polarization modulators[12]. (b) Three implementations of high-speed QKD[11]. (c) HOM interference between WCPs generated by III–V on silicon waveguide integrated lasers[22]. (d) Polarization-encoding MDI-QKD with integrated silicon photonics[24].

Fig. 2.  (Color online) Integrated InP photonic QKD transmitters. (a) A chip-to-chip QKD system between a 2 × 6 mm2 InP transmitter and a 2 × 32 mm2 SiOxNy receiver[16]. (b) An implementation of MDI-QKD using two 6 × 2 mm2 InP transmitter chips in which two weak coherent states are on-chip generated independently[25].

Fig. 3.  (Color online) On-chip entangled photon sources. (a) Generation of entangled photons from a single quantum dot embedding in photonic nanostructures[34]. (b) Generation of entangled photons in a thin-film waveguide using the SPDC process[35]. (c) Generation of entangled photons in a silicon photonic microring resonator using SFWM process[46].

Fig. 4.  (Color online) Chip-based entanglement distribution and quantum teleportation. (a) Silicon photonic circuit diagram for a chip-to-chip entanglement distribution experiment[49], and (b) for a chip-to-chip quantum teleportation experiment[52], (c) scheme of a visible-telecom entanglement experiment in the silicon nitride system[53].

Fig. 5.  (Color online) Integrated quantum memories in the ERIC system. (a) An optical microscope image of five quantum memories in laser-written optical waveguides[75]. (b) A scanning electron microscope image of a quantum memory integrated in a photonic crystal nanocavity[78].

