J. Semicond. > 2022, Volume 43 > Issue 11 > 112301

ARTICLES

Four-channel CWDM transmitter chip based on thin-film lithium niobate platform

Kaixuan Chen1, 2, Gengxin Chen3, Ziliang Ruan3, Xuancong Fan1, 2, Junwei Zhang4, Ranfeng Gan1, Jie Liu4, Daoxin Dai3, 5, Changjian Guo1, 2 and Liu Liu3, 5,

+ Author Affiliations

 Corresponding author: Liu Liu, liuliuopt@zju.edu.cn

DOI: 10.1088/1674-4926/43/11/112301

PDF

Turn off MathJax

Abstract: Multi-lane integrated transmitter chips are key components in future compact optical modules to realize high-speed optical interconnects. Thin-film lithium niobate (TFLN) photonics have emerged as a promising platform for achieving high-performance chip-scale optical systems. Combining a coarse wavelength-division multiplexing (CWDM) devices using fabrication-tolerant angled multimode interferometer structure and high-performance electro-optical modulators, we demonstrate monolithic on-chip four-channel CWDM transmitter on the TFLN platform for the first time. The four-channel CWDM transmitter enables high-speed transmissions of 100 Gb/s data rate per wavelength channel (i.e., an aggregated date rate of 400 Gb/s).

Key words: transmitterlithium niobatecoarse wavelength-division multiplexingelectro-optic modulator



[1]
Winzer P J, Neilson D T, Chraplyvy A R. Fiber-optic transmission and networking: the previous 20 and the next 20 years. Opt Express, 2018, 26(18), 24190 doi: 10.1364/OE.26.024190
[2]
Liu J, Ye Y, Deng L, et al. Integrated four-channel directly modulated O-band optical transceiver for radio over fiber application. Opt Express, 2018, 26(17), 21490 doi: 10.1364/OE.26.021490
[3]
Arima R, Yamashita T, Yahagi T, et al. Demonstration of world-first 103 Gbit/s transmission over 40 km single mode fiber by 1310 nm LAN-WDM optical transceiver for 100GbE. National Fiber Optic Engineers Conference, 2011, JWA9 doi: 10.1364/NFOEC.2011.JWA9
[4]
Fujisawa T, Kanazawa S, Ishii H, et al. 1.3-μm × 25-Gb/s monolithically integrated light source for metro area 100-Gb/s ethernet. IEEE Photonics Technol Lett, 2011, 23(6), 356 doi: 10.1109/LPT.2011.2106117
[5]
Kanazawa S, Fujisawa T, Ohki A, et al. A compact EADFB laser array module for a future 100-Gb/s Ethernet transceiver. IEEE J Sel Top Quantum Electron, 2011, 17(5), 1191 doi: 10.1109/JSTQE.2011.2124446
[6]
Ramaswamy A, Roth J, Norberg E J, et al. A WDM 4× 28Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs. Optical Fiber Communication Conference, 2015, Th5B.5
[7]
Murao T, Yasui N, Shinada T, et al. Integrated spatial optical system for compact 28-Gb/s × 4-lane transmitter optical subassemblies. IEEE Photonics Technol Lett, 2014, 26(22), 2275 doi: 10.1109/LPT.2014.2350971
[8]
Zhang H, Li M, Zhang Y, et al. 800 Gbit/s transmission over 1 km single-mode fiber using a four-channel silicon photonic transmitter. Photonics Res, 2020, 8(11), 1776 doi: 10.1364/PRJ.396815
[9]
Mardoyan H, Jorge F, Ozolins O, et al. 204-GBaud on-off keying transmitter for inter-data center communications. Optical Fiber Communication Conference, 2018, Th4A.4
[10]
Zhong K, Zhou X, Huo J, et al. Digital signal processing for short-reach optical communications: A review of current technologies and future trends. J Lightwave Technol, 2018, 36(2), 377 doi: 10.1109/JLT.2018.2793881
[11]
Motaghiannezam S. Optical PAM4 signaling and system performance for DCI applications. Optical Fiber Communication Conference, 2019, M3A.1 doi: 10.1364/OFC.2019.M3A.1
[12]
Zhu D, Shao L, Yu M, et al. Integrated photonics on thin-film lithium niobate. Adv Opt Photonics, 2021, 13(2), 242 doi: 10.1364/AOP.411024
[13]
Wooten E L, Kissa K M, Yi-Yan A, et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quantum Electron, 2000, 6(1), 69 doi: 10.1109/2944.826874
[14]
Saravi S, Pertsch T, Setzpfandt F. Lithium niobate on insulator: An emerging platform for integrated quantum photonics. Adv Opt Mater, 2021, 9(22), 2100789 doi: 10.1002/adom.202100789
[15]
Marpaung D, Yao J, Capmany J. Integrated microwave photonics. Nat Photonics, 2019, 13(2), 80 doi: 10.1038/s41566-018-0310-5
[16]
Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562(7725), 101 doi: 10.1038/s41586-018-0551-y
[17]
Jian J, Xu M, Liu L, et al. High modulation efficiency lithium niobate Michelson interferometer modulator. Opt Express, 2019, 27(13), 18731 doi: 10.1364/OE.27.018731
[18]
Pohl D, Messner A, Kaufmann F, et al. 100-Gbd waveguide Bragg grating modulator in thin-film lithium niobate. IEEE Photonics Technol Lett, 2020, 33(2), 85 doi: 10.1109/LPT.2020.3044648
[19]
Xu M, He M, Zhu Y, et al. Integrated thin film lithium niobate Fabry–Perot modulator. Chin Opt Lett, 2021, 19(6), 060003 doi: 10.3788/COL202119.060003
[20]
Shams-Ansari A, Renaud D, Cheng R, et al. Electrically-pumped high-power laser transmitter integrated on thin-film lithium niobate. arXiv preprint arXiv: 2111.08473, 2021
[21]
Chen G, Ruan Z, Wang Z, et al. Four-channel CWDM device on a thin-film lithium niobate platform using an angled multimode interferometer structure. Photonics Res, 2022, 10(1), 8 doi: 10.1364/PRJ.438816
[22]
Chen G, Chen K, Gan R, et al. High performance thin-film lithium niobate modulator on a silicon substrate using periodic capacitively loaded traveling-wave electrode. APL Photonics, 2022, 7(2), 026103 doi: 10.1063/5.0077232
[23]
Wang J, Chen P, Dai D, et al. Polarization coupling of X-cut thin film lithium niobate based waveguides. IEEE Photonics J, 2020, 12(3), 1 doi: 10.1109/JPHOT.2020.2995317
[24]
Kharel P, Reimer C, Luke K, et al. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica, 2021, 8(3), 357 doi: 10.1364/OPTICA.416155
[25]
Ying P, Tan H, Zhang J, et al. Low-loss edge-coupling thin-film lithium niobate modulator with an efficient phase shifter. Opt Lett, 2021, 46(6), 1478 doi: 10.1364/OL.418996
Fig. 1.  (Color online) (Color online) Proposed four-channel CWDM transmitter on the TFLN platform. 3D view of (a) whole structure and (b) CWDM device based on the AMMI structure. (c) Cross-sectional view of the modulation section. (d) Top view of the CLTW electrode.

