J. Semicond. > 2022, Volume 43 > Issue 2 > 021301

REVIEWS

Avalanche photodiodes on silicon photonics

Yuan Yuan, Bassem Tossoun, Zhihong Huang, Xiaoge Zeng, Geza Kurczveil, Marco Fiorentino, Di Liang and Raymond G. Beausoleil

+ Author Affiliations

 Corresponding author: Di Liang, di.liang@hpe.com

DOI: 10.1088/1674-4926/43/2/021301

PDF

Turn off MathJax

Abstract: Silicon photonics technology has drawn significant interest due to its potential for compact and high-performance photonic integrated circuits. The Ge- or III–V material-based avalanche photodiodes integrated on silicon photonics provide ideal high sensitivity optical receivers for telecommunication wavelengths. Herein, the last advances of monolithic and heterogeneous avalanche photodiodes on silicon are reviewed, including different device structures and semiconductor systems.

Key words: avalanche photodiodesilicon photonicsphotonic integrated circuit



[1]
Piels M, Bowers J E. Photodetectors for silicon photonic integrated circuits. Photodetectors. Amsterdam: Elsevier, 2016, 3 doi: 10.1016/B978-1-78242-445-1.00001-4
[2]
Fédéli J M, Virot L, Vivien L, et al. High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications. 2014 7th Int Silicon Ger Technol Device Meet ISTDM, 2014, 131 doi: 10.1109/ISTDM.2014.6874690
[3]
Virot L, Benedikovic D, Szelag B, et al. Integrated waveguide PIN photodiodes exploiting lateral Si/Ge/Si heterojunction. Opt Express, 2017, 25, 19487 doi: 10.1364/OE.25.019487
[4]
Sun K Y, Tzu T C, Costanzo R, et al. Ge-on-Si balanced periodic traveling-wave photodetector. 2019 IEEE Photonics Conference (IPC), 2019, 1 doi: 10.1109/IPCon.2019.8908269
[5]
Bogaert L, van Gasse K, Spuesens T, et al. Silicon photonics traveling wave photodiode with integrated star coupler for high-linearity mm-wave applications. Opt Express, 2018, 26, 34763 doi: 10.1364/OE.26.034763
[6]
Xie X J, Zhou Q G, Norberg E, et al. High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator. J Lightwave Technol, 2016, 34, 73 doi: 10.1109/JLT.2015.2491258
[7]
Muliuk G, Zhang J, Goyvaerts J, et al. High-yield parallel transfer print integration of III-V substrate-illuminated C-band photodiodes on silicon photonic integrated circuits. Proc SPIE 10923, Silicon Photonics XIV, 2019, 1092 doi: 10.1117/12.2507373
[8]
Sun K Y, Jung D, Shang C, et al. Low dark current III–V on silicon photodiodes by heteroepitaxy. Opt Express, 2018, 26, 13605 doi: 10.1364/OE.26.013605
[9]
Sun K Y, Gao J Y, Jung D, et al. 40 Gbit/s waveguide photodiode using III–V on silicon heteroepitaxy. Opt Lett, 2020, 45, 2954 doi: 10.1364/OL.392567
[10]
Casalino M, Iodice M, Sirleto L, et al. Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current. Opt Express, 2013, 21, 28072 doi: 10.1364/OE.21.028072
[11]
Cansizoglu H, Mayet A S, Ghandiparsi S, et al. Dramatically enhanced efficiency in ultra-fast silicon MSM photodiodes via light trapping structures. IEEE Photonics Technol Lett, 2019, 31, 1619 doi: 10.1109/LPT.2019.2939541
[12]
Akinwande D, Huyghebaert C, Wang C H, et al. Graphene and two-dimensional materials for silicon technology. Nature, 2019, 573, 507 doi: 10.1038/s41586-019-1573-9
[13]
Gonzalez Marin J F, Unuchek D, Watanabe K, et al. MoS2 photodetectors integrated with photonic circuits. npj 2D Mater Appl, 2019, 3, 1 doi: 10.1038/s41699-018-0083-1
[14]
Campbell J C. Recent advances in avalanche photodiodes. J Lightwave Technol, 2016, 34, 278 doi: 10.1109/JLT.2015.2453092
