Citation: |
Baoze Liu, Lixiu Zhang, Yan Jiang, Liming Ding. Failure pathways of perovskite solar cells in space[J]. Journal of Semiconductors, 2022, 43(10): 100201. doi: 10.1088/1674-4926/43/10/100201
****
B Z Liu, L X Zhang, Y Jiang, L M Ding. Failure pathways of perovskite solar cells in space[J]. J. Semicond, 2022, 43(10): 100201. doi: 10.1088/1674-4926/43/10/100201
|
Failure pathways of perovskite solar cells in space
DOI: 10.1088/1674-4926/43/10/100201
More Information
-
References
[1] Yang J, Bao Q, Shen L, et al. Potential applications for perovskite solar cells in space. Nano Energy, 2020, 76, 105019 doi: 10.1016/j.nanoen.2020.105019[2] Xiao C, Li Z, Guthrey H, et al. Mechanisms of electron-beam-induced damage in perovskite thin films revealed by cathodoluminescence spectroscopy. J Phys Chem C, 2015, 48, 2690 doi: 10.1021/acs.jpcc.5b09698[3] Chen S, Zhang X, Zhao J, et al. Atomic scale insights into structure instability and decomposition pathway of methylammonium lead iodide perovskite. Nat Commun, 2018, 9, 1 doi: 10.1038/s41467-017-02088-w[4] Song Z, Li C, Chen C, et al. High remaining factors in the photovoltaic performance of perovskite solar cells after high-fluence electron beam irradiations. J Phys Chem C, 2019, 2, 1330 doi: 10.1021/acs.jpcc.9b11483[5] Miyazawa Y, Ikegami M, Miyasaka T, et al. Evaluation of radiation tolerance of perovskite solar cell for use in space. 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 2015 doi: doi.org/10.1002/adma.201805547[6] Yang S, Xu Z, Xue S, et al. Organohalide lead perovskites: more stable than glass under gamma-ray radiation. Adv Mater, 2019, 31, 1805547 doi: 10.1002/adma.201805547[7] Brus V V, Lang F, Bundesmann J, et al. Defect dynamics in proton irradiated CH3NH3PbI3 perovskite solar cells. Adv Electron Mater, 2017, 3, 1600438 doi: 10.1002/aelm.201600438[8] Lang F, Jošt M, Bundesmann J, et al. Efficient minority carrier detrapping mediating the radiation hardness of triple-cation perovskite solar cells under proton irradiation. Energy Environ Sci, 2019, 12, 1634 doi: 10.1039/C9EE00077A[9] Paternò G, Robbiano V, Santarelli L, et al. Perovskite solar cell resilience to fast neutrons. Sustain Energy Fuels, 2019, 3, 2561 doi: 10.1039/C9SE00102F[10] Yang K, Huang K, Li X, et al. Radiation tolerance of perovskite solar cells under gamma ray. Org Electron, 2019, 71, 79 doi: 10.1016/j.orgel.2019.05.008[11] Boldyreva A G, Akbulatov A F, Tsarev S A, et al. γ-ray-induced degradation in the triple-cation perovskite solar cells. J Phys Chem C, 2019, 10, 813 doi: 10.1021/acs.jpclett.8b03222[12] Boldyreva A G, Frolova L A, Zhidkov I S, et al. Unravelling the material composition effects on the gamma ray stability of lead halide perovskite solar cells: MAPbI3 breaks the records. J Phys Chem Lett, 2020, 11, 2630 doi: 10.1021/acs.jpclett.0c00581[13] Motoki K, Miyazawa Y, Kobayashi D, et al. Degradation of CH3NH3PbI3 perovskite due to soft X-ray irradiation as analyzed by an X-ray photoelectron spectroscopy time-dependent measurement method. J Appl Phys, 2017, 121, 085501 doi: 10.1063/1.4977238[14] Svanström S, Fernández A G, Sloboda T, et al. X-ray stability and degradation mechanism of lead halide perovskites and lead halides. Phys Chem Chem Phys, 2021, 23, 12479 doi: 10.1039/D1CP01443A[15] Leijtens T, Eperon G E, Pathak S, et al. Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells. Nat Commun, 2013, 4, 1 doi: 10.1038/ncomms3885[16] Ji J, Liu X, Jiang H, et al. Two-stage ultraviolet degradation of perovskite solar cells induced by the oxygen vacancy-Ti4+ states. Iscience, 2020, 23, 101013 doi: 10.1016/j.isci.2020.101013[17] Wang S, Jiang Y, Juarez-perez E J, et al. Accelerated degradation of methylammonium lead iodide perovskites induced by exposure to iodine vapour. Nat Energy, 2016, 2, 1 doi: 10.1038/nenergy.2016.195 -
Proportional views