Citation: |
Yan Wang, Tongtong Liu, Jiangyi Liu, Chuanbo Li, Zhuo Chen, Shuhui Bo. Organic electro-optic polymer materials and organic-based hybrid electro-optic modulators[J]. Journal of Semiconductors, 2022, 43(10): 101301. doi: 10.1088/1674-4926/43/10/101301
****
Yan Wang, Tongtong Liu, Jiangyi Liu, Chuanbo Li, Zhuo Chen, Shuhui Bo. 2022: Organic electro-optic polymer materials and organic-based hybrid electro-optic modulators. Journal of Semiconductors, 43(10): 101301. doi: 10.1088/1674-4926/43/10/101301
|
Organic electro-optic polymer materials and organic-based hybrid electro-optic modulators
DOI: 10.1088/1674-4926/43/10/101301
More Information
-
Abstract
High performance electro-optic modulator, as the key device of integrated ultra-wideband optical systems, have become the focus of research. Meanwhile, the organic-based hybrid electro-optic modulators, which make full use of the advantages of organic electro-optic (OEO) materials (e.g. high electro-optic coefficient, fast response speed, high bandwidth, easy processing/integration and low cost) have attracted considerable attention. In this paper, we introduce a series of high-performance OEO materials that exhibit good properties in electro-optic activity and thermal stability. In addition, the recent progress of organic-based hybrid electro-optic devices is reviewed, including photonic crystal-organic hybrid (PCOH), silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) modulators. A high-performance integrated optical platform based on OEO materials is a promising solution for growing high speeds and low power consumption in compact sizes. -
References
[1] Heni W, Kutuvantavida Y, Haffner C, et al. Silicon-organic and plasmonic-organic hybrid photonics. ACS Photonics, 2017, 4, 1576 doi: 10.1021/acsphotonics.7b00224[2] Benea-Chelmus I C, Zhu T Q, Settembrini F F, et al. Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25 terahertz. ACS Photonics, 2018, 5, 1398 doi: 10.1021/acsphotonics.7b01407[3] Robinson B H, Johnson L E, Elder D L, et al. Optimization of plasmonic-organic hybrid electro-optics. J Lightwave Technol, 2018, 36, 5036 doi: 10.1109/JLT.2018.2865882[4] Rahim A, Hermans A, Wohlfeil B, et al. Taking silicon photonics modulators to a higher performance level: State-of-the-art and a review of new technologies. Adv Photonics, 2021, 3, 024003 doi: 10.1117/1.AP.3.2.024003[5] Dalton L R, Robinson B H, Elder D L, et al. Hybrid electro-optics and chipscale integration of electronics and photonics. Proc SPIE, 2017, 10364 doi: 10.1117/12.2278795[6] Wang J, Long Y. On-chip silicon photonic signaling and processing: A review. Sci Bull, 2018, 63, 1267 doi: 10.1016/j.scib.2018.05.038[7] Dong P, Chen Y K, Duan G H, et al. Silicon photonic devices and integrated circuits. Nanophotonics, 2014, 3, 215 doi: 10.1515/nanoph-2013-0023[8] Dong Y H, Zhang Y, Shen J, et al. Silicon-integrated high-speed mode and polarization switch-and-selector. J Semicond, 2022, 43, 022301 doi: 10.1088/1674-4926/43/2/022301[9] Dalton L R, Sullivan P A, Bale D H. Electric field poled organic electro-optic materials: State of the art and future prospects. Chem Rev, 2010, 110, 25 doi: 10.1021/cr9000429[10] Alloatti L, Palmer R, Diebold S, et al. 100 GHz silicon–organic hybrid modulator. Light Sci Appl, 2014, 3, e173 doi: 10.1038/lsa.2014.54[11] Melikyan A, Alloatti L, Muslija A, et al. High-speed plasmonic phase modulators. Nat Photonics, 2014, 8, 229 doi: 10.1038/nphoton.2014.9[12] Haffner C, Heni