[1]
Gisin N, Thew R. Quantum communication. Nat Photonics, 2007, 1, 165 doi: 10.1038/nphoton.2007.22
[2]
Wootters W K, Zurek W H. A single quantum cannot be cloned. Nature, 1982, 299, 802 doi: 10.1038/299802a0
[3]
Bennett C H, Brassard G. Quantum cryptography: Public key distribution and coin tossing. Theor Comput Sci, 2014, 560, 7 doi: 10.1016/j.tcs.2014.05.025
[4]
Shor P W, Preskill J. Simple proof of security of the BB84 quantum key distribution protocol. Phys Rev Lett, 2000, 85, 441 doi: 10.1103/PhysRevLett.85.441
[5]
Ekert. Quantum cryptography based on Bell's theorem. Phys Rev Lett, 1991, 67, 661 doi: 10.1103/PhysRevLett.67.661
[6]
Curty M, Lewenstein M, Lütkenhaus N. Entanglement as a precondition for secure quantum key distribution. Phys Rev Lett, 2004, 92, 217903 doi: 10.1103/PhysRevLett.92.217903
[7]
Liao S K, Cai W Q, Liu W Y, et al. Satellite-to-ground quantum key distribution. Nature, 2017, 549, 43 doi: 10.1038/nature23655
[8]
Bennett C H, Bessette F, Brassard G, et al. Experimental quantum cryptography. J Cryptol, 1992, 5, 3 doi: 10.1007/BF00191318
[9]
Chen Y A, Zhang Q, Chen T Y, et al. An integrated space-to-ground quantum communication network over 4, 600 kilometres. Nature, 2021, 589, 214 doi: 10.1038/s41586-020-03093-8
[10]
Honjo T, Inoue K, Takahashi H. Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer. Opt Lett, 2004, 29, 2797 doi: 10.1364/OL.29.002797
[11]
Sibson P, Kennard J E, Stanisic S, et al. Integrated silicon photonics for high-speed quantum key distribution. Optica, 2017, 4, 172 doi: 10.1364/OPTICA.4.000172
[12]
Ma C X, Sacher W D, Tang Z Y, et al. Silicon photonic transmitter for polarization-encoded quantum key distribution. Optica, 2016, 3, 1274 doi: 10.1364/OPTICA.3.001274
[13]
Bunandar D, Lentine A, Lee C, et al. Metropolitan quantum key distribution with silicon photonics. Phys Rev X, 2018, 8, 021009 doi: 10.1103/PhysRevX.8.021009
[14]
Avesani M, Calderaro L, Schiavon M, et al. Full daylight quantum-key-distribution at 1550 nm enabled by integrated silicon photonics. npj Quantum Inf, 2021, 7, 93 doi: 10.1038/s41534-021-00421-2
[15]
Orieux A, Diamanti E. Recent advances on integrated quantum communications. J Opt, 2016, 18, 083002 doi: 10.1088/2040-8978/18/8/083002
[16]
Sibson P, Erven C, Godfrey M, et al. Chip-based quantum key distribution. Nat Commun, 2017, 8, 1 doi: 10.1038/s41467-016-0009-6
[17]
Lydersen L, Wiechers C, Wittmann C, et al. Hacking commercial quantum cryptography systems by tailored bright illumination. Nat Photonics, 2010, 4, 686 doi: 10.1038/nphoton.2010.214
[18]
Zhao Y, Fung C H F, Qi B, et al. Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys Rev A, 2008, 78, 042333 doi: 10.1103/PhysRevA.78.042333
[19]
Makarov V, Anisimov A, Skaar J. Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys Rev A, 2006, 74, 022313 doi: 10.1103/PhysRevA.74.022313
[20]
Lo H K, Curty M, Qi B. Measurement-device-independent quantum key distribution. Phys Rev Lett, 2012, 108, 130503 doi: 10.1103/PhysRevLett.108.130503
[21]
Hong C K, Ou Z Y, Mandel L. Measurement of subpicosecond time intervals between two photons by interference. Phys Rev Lett, 1987, 59, 2044 doi: 10.1103/PhysRevLett.59.2044
[22]
Agnesi C, da Lio B, Cozzolino D, et al. Hong–Ou–Mandel interference between independent III–V on silicon waveguide integrated lasers. Opt Lett, 2019, 44, 271 doi: 10.1364/OL.44.000271
[23]
Rarity J G, Tapster P R, Loudon R. Non-classical interference between independent sources. J Opt B, 2005, 7, S171 doi: 10.1088/1464-4266/7/7/007
[24]
Wei K J, Li W, Tan H, et al. High-speed measurement-device-independent quantum key distribution with integrated silicon photonics. Phys Rev X, 2020, 10, 031030 doi: 10.1103/PhysRevX.10.031030
[25]
Semenenko H, Sibson P, Thompson M G, et al. Interference between independent photonic integrated devices for quantum key distribution. Opt Lett, 2019, 44, 275 doi: 10.1364/OL.44.000275
[26]
Semenenko H, Sibson P, Hart A, et al. Chip-based measurement-device-independent quantum key distribution. Optica, 2020, 7, 238 doi: 10.1364/OPTICA.379679
[27]
Wehner S, Elkouss D, Hanson R. Quantum Internet: A vision for the road ahead. Science, 2018, 362, eaam9288 doi: 10.1126/science.aam9288
[28]
Clauser J F, Horne M A, Shimony A, et al. Proposed experiment to test local hidden-variable theories. Phys Rev Lett, 1969, 23, 880 doi: 10.1103/PhysRevLett.23.880
[29]
Acín A, Massar S, Pironio S. Efficient quantum key distribution secure against no-signalling eavesdroppers. New J Phys, 2006, 8, 126 doi: 10.1088/1367-2630/8/8/126
[30]
Acín A, Brunner N, Gisin N, et al. Device-independent security of quantum cryptography against collective attacks. Phys Rev Lett, 2007, 98, 230501 doi: 10.1103/PhysRevLett.98.230501