Fig. 2.  Optical images of (a) whole transmitter and (b) four-channel CWDM device. Scanning electron microscope images of (c) cross-sectional view and (d) top view of the modulation section.

Fig. 3.  (Color online) (a) Measured and simulated transmission spectral responses of the fabricated CWDM device. (b) Measured transmission spectral responses of the four input GCs and the common output GC.

Fig. 4.  (Color online) Normalized optical transmission of the fabricated four modulators as a function of the applied voltage for (a) Ch. 1 and Ch. 2, and (b) Ch. 3 and Ch. 4.

Fig. 5.  (Color online) Measured EE (a) transmissions S12 and (b) reflections S11 for the four modulators.

Fig. 6.  (Color online) Measured EE crosstalk characteristics of the fabricated CWDM transmitter for (a) Ch. 1, (b) Ch. 2, (c) Ch. 3, and (d) Ch. 4.

Fig. 7.  (Color online) Measured and simulated EO responses for the four modulators.

Fig. 8.  (Color online) (a) Experimental setup for high-speed data transmission measurements. PC: polarization controller. Measured optical eye diagrams for the OOK format at a data rate of 64 Gb/s for (b) Ch. 1, (c) Ch. 2, (d) Ch. 3, and (e) Ch. 4.

Fig. 9.  (Color online) Measured optical eye diagrams for the PAM-4 format at a data rate of 100 Gb/s for (a) Ch. 1, (b) Ch. 2, (c) Ch. 3, and (d) Ch. 4.