W, Fedoryshyn Y, et al. All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale. Nat Photonics, 2015, 9, 525 doi: 10.1038/nphoton.2015.127[13] Liang K, Wang C, Wu B Y, et al. Polymeric thermo-optic digital optical switches. Chin J Semicond, 2006, 27, 747[14] Liu D P, Tang J, Meng Y, et al. Ultra-low Vpp and high-modulation-depth InP-based electro-optic microring modulator. J Semicond, 2021, 42, 082301 doi: 10.1088/1674-4926/42/8/082301[15] He M B, Xu M Y, Ren Y X, et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat Photonics, 2019, 13, 359 doi: 10.1038/s41566-019-0378-6[16] Yuan S, Hu C R, Pan A, et al. Photonic devices based on thin-film lithium niobate on insulator. J Semicond, 2021, 42, 041304 doi: 10.1088/1674-4926/42/4/041304[17] Xu M Y, Cai X L. Advances in integrated ultra-wideband electro-optic modulators. Opt Express, 2022, 30, 7253 doi: 10.1364/OE.449022[18] Yang Y H, Liu F G, Wang H R, et al. Enhanced electro-optic activity from the triarylaminophenyl-based chromophores by introducing heteroatoms to the donor. J Mater Chem C, 2015, 3, 5297 doi: 10.1039/C5TC00723B[19] Zhang H, Tian Y X, Bo S H, et al. A study on regulating the conjugate position of NLO chromophores for reducing the dipole moment and enhancing the electro-optic activities of organic materials. J Mater Chem C, 2020, 8, 1380 doi: 10.1039/C9TC05704H[20] Li Z A, Kim H, Chi S H, et al. Effects of counterions with multiple charges on the linear and nonlinear optical properties of polymethine salts. Chem Mater, 2016, 28, 3115 doi: 10.1021/acs.chemmater.6b00641[21] Liu F G, Xu H J, Zhang H, et al. Synthesis of julolidine-containing nonlinear optical chromophores: Achieving excellent electro-optic activity by optimizing the bridges and acceptors. Dyes Pigments, 2016, 134, 358 doi: 10.1016/j.dyepig.2016.07.038[22] Zhang H, Huo F Y, Liu F G, et al. Synthesis and characterization of two novel second-order nonlinear optical chromophores based on julolidine donors with excellent electro-optic activity. RSC Adv, 2016, 6, 99743 doi: 10.1039/C6RA21814H[23] Liu F G, Zhang H, Xiao H Y, et al. Structure-function relationship exploration for enhanced electro-optic activity in isophorone-based organic NLO chromophores. Dyes Pigments, 2018, 157, 55 doi: 10.1016/j.dyepig.2018.04.036[24] Hu C L, Liu F G, Zhang H, et al. Synthesis of novel nonlinear optical chromophores: Achieving excellent electro-optic activity by introducing benzene derivative isolation groups into the bridge. J Mater Chem C, 2015, 3, 11595 doi: 10.1039/C5TC02702K[25] Liu F G, Zhang M L, Xiao H Y, et al. Auxiliary donor for tetrahydroquinoline-containing nonlinear optical chromophores: Enhanced electro-optical activity and thermal stability. J Mater Chem C, 2015, 3, 9283 doi: 10.1039/C5TC01610J[26] Wu J Y, Li Z, Luo J D, et al. High-performance organic second- and third-order nonlinear optical materials for ultrafast information processing. J Mater Chem C, 2020, 8, 15009 doi: 10.1039/D0TC03224G[27] Xu H J, Liu F G, Elder D L, et al. Ultrahigh electro-optic coefficients, high index of refraction, and long-term stability from Diels-alder cross-linkable binary molecular glasses. Chem Mater, 2020, 32, 1408 doi: 10.1021/acs.chemmater.9b03725[28] Honardoost A, Safian R, Teng M, et al. Ultralow-power polymer electro-optic integrated modulators. J Semicond, 2019, 40, 070401 doi: 10.1088/1674-4926/40/7/070401[29] Witmer J D, McKenna T P, Arrangoiz-Arriola P, et al. A silicon-organic hybrid platform for quantum microwave-to-optical transduction. Quantum Sci Technol, 2020, 5, 034004 doi: 10.1088/2058-9565/ab7eed[30] Weimann C, Schindler P C, Palmer R, et al. Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission. Opt Express, 2014, 22, 3629 doi: 10.1364/OE.22.003629[31] Koeber S, Palmer R, Lauermann M, et al. Femtojoule electro-optic modulation using a silicon–organic hybrid device. Light Sci Appl, 2015, 4, e255 doi: 10.1038/lsa.2015.28[32] Lauermann M, Wolf S, Schindler P C, et al. 40 GBd 16QAM signaling at 160 gb/s in a silicon-organic hybrid modulator. J Lightwave Technol, 2015, 33, 1210 doi: 10.1109/JLT.2015.2394211[33] Koos C, Leuthold J, Freude W, et al. Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration. J Lightwave Technol, 2016, 34, 256 doi: 10.1109/JLT.2015.2499763[34] Kieninger C, Kutuvantavida Y, Elder D L, et al. Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator. Optica, 2018, 5, 739 doi: 10.1364/OPTICA.5.000739[35] Kieninger C, Kutuvantavida Y, Miura H, et al. Demonstration of long-term thermally stable silicon-organic hybrid modulators at 85 °C. Opt Express, 2018, 26, 27955 doi: 10.1364/OE.26.027955[36] Wolf S, Zwickel H, Hartmann W, et al. Silicon-organic hybrid (SOH) Mach-Zehnder modulators for 100 Gbit/s on-off keying. Sci Rep, 2018, 8, 2598 doi: 10.1038/s41598-017-19061-8[37] Kieninger C, Füllner C, Zwickel H, et al. SOH Mach-Zehnder modulators for 100 GBd PAM4 signaling with sub-1 dB phase-shifter loss. 2020 Opt Fiber Commun Conf Exhib OFC, 2020, 1 doi: 10.1364/OFC.2020.Th3C.3[38] Ayata M, Fedoryshyn Y, Heni W, et al. High-speed plasmonic modulator in a single metal layer. Science, 2017, 358, 630 doi: 10.1126/science.aan5953[39] Hoessbacher C, Josten A, Baeuerle B, et al. Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. Opt Express, 2017, 25, 1762 doi: 10.1364/OE.25.001762[40] Haffner C, Chelladurai D, Fedoryshyn Y, et al. Low-loss plasmon-assisted electro-optic modulator. Nature, 2018, 556, 483 doi: 10.1038/s41586-018-0031-4[41] Burla M, Hoessbacher C, Heni W, et al. 500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics. APL Photonics, 2019, 4, 056106 doi: 10.1063/1.5086868[42] Heni W, Fedoryshyn Y, Baeuerle B, et al. Plasmonic IQ modulators with attojoule per bit electrical energy consumption. Nat Commun, 2019, 10, 1694 doi: 10.1038/s41467-019-09724-7[43] Baeuerle B, Hoessbacher C, Heni W, et al. 100 GBd IM/DD transmission over 14 km SMF in the C-band enabled by a plasmonic SSB MZM. Opt Express, 2020, 28, 8601 doi: 10.1364/OE.384825[44] Koch U, Uhl C, Hettrich H, et al. A monolithic bipolar CMOS electronic-plasmonic high-speed transmitter. Nat Electron, 2020, 3, 338 doi: 10.1038/s41928-020-0417-9[45] Dalton L R. Theory-inspired development of organic electro-optic materials. Thin Solid Films, 2009, 518, 428 doi: 10.1016/j.tsf.2009.07.001[46] Sullivan P A, Rommel H, Liao Y, et al. Theory-guided design and synthesis of multichromophore dendrimers: An analysis of the electro-optic effect. J Am Chem Soc, 2007, 129, 7523 doi: 10.1021/ja068322b[47] Liu J L, Bo S H, Liu X H, et al. Enhanced poling efficiency in rigid-flexible dendritic nonlinear optical chromophores. J Incl Phenom Macrocycl Chem, 2010, 68, 253 doi: 10.1007/s10847-010-9781-9[48] Li Z A, Wu W B, Li Q Q, et al. High-generation second-order nonlinear optical (NLO) dendrimers: Convenient synthesis by click chemistry and the increasing trend of NLO effects. Angew Chem Int Ed Engl, 2010, 49, 2763 doi: 10.1002/anie.200906946[49] Wu W B, Qin