[15]
Benedikovic D, Virot L, Aubin G, et al. Silicon–germanium receivers for short-wave-infrared optoelectronics and communications. Nanophotonics, 2021, 10, 1059 doi: 10.1515/nanoph-2020-0547
[16]
McIntyre R J. Multiplication noise in uniform avalanche diodes. IEEE Trans Electron Devices, 1966, ED-13,164 doi: 10.1109/T-ED.1966.15651
[17]
Emmons R B. Avalanche-photodiode frequency response. J Appl Phys, 1967, 38, 3705 doi: 10.1063/1.1710199
[18]
Benedikovic D, Virot L, Aubin G, et al. 40 Gbps heterostructure germanium avalanche photo receiver on a silicon chip. Optica, 2020, 7, 775 doi: 10.1364/OPTICA.393537
[19]
Srinivasan S A, Berciano M, de Heyn P, et al. 27 GHz silicon-contacted waveguide-coupled Ge/Si avalanche photodiode. J Lightwave Technol, 2020, 38, 3044 doi: 10.1109/JLT.2020.2986923
[20]
Zhang J, Kuo B P P, Radic S. 64Gb/s PAM4 and 160Gb/s 16QAM modulation reception using a low-voltage Si-Ge waveguide-integrated APD. Opt Express, 2020, 28, 23266 doi: 10.1364/OE.396979
[21]
Zeng X G, Huang Z H, Wang B H, et al. Silicon–germanium avalanche photodiodes with direct control of electric field in charge multiplication region. Optica, 2019, 6, 772 doi: 10.1364/OPTICA.6.000772
[22]
Huang Z H, Li C, Liang D, et al. 25 Gbps low-voltage waveguide Si–Ge avalanche photodiode. Optica, 2016, 3, 793 doi: 10.1364/OPTICA.3.000793
[23]
Kang Y M, Liu H D, Morse M, et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product. Nat Photonics, 2009, 3, 59 doi: 10.1038/nphoton.2008.247
[24]
Huang M Y, Cai P F, Li S, et al. 56GHz waveguide Ge/Si avalanche photodiode. Optical Fiber Communication Conference (OFC), 2018
[25]
Li X W, Zheng X G, Wang S L, et al. Calculation of gain and noise with dead space for GaAs and Al xGa1– xAs avalanche photodiode. IEEE Trans Electron Devices, 2002, 49, 1112 doi: 10.1109/TED.2002.1013264
[26]
Rees G J, David J R. Nonlocal impact ionization and avalanche multiplication. J Phys D, 2010, 43, 243001 doi: 10.1088/0022-3727/43/24/243001
[27]
Jamil E, Cheong J S, David J P, et al. On the analytical formulation of excess noise in avalanche photodiodes with dead space. Opt Express, 2016, 24, 21597 doi: 10.1364/OE.24.021597
[28]
Yuan Y, Huang Z H, Wang B H, et al. 64 Gbps PAM4 Si-Ge waveguide avalanche photodiodes with excellent temperature stability. J Lightwave Technol, 2020, 38, 4857 doi: 10.1109/JLT.2020.2996561
[29]
Harrison C N, David J P R, Hopkinson M, et al. Temperature dependence of avalanche multiplication in submicron Al0.6Ga0.4As diodes. J Appl Phys, 2002, 92, 7684 doi: 10.1063/1.1524017
[30]
Jones A H, Yuan Y, Ren M, et al. Al xIn1– xAs ySb1– y photodiodes with low avalanche breakdown temperature dependence. Opt Express, 2017, 25, 24340 doi: 10.1364/OE.25.024340
[31]
Yuan Y, Huang Z H, Wang B H, et al. Superior temperature performance of Si-Ge waveguide avalanche photodiodes at 64Gbps PAM4 operation. Optical Fiber Communication Conference (OFC) 2020, 2020
[32]
Wang B H, Huang Z H, Yuan Y, et al. 64 Gb/s low-voltage waveguide SiGe avalanche photodiodes with distributed Bragg reflectors. Photon Res, 2020, 8, 1118 doi: 10.1364/PRJ.390339
[33]
Yuan Y, Huang Z H, Zeng X G, et al. High responsivity Si-Ge waveguide avalanche photodiodes enhanced by loop reflector. IEEE J Sel Top Quantum Electron, 2022, 28, 1 doi: 10.1109/JSTQE.2021.3087416
[34]