[1]
Winzer P J, Neilson D T, Chraplyvy A R. Fiber-optic transmission and networking: the previous 20 and the next 20 years. Opt Express, 2018, 26(18), 24190 doi: 10.1364/OE.26.024190
[2]
Liu J, Ye Y, Deng L, et al. Integrated four-channel directly modulated O-band optical transceiver for radio over fiber application. Opt Express, 2018, 26(17), 21490 doi: 10.1364/OE.26.021490
[3]
Arima R, Yamashita T, Yahagi T, et al. Demonstration of world-first 103 Gbit/s transmission over 40 km single mode fiber by 1310 nm LAN-WDM optical transceiver for 100GbE. National Fiber Optic Engineers Conference, 2011, JWA9 doi: 10.1364/NFOEC.2011.JWA9
[4]
Fujisawa T, Kanazawa S, Ishii H, et al. 1.3-μm × 25-Gb/s monolithically integrated light source for metro area 100-Gb/s ethernet. IEEE Photonics Technol Lett, 2011, 23(6), 356 doi: 10.1109/LPT.2011.2106117
[5]
Kanazawa S, Fujisawa T, Ohki A, et al. A compact EADFB laser array module for a future 100-Gb/s Ethernet transceiver. IEEE J Sel Top Quantum Electron, 2011, 17(5), 1191 doi: 10.1109/JSTQE.2011.2124446
[6]
Ramaswamy A, Roth J, Norberg E J, et al. A WDM 4× 28Gbps integrated silicon photonic transmitter driven by 32nm CMOS driver ICs. Optical Fiber Communication Conference, 2015, Th5B.5
[7]
Murao T, Yasui N, Shinada T, et al. Integrated spatial optical system for compact 28-Gb/s × 4-lane transmitter optical subassemblies. IEEE Photonics Technol Lett, 2014, 26(22), 2275 doi: 10.1109/LPT.2014.2350971
[8]
Zhang H, Li M, Zhang Y, et al. 800 Gbit/s transmission over 1 km single-mode fiber using a four-channel silicon photonic transmitter. Photonics Res, 2020, 8(11), 1776 doi: 10.1364/PRJ.396815
[9]
Mardoyan H, Jorge F, Ozolins O, et al. 204-GBaud on-off keying transmitter for inter-data center communications. Optical Fiber Communication Conference, 2018, Th4A.4
[10]
Zhong K, Zhou X, Huo J, et al. Digital signal processing for short-reach optical communications: A review of current technologies and future trends. J Lightwave Technol, 2018, 36(2), 377 doi: 10.1109/JLT.2018.2793881
[11]
Motaghiannezam S. Optical PAM4 signaling and system performance for DCI applications. Optical Fiber Communication Conference, 2019, M3A.1 doi: 10.1364/OFC.2019.M3A.1
[12]
Zhu D, Shao L, Yu M, et al. Integrated photonics on thin-film lithium niobate. Adv Opt Photonics, 2021, 13(2), 242 doi: 10.1364/AOP.411024
[13]
Wooten E L, Kissa K M, Yi-Yan A, et al. A review of lithium niobate modulators for fiber-optic communications systems. IEEE J Sel Top Quantum Electron, 2000, 6(1), 69 doi: 10.1109/2944.826874
[14]
Saravi S, Pertsch T, Setzpfandt F. Lithium niobate on insulator: An emerging platform for integrated quantum photonics. Adv Opt Mater, 2021, 9(22), 2100789 doi: 10.1002/adom.202100789
[15]
Marpaung D, Yao J, Capmany J. Integrated microwave photonics. Nat Photonics, 2019, 13(2), 80 doi: 10.1038/s41566-018-0310-5
[16]
Wang C, Zhang M, Chen X, et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562(7725), 101 doi: 10.1038/s41586-018-0551-y
[17]
Jian J, Xu M, Liu L, et al. High modulation efficiency lithium niobate Michelson interferometer modulator. Opt Express, 2019, 27(13), 18731 doi: 10.1364/OE.27.018731
[18]
Pohl D, Messner A, Kaufmann F, et al. 100-Gbd waveguide Bragg grating modulator in thin-film lithium niobate. IEEE Photonics Technol Lett, 2020, 33(2), 85 doi: 10.1109/LPT.2020.3044648
[19]
Xu M, He M, Zhu Y, et al. Integrated thin film lithium niobate Fabry–Perot modulator. Chin Opt Lett, 2021, 19(6), 060003 doi: 10.3788/COL202119.060003
[20]
Shams-Ansari A, Renaud D, Cheng R, et al. Electrically-pumped high-power laser transmitter integrated on thin-film lithium niobate. arXiv preprint arXiv: 2111.08473, 2021
[21]
Chen G, Ruan Z, Wang Z, et al. Four-channel CWDM device on a thin-film lithium niobate platform using an angled multimode interferometer structure. Photonics Res, 2022, 10(1), 8 doi: 10.1364/PRJ.438816
[22]
Chen G, Chen K, Gan R, et al. High performance thin-film lithium niobate modulator on a silicon substrate using periodic capacitively loaded traveling-wave electrode. APL Photonics, 2022, 7(2), 026103 doi: 10.1063/5.0077232
[23]
Wang J, Chen P, Dai D, et al. Polarization coupling of X-cut thin film lithium niobate based waveguides. IEEE Photonics J, 2020, 12(3), 1 doi: 10.1109/JPHOT.2020.2995317
[24]
Kharel P, Reimer C, Luke K, et al. Breaking voltage–bandwidth limits in integrated lithium niobate modulators using micro-structured electrodes. Optica, 2021, 8(3), 357 doi: 10.1364/OPTICA.416155
[25]
Ying P, Tan H, Zhang J, et al. Low-loss edge-coupling thin-film lithium niobate modulator with an efficient phase shifter. Opt Lett, 2021, 46(6), 1478 doi: 10.1364/OL.418996
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1715 Times PDF downloads: 208 Times Cited by: 0 Times