[31]
McKague M. Device independent quantum key distribution secure against coherent attacks with memoryless measurement devices. New J Phys, 2009, 11, 103037 doi: 10.1088/1367-2630/11/10/103037
[32]
Vazirani U, Vidick T. Fully device-independent quantum key distribution. Phys Rev Lett, 2014, 113, 140501 doi: 10.1103/PhysRevLett.113.140501
[33]
Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers. Science, 2017, 356, 1140 doi: 10.1126/science.aan3211
[34]
Liu J, Su R B, Wei Y M, et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat Nanotechnol, 2019, 14, 586 doi: 10.1038/s41565-019-0435-9
[35]
Zhao J, Ma C X, Rüsing M, et al. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides. Phys Rev Lett, 2020, 124, 163603 doi: 10.1103/PhysRevLett.124.163603
[36]
Duan J C, Zhang J N, Zhu Y J, et al. Generation of narrowband counterpropagating polarization-entangled photon pairs based on thin-film lithium niobate on insulator. J Opt Soc Am B, 2020, 37, 2139 doi: 10.1364/JOSAB.395108
[37]
Autebert C, Bruno N, Martin A, et al. Integrated AlGaAs source of highly indistinguishable and energy-time entangled photons. Optica, 2016, 3, 143 doi: 10.1364/OPTICA.3.000143
[38]
Wang J W, Paesani S, Ding Y H, et al. Multidimensional quantum entanglement with large-scale integrated optics. Science, 2018, 360, 285 doi: 10.1126/science.aar7053
[39]
Corrielli G, Crespi A, Geremia R, et al. Rotated waveplates in integrated waveguide optics. Nat Commun, 2014, 5, 4249 doi: 10.1038/ncomms5249
[40]
Zhang X, Bell B A, Mahendra A, et al. Integrated silicon nitride time-bin entanglement circuits. Opt Lett, 2018, 43, 3469 doi: 10.1364/OL.43.003469
[41]
Li C L, Liu D J, Dai D X. Multimode silicon photonics. Nanophotonics, 2018, 8, 227 doi: 10.1515/nanoph-2018-0161
[42]
Feng L T, Zhang M, Xiong X, et al. On-chip transverse-mode entangled photon pair source. npj Quantum Inf, 2019, 5, 2 doi: 10.1038/s41534-018-0121-z
[43]
Silverstone J W, Bonneau D, Ohira K, et al. On-chip quantum interference between silicon photon-pair sources. Nat Photonics, 2014, 8, 104 doi: 10.1038/nphoton.2013.339
[44]
Silverstone J W, Santagati R, Bonneau D, et al. Qubit entanglement between ring-resonator photon-pair sources on a silicon chip. Nat Commun, 2015, 6, 7948 doi: 10.1038/ncomms8948
[45]
Grassani D, Azzini S, Liscidini M, et al. Micrometer-scale integrated silicon source of time-energy entangled photons. Optica, 2015, 2, 88 doi: 10.1364/OPTICA.2.000088
[46]
Mazeas F, Traetta M, Bentivegna M, et al. High-quality photonic entanglement for wavelength-multiplexed quantum communication based on a silicon chip. Opt Express, 2016, 24, 28731 doi: 10.1364/OE.24.028731
[47]
Paesani S, Borghi M, Signorini S, et al. Near-ideal spontaneous photon sources in silicon quantum photonics. Nat Commun, 2020, 11, 2505 doi: 10.1038/s41467-020-16187-8
[48]
Suo J, Dong S, Zhang W, et al. Generation of hyper-entanglement on polarization and energy-time based on a silicon micro-ring cavity. Opt Express, 2015, 23, 3985 doi: 10.1364/OE.23.003985
[49]
Wang F X, Wang W Q, Niu R, et al. Quantum key distribution with on-chip dissipative kerr soliton. Laser Photonics Rev, 2020, 14, 1900190 doi: 10.1002/lpor.201900190
[50]
Wang J W, Sciarrino F, Laing A, et al. Integrated photonic quantum technologies. Nat Photonics, 2020, 14(5), 273 doi: 10.1038/s41566-019-0532-1
[51]
Wang J W, Bonneau D, Villa M, et al. Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica, 2016, 3, 407 doi: 10.1364/OPTICA.3.000407
[52]
Ren J G, Xu P, Yong H L, et al. Ground-to-satellite quantum teleportation. Nature, 2017, 549, 70 doi: 10.1038/nature23675
[53]
Gottesman D, Chuang I L. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature, 1999, 402, 390 doi: 10.1038/46503
[54]
Metcalf B J, Spring J B, Humphreys P C, et al. Quantum teleportation on a photonic chip. Nat Photonics, 2014, 8, 770 doi: 10.1038/nphoton.2014.217
[55]
Lu X Y, Li Q, Westly D A, et al. Chip-integrated visible–telecom entangled photon pair source for quantum communication. Nat Phys, 2019, 15, 373 doi: 10.1038/s41567-018-0394-3
[56]
Dutt M V G, Childress L, Jiang L, et al. Quantum register based on individual electronic and nuclear spin qubits in diamond. Science, 2007, 316, 1312 doi: 10.1126/science.1139831
[57]
Gaebel T, Domhan M, Popa I, et al. Room-temperature coherent coupling of single spins in diamond. Nat Phys, 2006, 2, 408 doi: 10.1038/nphys318
[58]
Hanson R, Mendoza F M, Epstein R J, et al. Polarization and readout of coupled single spins in diamond. Phys Rev Lett, 2006, 97, 087601 doi: 10.1103/PhysRevLett.97.087601
[59]
Epstein R J, Mendoza F M, Kato Y K, et al. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond. Nat Phys, 2005, 1, 94 doi: 10.1038/nphys141