Liu A Y, Bowers J. Photonic integration with epitaxial III–V on silicon. IEEE J Sel Top Quantum Electron, 2018, 24, 1 doi: 10.1109/JSTQE.2018.2854542
[35]
Han Y, Xue Y, Yan Z, et al. Selectively grown III-V lasers for integrated Si-photonics. J Lightwave Technol, 2021, 39, 940 doi: 10.1109/JLT.2020.3041348
[36]
Liang D, Bowers J E. Recent progress in heterogeneous III-V-on-silicon photonic integration. Light: Adv Manuf, 2021, 2, 1 doi: 10.37188/lam.2021.005
[37]
Li N, Sidhu R, Li X W, et al. InGaAs/InAlAs avalanche photodiode with undepleted absorber. Appl Phys Lett, 2003, 82, 2175 doi: 10.1063/1.1559437
[38]
Nada M, Yokoyama H, Muramoto Y, et al. A 50-Gbit/s vertical illumination avalanche photodiode for 400-Gbit/s Ethernet systems. Opt Express, 2014, 22, 14681 doi: 10.1364/OE.22.014681
[39]
Nada M, Nakamura M, Matsuzaki H. 25-Gbit/s burst-mode optical receiver using high-speed avalanche photodiode for 100-Gbit/s optical packet switching. Opt Express, 2014, 22, 443 doi: 10.1364/OE.22.000443
[40]
Zhao Y L, Zhang D D, Qin L, et al. InGaAs–InP avalanche photodiodes with dark current limited by generation-recombination. Opt Express, 2011, 19, 8546 doi: 10.1364/OE.19.008546
[41]
Meng X, Tan C H, Dimler S, et al. 1550 nm InGaAs/InAlAs single photon avalanche diode at room temperature. Opt Express, 2014, 22, 22608 doi: 10.1364/OE.22.022608
[42]
Liu M G, Hu C, Bai X G, et al. High-performance InGaAs/InP single-photon avalanche photodiode. IEEE J Sel Top Quantum Electron, 2007, 13, 887 doi: 10.1109/JSTQE.2007.903855
[43]
Ren M, Gu X R, Liang Y, et al. Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector. Opt Express, 2011, 19, 13497 doi: 10.1364/OE.19.013497
[44]
Liu X B, Li Li. Design of the optical system of flash lidar based on an APD array. Infrared Laser Eng, 2009, 38, 893 doi: 10.1007/978-0-387-74660-9_12
[45]
Schwarz B. Mapping the world in 3D. Nat Photonics, 2010, 4, 429 doi: 10.1038/nphoton.2010.148
[46]
Adamo G, Busacca A. Time of flight measurements via two LiDAR systems with SiPM and APD. 2016 AEIT International Annual Conference (AEIT), 2016 doi: 10.23919/AEIT.2016.7892802
[47]
Elshaari A W, Pernice W, Srinivasan K, et al. Hybrid integrated quantum photonic circuits. Nat Photonics, 2020, 14, 285 doi: 10.1038/s41566-020-0609-x
[48]
Moody G, Sorger V J, Juodawlkis P W, et al. Roadmap on integrated quantum photonics. arXiv preprint arXiv: 2102.03323, 2021
[49]
Keyvaninia S, Muneeb M, Stanković S, et al. Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Opt Mater Express, 2012, 3, 35 doi: 10.1364/OME.3.000035
[50]
Zhang J, Muliuk G, Juvert J, et al. III-V-on-Si photonic integrated circuits realized using micro-transfer-printing. APL Photonics, 2019, 4, 110803 doi: 10.1063/1.5120004
[51]
Lucci I, Charbonnier S, Pedesseau L, et al. Universal description of III-V/Si epitaxial growth processes. Phys Rev Materials, 2018, 2, 060401 doi: 10.1103/PhysRevMaterials.2.060401
[52]
Yuan Y, Jung D, Sun K, et al. III-V on silicon avalanche photodiodes by heteroepitaxy. Opt Lett, 2019, 44, 3538 doi: 10.1364/OL.44.003538
[53]
Nakata T, Ishihara J, Makita K, et al. Multiplication noise characterization of InAlAs-APD with heterojunction. IEEE Photonics Technol Lett, 2009, 21, 1852 doi: 10.1109/LPT.2009.2032783
[54]
Jutzi M, Berroth M, Wöhl G, et al. Zero biased Ge-on-Si photodetector on a thin buffer with a bandwidth of 3.2 GHz at 1300 nm. Mater Sci Semicond Process, 2005, 8, 423 doi: 10.1016/j.mssp.2004.09.079