    History

    Received: 11 April 2022 Revised: 21 June 2022 Online: Accepted Manuscript: 05 August 2022Uncorrected proof: 10 August 2022Published: 01 November 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Kaixuan Chen, Gengxin Chen, Ziliang Ruan, Xuancong Fan, Junwei Zhang, Ranfeng Gan, Jie Liu, Daoxin Dai, Changjian Guo, Liu Liu. Four-channel CWDM transmitter chip based on thin-film lithium niobate platform[J]. Journal of Semiconductors, 2022, 43(11): 112301. doi: 10.1088/1674-4926/43/11/112301 ****Kaixuan Chen, Gengxin Chen, Ziliang Ruan, Xuancong Fan, Junwei Zhang, Ranfeng Gan, Jie Liu, Daoxin Dai, Changjian Guo, Liu Liu, Four-channel CWDM transmitter chip based on thin-film lithium niobate platform[J]. Journal of Semiconductors, 2022, 43(11), 112301 doi: 10.1088/1674-4926/43/11/112301
      Citation:
      Kaixuan Chen, Gengxin Chen, Ziliang Ruan, Xuancong Fan, Junwei Zhang, Ranfeng Gan, Jie Liu, Daoxin Dai, Changjian Guo, Liu Liu. Four-channel CWDM transmitter chip based on thin-film lithium niobate platform[J]. Journal of Semiconductors, 2022, 43(11): 112301. doi: 10.1088/1674-4926/43/11/112301 ****
      Kaixuan Chen, Gengxin Chen, Ziliang Ruan, Xuancong Fan, Junwei Zhang, Ranfeng Gan, Jie Liu, Daoxin Dai, Changjian Guo, Liu Liu, Four-channel CWDM transmitter chip based on thin-film lithium niobate platform[J]. Journal of Semiconductors, 2022, 43(11), 112301 doi: 10.1088/1674-4926/43/11/112301

      Four-channel CWDM transmitter chip based on thin-film lithium niobate platform

      DOI: 10.1088/1674-4926/43/11/112301
      More Information
      • Kaixuan Chen:obtained his BS degree in 2012 at Guangdong University of Technology, MA. Sc degree in 2016 at South China Normal University, and PhD degree in 2020 at Zhejiang University. In July 2020, he joined South China Normal University as a postdoc. His research interests include silicon photonics and thin-film lithium niobate integrated devices
      • Liu Liu:obtained his PhD degree in Photonics at the Royal Institute of Technology, Sweden, in 2006, and joined Zhejiang University as a professor in 2020. Before that, he worked as an assistant professor at Technical University of Denmark, Denmark, and as a professor at South China Normal University (SCNU), China. He also served as a vice dean of South China Academy of Advanced Optoelectronics, SCNU, and the director of Guangdong Provincial Research Center for Optical and Electromagnetic Sensing Technologies. His current research interests include silicon photonics and thin-film lithium niobate integrated devices
      • Corresponding author: liuliuopt@zju.edu.cn
      • Received Date: 2022-04-11
      • Revised Date: 2022-06-21
      • Available Online: 2022-08-05

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return