[60]
Maurer P C, Kucsko G, Latta C, et al. Room-temperature quantum bit memory exceeding one second. Science, 2012, 336, 1283 doi: 10.1126/science.1220513
[61]
Togan E, Chu Y, Trifonov A S, et al. Quantum entanglement between an optical photon and a solid-state spin qubit. Nature, 2010, 466, 730 doi: 10.1038/nature09256
[62]
He Y, He Y M, Wei Y J, et al. Quantum state transfer from a single photon to a distant quantum-dot electron spin. Phys Rev Lett, 2017, 119, 060501 doi: 10.1103/PhysRevLett.119.060501
[63]
Rozpędek F, Yehia R, Goodenough K, et al. Near-term quantum-repeater experiments with nitrogen-vacancy centers: Overcoming the limitations of direct transmission. Phys Rev A, 2019, 99, 052330 doi: 10.1103/PhysRevA.99.052330
[64]
Lodahl P, Mahmoodian S, Stobbe S. Interfacing single photons and single quantum dots with photonic nanostructures. Rev Mod Phys, 2015, 87, 347 doi: 10.1103/RevModPhys.87.347
[65]
Thiel C W, Böttger T, Cone R L. Rare-earth-doped materials for applications in quantum information storage and signal processing. J Lumin, 2011, 131, 353 doi: 10.1016/j.jlumin.2010.12.015
[66]
Lauritzen B, Minář J, de Riedmatten H, et al. Approaches for a quantum memory at telecommunication wavelengths. Phys Rev A, 2011, 83, 012318 doi: 10.1103/PhysRevA.83.012318
[67]
Afzelius M, Simon C, de Riedmatten H, et al. Multimode quantum memory based on atomic frequency combs. Phys Rev A, 2009, 79, 052329 doi: 10.1103/PhysRevA.79.052329
[68]
Sangouard N, Simon C, Afzelius M, et al. Analysis of a quantum memory for photons based on controlled reversible inhomogeneous broadening. Phys Rev A, 2007, 75, 032327 doi: 10.1103/PhysRevA.75.032327
[69]
Damon V, Bonarota M, Louchet-Chauvet A, et al. Revival of silenced echo and quantum memory for light. New J Phys, 2011, 13, 093031 doi: 10.1088/1367-2630/13/9/093031
[70]
Jobez P, Timoney N, Laplane C, et al. Towards highly multimode optical quantum memory for quantum repeaters. Phys Rev A, 2016, 93, 032327 doi: 10.1103/PhysRevA.93.032327
[71]
Sabooni M, Beaudoin F, Walther A, et al. Storage and recall of weak coherent optical pulses with an efficiency of 25%. Phys Rev Lett, 2010, 105, 060501 doi: 10.1103/PhysRevLett.105.060501
[72]
Yang T S, Zhou Z Q, Hua Y L, et al. Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory. Nat Commun, 2018, 9, 1 doi: 10.1038/s41467-017-02088-w
[73]
Davidson J H, Lefebvre P, Zhang J, et al. Improved light-matter interaction for storage of quantum states of light in a thulium-doped crystal cavity. Phys Rev A, 2020, 101, 042333 doi: 10.1103/PhysRevA.101.042333
[74]
Amari A, Walther A, Sabooni M, et al. Towards an efficient atomic frequency comb quantum memory. J Lumin, 2010, 130, 1579 doi: 10.1016/j.jlumin.2010.01.012
[75]
Askarani M F, Puigibert M L G, Lutz T, et al. Storage and reemission of heralded telecommunication-wavelength photons using a crystal waveguide. Phys Rev Appl, 2019, 11, 054056 doi: 10.1103/PhysRevApplied.11.054056
[76]
Liu C, Zhou Z Q, Zhu T X, et al. Reliable coherent optical memory based on a laser-written waveguide. Optica, 2020, 7, 192 doi: 10.1364/OPTICA.379166
[77]
Liu C, Zhu T X, Su M X, et al. On-demand quantum storage of photonic qubits in an on-chip waveguide. Phys Rev Lett, 2020, 125, 260504 doi: 10.1103/PhysRevLett.125.260504
[78]
Saglamyurek E, Sinclair N, Jin J, et al. Broadband waveguide quantum memory for entangled photons. Nature, 2011, 469, 512 doi: 10.1038/nature09719
[79]
Bennett C H, Wiesner S J. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys Rev Lett, 1992, 69, 2881 doi: 10.1103/PhysRevLett.69.2881
[80]
Craiciu I, Lei M, Rochman J, et al. Nanophotonic quantum storage at telecommunication wavelength. Phys Rev Appl, 2019, 12, 024062 doi: 10.1103/PhysRevApplied.12.024062
[81]
Liu H Y, Tian X H, Gu C S, et al. Drone-based entanglement distribution towards mobile quantum networks. Natl Sci Rev, 2020, 7, 921 doi: 10.1093/nsr/nwz227
[82]
Wang B X, Mao Y Q, Shen L, et al. Long-distance transmission of quantum key distribution coexisting with classical optical communication over a weakly-coupled few-mode fiber. Opt Express, 2020, 28, 12558 doi: 10.1364/OE.388857
[83]
Mao Y Q, Wang B X, Zhao C X, et al. Integrating quantum key distribution with classical communications in backbone fiber network. Opt Express, 2018, 26, 6010 doi: 10.1364/OE.26.006010
[84]
Cai C, Sun Y M, Zhang Y R, et al. Experimental wavelength-space division multiplexing of quantum key distribution with classical optical communication over multicore fiber. Opt Express, 2019, 27, 5125 doi: 10.1364/OE.27.005125
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3650 Times PDF downloads: 296 Times Cited by: 0 Times