J G, Li Z. New design strategies for second-order nonlinear optical polymers and dendrimers. Polymer, 2013, 54, 4351 doi: 10.1016/j.polymer.2013.05.039[50] Hammond S R, Sinness J, Dubbury S, et al. Molecular engineering of nanoscale order in organic electro-optic glasses. J Mater Chem, 2012, 22, 6752 doi: 10.1039/c2jm14915j[51] Chen Z, Zhang A R, Xiao H Y, et al. Tailoring the chemical structures and nonliear optical properties of julolidinyl-based chromophores by molecular engineering. Dyes Pigments, 2020, 173, 107876 doi: 10.1016/j.dyepig.2019.107876[52] Wu J Y, Bo S H, Liu J L, et al. Synthesis of novel nonlinear optical chromophore to achieve ultrahigh electro-optic activity. Chem Commun, 2012, 48, 9637 doi: 10.1039/c2cc34747d[53] Zhou X H, Luo J D, Davies J A, et al. Push-pull tetraene chromophores derived from dialkylaminophenyl, tetrahydroquinolinyl and julolidinyl moieties: Optimization of second-order optical nonlinearity by fine-tuning the strength of electron-donating groups. J Mater Chem, 2012, 22, 16390 doi: 10.1039/c2jm32848h[54] Bo S H, Li Y, Liu T T, et al. Systematic study on the optimization of a bis(N, N-diethyl)aniline based NLO chromophore via a stronger electron acceptor, extended π-conjugation and isolation groups. J Mater Chem C, 2022, 10, 3343 doi: 10.1039/D1TC05684K[55] Elder D L, Benight S J, Song J S, et al. Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores. Chem Mater, 2014, 26, 872 doi: 10.1021/cm4034935[56] Jin W W, Johnston P V, Elder D L, et al. Structure-function relationship exploration for enhanced thermal stability and electro-optic activity in monolithic organic NLO chromophores. J Mater Chem C, 2016, 4, 3119 doi: 10.1039/C6TC00358C[57] Elder D L, Haffner C, Heni W, et al. Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores. Chem Mater, 2017, 29, 6457 doi: 10.1021/acs.chemmater.7b02020[58] Zhang H, Yang Y H, Xiao H Y, et al. Enhancement of electro-optic properties of bis(N, N-diethyl)aniline based second order nonlinear chromophores by introducing a stronger electron acceptor and modifying the π-bridge. J Mater Chem C, 2017, 5, 6704 doi: 10.1039/C7TC01175J[59] Zhang A R, Xiao H Y, Peng C C, et al. Microwave-assisted synthesis of novel julolidinyl-based nonlinear optical chromophores with enhanced electro-optic activity. RSC Adv, 2014, 4, 65088 doi: 10.1039/C4RA10078F[60] Ummethala S, Harter T, Koehnle K, et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat Photonics, 2019, 13, 519 doi: 10.1038/s41566-019-0475-6[61] Cheng Y J, Luo J D, Hau S, et al. Large electro-optic activity and enhanced thermal stability from diarylaminophenyl-containing high-β nonlinear optical chromophores. Chem Mater, 2007, 19, 1154 doi: 10.1021/cm062340a[62] Davies J A, Elangovan A, Sullivan P A, et al. Rational enhancement of second-order nonlinearity: Bis-(4-methoxyphenyl) hetero-aryl-amino donor-based chromophores: Design, synthesis, and electrooptic activity. J Am Chem Soc, 2008, 130, 10565 doi: 10.1021/ja8007424[63] Yang Y H, Xu H J, Liu F G, et al. Synthesis and optical nonlinear property of Y-type chromophores based on double-donor structures with excellent electro-optic activity. J Mater Chem C, 2014, 2, 5124 doi: 10.1039/C4TC00508B[64] Yang Y H, Liu J L, Zhang M L, et al. The important role of the location of the alkoxy group on the thiophene ring in designing efficient organic nonlinear optical materials based on double-donor chromophores. J Mater Chem C, 2015, 3, 3913 doi: 10.1039/C5TC00241A[65] Yang Y H, Wang H R, Liu F G, et al. The synthesis of new double-donor chromophores with excellent electro-optic activity by introducing modified bridges. Phys Chem Chem Phys, 2015, 17, 5776 doi: 10.1039/C4CP05829A[66] Jin W W, Johnston P V, Elder D L, et al. Benzocyclobutene barrier layer for suppressing conductance in nonlinear optical devices during electric field poling. Appl Phys Lett, 2014, 104, 243304 doi: 10.1063/1.4884829[67] Huang S, Kim T D, Luo J D, et al. Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode. Appl Phys Lett, 2010, 96, 243311 doi: 10.1063/1.3453659[68] Xu H J, Elder D L, Johnson L E, et al. Electro-optic activity in excess of 1000 pm V –1 achieved via theory-guided organic chromophore design. Adv Mater, 2021, 33, 2104174 doi: 10.1002/adma.202104174[69] Xu H J, Elder D L, Johnson L E, et al. Design and synthesis of chromophores with enhanced electro-optic activities in both bulk and plasmonic-organic hybrid devices. Mater Horiz, 2022, 9, 261 doi: 10.1039/D1MH01206A[70] Brosi J M, Koos C, Andreani L C, et al. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt Express, 2008, 16, 4177 doi: 10.1364/OE.16.004177[71] Lin C Y, Wang X L, Chakravarty S, et al. Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement. Appl Phys Lett, 2010, 97, 093304 doi: 10.1063/1.3486225[72] Zhang X Y, Hosseini A, Chakravarty S, et al. Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide. Opt Lett, 2013, 38, 4931 doi: 10.1364/OL.38.004931[73] Zhang X Y, Chung C J, Hosseini A, et al. High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide. J Lightwave Technol, 2016, 34, 2941 doi: 10.1109/JLT.2015.2471853[74] Alloatti L, Korn D, Palmer R, et al. 42.7 Gbit/s electro-optic modulator in silicon technology. Opt Express, 2011, 19, 11841 doi: 10.1364/OE.19.011841[75] Ummethala S, Kemal J N, Alam A S, et al. Hybrid electro-optic modulator combining silicon photonic slot waveguides with high-k radio-frequency slotlines. Optica, 2021, 8, 511 doi: 10.1364/OPTICA.411161[76] Park D H, Yun V, Luo J, et al. EO polymer at cryogenic temperatures. Electron Lett, 2016, 52, 1703 doi: 10.1049/el.2016.1406[77] Lu G W, Hong J X, Qiu F, et al. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit s−1 for energy-efficient datacentres and harsh-environment applications. Nat Commun, 2020, 11, 4224 doi: 10.1038/s41467-020-18005-7[78] Zou Y H, Wang Y M, Zhang X X, et al. Optimal design and preparation of silicon-organic hybrid integrated electro-optic modulator. Opt Precision Eng, 2020, 28(10), 2138 doi: 10.37188/OPE.20202810.2138[79] Elder D L, Dalton L R. Organic electro-optics and optical rectification: From mesoscale to nanoscale hybrid devices and chip-scale integration of electronics and photonics. Ind Eng Chem Res, 2022, 61, 1207 doi: 10.1021/acs.iecr.1c03836[80] Heni W, Baeuerle B, Mardoyan H, et al. Ultra-high-speed 2: 1 digital selector and plasmonic modulator IM/DD transmitter operating at 222 GBaud for intra-datacenter applications. J Lightwave Technol, 2020, 38, 2734 doi: 10.1109/JLT.2020.2972637[81] Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562, 101 doi: 10.1038/s41586-018-0551-y[82] Weigel P O, Zhao J, Fang K, et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt Express, 2018, 26, 23728 doi: 10.1364/OE.26.023728[83] Zwickel H, Kemal J N, Kieninger C, et al. Electrically packaged silicon-organic hybrid (SOH) I/Q-modulator for 64 GBd operation. Opt Express, 2018, 26, 34580 doi: 10.1364/OE.26.034580 -
Proportional views