[55]
Colace L, Ferrara P, Assanto G, et al. Low dark-current germanium-on-silicon near-infrared detectors. IEEE Photonics Technol Lett, 2007, 19, 1813 doi: 10.1109/LPT.2007.907578
[56]
Tossoun B, Kurczvcil G, Zhang C, et al. High-speed 1310 nm hybrid silicon quantum dot photodiodes with ultra-low dark current. 2018 76th Device Research Conference (DRC), 2018, 1 doi: 10.1109/DRC.2018.8442178
[57]
Fang A W, Park H, Jones R, et al. A continuous-wave hybrid AlGaInAs-silicon evanescent laser. IEEE Photon Technol Lett, 2006, 18, 1143 doi: 10.1109/LPT.2006.874690
[58]
Bowers J E. Evolution of photonic integrated circuits. 2017 75th Annual Device Research Conference (DRC), 2017, 1 doi: 10.1109/DRC.2017.7999388
[59]
Tossoun B, Kurczveil G, Zhang C, et al. Indium arsenide quantum dot waveguide photodiodes heterogeneously integrated on silicon. Optica, 2019, 6, 1277 doi: 10.1364/OPTICA.6.001277
[60]
Tossoun B, Srinivasan S, Descos A, et al. High-speed heterogeneous quantum dot avalanche photodiodes with polarization dependent gain. 2020 IEEE Photonics Conference (IPC), 2020, 1 doi: 10.1109/IPC47351.2020.9252355
[61]
Tossoun B, Kurczveil G, Srinivasan S, et al. 32  Gbps heterogeneously integrated quantum dot waveguide avalanche photodiodes on silicon. Opt Lett, 2021, 46, 3821 doi: 10.1364/OL.433654
[62]
Ishikawa H, Shoji H, Nakata Y, et al. Self-organized quantum dots and quantum dot lasers. J Vac Sci Technol A, 1998, 16, 794 doi: 10.1116/1.581060
[63]
Liang D, Bowers J E. Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate. J Vac Sci Technol B, 2008, 26, 1560 doi: 10.1116/1.2943667
[64]
Jin P, Li C M, Zhang Z Y, et al. Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs∕GaAs quantum dots. Appl Phys Lett, 2004, 85, 2791 doi: 10.1063/1.1801678
[65]
Umezawa T, Akahane K, Matsumoto A, et al. Polarization dependence of avalanche multiplication factor in 1.5 μm quantum dot waveguide photodetector. Conference on Lasers and Electro-Optics, 2016 doi: 10.1364/CLEO_SI.2016.SM4E.8
[66]
Wu J, Jiang Q, Chen S M, et al. Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates. ACS Photonics, 2016, 3, 749 doi: 10.1021/acsphotonics.6b00076
[67]
Sandall I, Ng J S, David J P R, et al. 1300 nm wavelength InAs quantum dot photodetector grown on silicon. Opt Express, 2012, 20, 10446 doi: 10.1364/OE.20.010446
[68]
Wan Y T, Zhang Z Y, Chao R L, et al. Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates. Opt Express, 2017, 25, 27715 doi: 10.1364/OE.25.027715
[69]
Chen B L, Wan Y T, Xie Z Y, et al. Low dark current high gain InAs quantum dot avalanche photodiodes monolithically grown on Si. ACS Photonics, 2020, 7, 528 doi: 10.1021/acsphotonics.9b01709
[70]
Pauchard A, Bitter M, Sengupta D, et al. High-performance InGaAs-on-silicon avalanche photodiodes. Optical Fiber Communication Conference and Exhibit, 2002, 345 doi: 10.1109/OFC.2002.1036407
[71]
Umezawa T, Akahane K, Kanno A, et al. Investigation of a 1.5-µm-wavelength InAs-quantum-dot absorption layer for high-speed photodetector. Appl Phys Express, 2014, 7, 032201 doi: 10.7567/APEX.7.032201
Fig. 1.  (Color online) Common structures of Si–Ge APDs with E-field: (a) lateral p–i–n Si–Ge–Si APD[18], (b) Ge on lateral SACM Si APD[19], (c) Ge on lateral p–i–n Si APD[20], (d) hybrid vertical and lateral p–i–n APD[21], (e) vertical SACM p–p–i–n APD[22], and (f) vertical SACM p–i–p–i–n APD[23, 24].