    History

    Received: 26 March 2021 Revised: 06 May 2021 Online: Accepted Manuscript: 05 July 2021Uncorrected proof: 06 July 2021Published: 01 September 2021

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Qingqing Wang, Yun Zheng, Chonghao Zhai, Xudong Li, Qihuang Gong, Jianwei Wang. Chip-based quantum communications[J]. Journal of Semiconductors, 2021, 42(9): 091901. doi: 10.1088/1674-4926/42/9/091901 ****Q Q Wang, Y Zheng, C H Zhai, X D Li, Q H Gong, J W Wang, Chip-based quantum communications[J]. J. Semicond., 2021, 42(9): 091901. doi: 10.1088/1674-4926/42/9/091901.
      Citation:
      Qingqing Wang, Yun Zheng, Chonghao Zhai, Xudong Li, Qihuang Gong, Jianwei Wang. Chip-based quantum communications[J]. Journal of Semiconductors, 2021, 42(9): 091901. doi: 10.1088/1674-4926/42/9/091901 ****
      Q Q Wang, Y Zheng, C H Zhai, X D Li, Q H Gong, J W Wang, Chip-based quantum communications[J]. J. Semicond., 2021, 42(9): 091901. doi: 10.1088/1674-4926/42/9/091901.

      Chip-based quantum communications

      DOI: 10.1088/1674-4926/42/9/091901
      More Information
      • Qingqing Wang:is a Master’s student in the School of Physics, Peking University. She got her Bachelor degree from Shanxi University in 2018. Her research focuses on quantum key distribution communication networks
      • Yun Zheng:got his B.Sc. degree from Harbin Institute of Technology in 2019. He is a PhD candidate student at Peking University. His research focuses on integrated quantum information processing, and quantum communications
      • Chonghao Zhai:is a senior undergraduate student majoring in physics at Peking University. He did an undergraduate project in the PKU Q-chip Lab. His research focuses on integrated photonics and quantum information
      • Xudong Li:entered the School of Physics, Peking University in 2019 and is now a sophomore. He then joined the PKU Q-chip Lab in the first year of his undergraduate studies. His research interest is in-chip quantum memory and quantum communications
      • Qihuang Gong:is the Boya Chair Professor and Cheung Kong Professor of Physics at Peking University, China. He is the Academician of Chinese Academy of Science and member of the world academy of sciences, and the President of the Chinese Optical Society and the Vice President of the Chinese Physical Society. His current research interests include ultrafast optics and spectroscopy, nonlinear and quantum photonics, and mesoscopic optical devices for applications in optical information processing and communication
      • Jianwei Wang:is an Assistant Professor in the School of Physics, Peking University, Beijing, China. He received his Bachelor’s (2008) and Master’s (2011) degrees in from Zhejiang University, and his Ph.D. degree (2016) in Physics at the University of Bristol. His current research interests are quantum information science and technologies with photons, in both fundamental physics and advanced applications
      • Corresponding author: jianwei.wang@pku.edu.cn
      • Received Date: 2021-03-26
      • Revised Date: 2021-05-06
      • Published Date: 2021-09-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return