Fig. 2.  (Color online) IV curves and eye diagrams of (a) lateral p–i–n Si–Ge-Si APD[18], (b) Ge on lateral SACM Si APD[19], (c) Ge on lateral p–i–n Si APD[20], and (d) hybrid vertical and lateral p–i–n APD[21].

Fig. 3.  (Color online) (a) A cross-sectional structure, (b) a simulated E-field distribution, (c) a gain vs bandwidth plot, temperature-dependent characteristics of (d) gain and breakdown voltage, (e) bandwidth, and (f) 32 Gb/s NRZ and 64 Gb/s PAM4 eye diagrams of the 4 × 10 µm2 Si–Ge SACM APD[22, 28, 31].

Fig. 4.  (Color online) (a) Schematic of the Si–Ge APD with no reflector (Normal), a distributed Bragg reflector (DBR), and a loop reflector (LR), and (b) simulated absorption profiles. Comparison of (c) reflectivity, (d) photocurrent versus input power at unity gain point (e) impulse responses at gain ~ 10, 32 Gb/s NRZ bit error rate at bias voltage of (f) –8 V and (g) –10 V between the Normal, DBR1, DBR2, and LR APDs. (h) 40 Gb/s NRZ and 80 Gb/s PAM4 eye diagrams of the LR APD at bias of –10 V[32, 33].

Fig. 5.  (Color online) Cross-sectional schematic of the InGaAs/InAlAs SACM APD directly on the InP/Si template[52].

Fig. 6.  (Color online) (a) I–V and gain curves, (b) photocurrent versus input laser power at unity gain point, and (c) excess noise of the 20 µm-diameter InGaAs/InAlAs APD on Si. Temperature-dependent dark current versus bias voltage of the (d) 20 µm-diameter APD on Si and (e) 50 µm-diameter APD on InP. (f) Activation energies at –5 V for APDs on Si and InP[52].

Fig. 7.  (Color online) (a) Cross-section schematic of the photodiode. (b) SEM cross section of the QD waveguide PD on Si[59].

Fig. 8.  (Color online) (a) Dark current vs. temperature for a 11 × 60 µm2 APD. (b) Spectral response versus voltage of a 11 × 90 µm2 APD. (c) Gain with quasi-TE mode and quasi-TM mode coupled into a 12 × 150 µm2 APD. (d) Output frequency response of a 3 × 30 µm2 APD measured with TE and TM modes at –15, –16 and –17 V bias voltage (dashed lines are averaged data). (e) Eye diagram of a 3 × 30 µm2 APD with a gain of 46.8 at 25 Gb/s. (f) Bit error rate vs. input optical power of an 11 × 90 µm2 APD at a gain of 28 at 10 Gbit/s[59].

Fig. 9.  (Color online) (a) Schematic of wafer structure. (b) TEM image of the wafer[67].

Fig. 10.  (Color online) (a) Schematic plot of the PD fabricated on the GoVS template. (b) Top-view and (c) cross-sectional view SEM images of a fabricated device[68].

Fig. 11.  (Color online) (a) Schematic diagram of the InAs QD APD grown on GoVS substrate. (b) APD gain versus the reverse bias at various temperatures. (c) Small-signal frequency response of the 3 × 50 µm2 device for various bias voltages. (d) Measured eye diagrams at a bias voltage of –15.9 V for data rates of 2.5, 5, and 8 Gb/s[69].

Table 1.   Properties of integrated APDs on silicon.

Ref.MaterialStructureλ (nm)Vbr (V)MIdark (nA)R (A/W)BW (GHz)GBP (GHz)BR (Gbps)
[21]Si–GeVertical + lateral p–i–n1550–61510.4819/NRZ 35
[18]Si–GeLateral p–i–n1550–11120470.2933210NRZ 40
[19]Si–GeLateral SACM1550–1211100.7827300NRZ 50
[32]Si–GeVertical SACM1550–1024201.1225296PAM4 64
[20]Si–GeLateral p–i–n1550–12.516100.9533/PAM4 64
[70]InGaAsVertical SAM1310–3020060.641.45290/
[52]InGaAs–InAlAsVertical SACM1550–222090.54///
[67]InAs–GaAs QDVertical p–i–n1300–268.50.80.005///
[71]InAs QDVertical p–i–n1550–23120.010.48///
[68]InAs–InGaAs QDVertical p–i–n1310–16/0.80.131.5//
[59]InAs QDVertical p–i–n1310–19450.10.3415240NRZ 12.5
[69]InAs QDVertical p–i–n1310–161980.10.2342.26/NRZ 8
[61]InAs QDVertical p–i–n1310–193500.010.1520585NRZ 32
DownLoad: CSV
[1]
Piels M, Bowers J E. Photodetectors for silicon photonic integrated circuits. Photodetectors. Amsterdam: Elsevier, 2016, 3 doi: 10.1016/B978-1-78242-445-1.00001-4
[2]
Fédéli J M, Virot L, Vivien L, et al. High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications. 2014 7th Int Silicon Ger Technol Device Meet ISTDM, 2014, 131 doi: 10.1109/ISTDM.2014.6874690
[3]
Virot L, Benedikovic D, Szelag B, et al. Integrated waveguide PIN photodiodes exploiting lateral Si/Ge/Si heterojunction. Opt Express, 2017, 25, 19487 doi: 10.1364/OE.25.019487
[4]
Sun K Y, Tzu T C, Costanzo R, et al. Ge-on-Si balanced periodic traveling-wave photodetector. 2019 IEEE Photonics Conference (IPC), 2019, 1 doi: 10.1109/IPCon.2019.8908269
[5]
Bogaert L, van Gasse K, Spuesens T, et al. Silicon photonics traveling wave photodiode with integrated star coupler for high-linearity mm-wave applications. Opt Express, 2018, 26, 34763 doi: 10.1364/OE.26.034763
[6]
Xie X J, Zhou Q G, Norberg E, et al. High-power and high-speed heterogeneously integrated waveguide-coupled photodiodes on silicon-on-insulator. J Lightwave Technol, 2016, 34, 73 doi: 10.1109/JLT.2015.2491258
[7]
Muliuk G, Zhang J, Goyvaerts J, et al. High-yield parallel transfer print integration of III-V substrate-illuminated C-band photodiodes on silicon photonic integrated circuits. Proc SPIE 10923, Silicon Photonics XIV, 2019, 1092 doi: 10.1117/12.2507373
[8]
Sun K Y, Jung D, Shang C, et al. Low dark current III–V on silicon photodiodes by heteroepitaxy. Opt Express, 2018, 26, 13605 doi: 10.1364/OE.26.013605
[9]
Sun K Y, Gao J Y, Jung D, et al. 40 Gbit/s waveguide photodiode using III–V on silicon heteroepitaxy. Opt Lett, 2020, 45, 2954 doi: 10.1364/OL.392567
[10]
Casalino M, Iodice M, Sirleto L, et al. Asymmetric MSM sub-bandgap all-silicon photodetector with low dark current. Opt Express, 2013, 21, 28072 doi: 10.1364/OE.21.028072
[11]
Cansizoglu H, Mayet A S, Ghandiparsi S, et al. Dramatically enhanced efficiency in ultra-fast silicon MSM photodiodes via light trapping structures. IEEE Photonics Technol Lett, 2019, 31, 1619 doi: 10.1109/LPT.2019.2939541
[12]
Akinwande D, Huyghebaert C, Wang C H, et al. Graphene and two-dimensional materials for silicon technology. Nature, 2019, 573, 507 doi: 10.1038/s41586-019-1573-9
[13]
Gonzalez Marin J F, Unuchek D, Watanabe K, et al. MoS2 photodetectors integrated with photonic circuits. npj 2D Mater Appl, 2019, 3, 1 doi: 10.1038/s41699-018-0083-1
[14]
Campbell J C. Recent advances in avalanche photodiodes. J Lightwave Technol, 2016, 34, 278 doi: 10.1109/JLT.2015.2453092
[15]
Benedikovic D, Virot L, Aubin G, et al. Silicon–germanium receivers for short-wave-infrared optoelectronics and communications. Nanophotonics, 2021, 10, 1059 doi: 10.1515/nanoph-2020-0547
[16]
McIntyre R J. Multiplication noise in uniform avalanche diodes. IEEE Trans Electron Devices, 1966, ED-13,164 doi: 10.1109/T-ED.1966.15651
[17]
Emmons R B. Avalanche-photodiode frequency response. J Appl Phys, 1967, 38, 3705 doi: 10.1063/1.1710199
[18]
Benedikovic D, Virot L, Aubin G, et al. 40 Gbps heterostructure germanium avalanche photo receiver on a silicon chip. Optica, 2020, 7, 775 doi: 10.1364/OPTICA.393537
[19]
Srinivasan S A, Berciano M, de Heyn P, et al. 27 GHz silicon-contacted waveguide-coupled Ge/Si avalanche photodiode. J Lightwave Technol, 2020, 38, 3044 doi: 10.1109/JLT.2020.2986923
[20]
Zhang J, Kuo B P P, Radic S. 64Gb/s PAM4 and 160Gb/s 16QAM modulation reception using a low-voltage Si-Ge waveguide-integrated APD. Opt Express, 2020, 28, 23266 doi: 10.1364/OE.396979
[21]
Zeng X G, Huang Z H, Wang B H, et al. Silicon–germanium avalanche photodiodes with direct control of electric field in charge multiplication region. Optica, 2019, 6, 772 doi: 10.1364/OPTICA.6.000772
[22]
Huang Z H, Li C, Liang D, et al. 25 Gbps low-voltage waveguide Si–Ge avalanche photodiode. Optica, 2016, 3, 793 doi: 10.1364/OPTICA.3.000793
[23]
Kang Y M, Liu H D, Morse M, et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product. Nat Photonics, 2009, 3, 59 doi: 10.1038/nphoton.2008.247
[24]
Huang M Y, Cai P F, Li S, et al. 56GHz waveguide Ge/Si avalanche photodiode. Optical Fiber Communication Conference (OFC), 2018
[25]
Li X W, Zheng X G, Wang S L, et al. Calculation of gain and noise with dead space for GaAs and Al xGa1– xAs avalanche photodiode. IEEE Trans Electron Devices, 2002, 49, 1112 doi: 10.1109/TED.2002.1013264
[26]
Rees G J, David J R. Nonlocal impact ionization and avalanche multiplication. J Phys D, 2010, 43, 243001 doi: 10.1088/0022-3727/43/24/243001
[27]
Jamil E, Cheong J S, David J P, et al. On the analytical formulation of excess noise in avalanche photodiodes with dead space. Opt Express, 2016, 24, 21597 doi: 10.1364/OE.24.021597
[28]
Yuan Y, Huang Z H, Wang B H, et al. 64 Gbps PAM4 Si-Ge waveguide avalanche photodiodes with excellent temperature stability. J Lightwave Technol, 2020, 38, 4857 doi: 10.1109/JLT.2020.2996561
[29]
Harrison C N, David J P R, Hopkinson M, et al. Temperature dependence of avalanche multiplication in submicron Al0.6Ga0.4As diodes. J Appl Phys, 2002, 92, 7684 doi: 10.1063/1.1524017
[30]
Jones A H, Yuan Y, Ren M, et al. Al xIn1– xAs ySb1– y photodiodes with low avalanche breakdown temperature dependence. Opt Express, 2017, 25, 24340 doi: 10.1364/OE.25.024340
[31]
Yuan Y, Huang Z H, Wang B H, et al. Superior temperature performance of Si-Ge waveguide avalanche photodiodes at 64Gbps PAM4 operation. Optical Fiber Communication Conference (OFC) 2020, 2020
[32]
Wang B H, Huang Z H, Yuan Y, et al. 64 Gb/s low-voltage waveguide SiGe avalanche photodiodes with distributed Bragg reflectors. Photon Res, 2020, 8, 1118 doi: 10.1364/PRJ.390339
[33]
Yuan Y, Huang Z H, Zeng X G, et al. High responsivity Si-Ge waveguide avalanche photodiodes enhanced by loop reflector. IEEE J Sel Top Quantum Electron, 2022, 28, 1 doi: 10.1109/JSTQE.2021.3087416
[34]
Liu A Y, Bowers J. Photonic integration with epitaxial III–V on silicon. IEEE J Sel Top Quantum Electron, 2018, 24, 1 doi: 10.1109/JSTQE.2018.2854542
[35]
Han Y, Xue Y, Yan Z, et al. Selectively grown III-V lasers for integrated Si-photonics. J Lightwave Technol, 2021, 39, 940 doi: 10.1109/JLT.2020.3041348
[36]
Liang D, Bowers J E. Recent progress in heterogeneous III-V-on-silicon photonic integration. Light: Adv Manuf, 2021, 2, 1 doi: 10.37188/lam.2021.005
[37]
Li N, Sidhu R, Li X W, et al. InGaAs/InAlAs avalanche photodiode with undepleted absorber. Appl Phys Lett, 2003, 82, 2175 doi: 10.1063/1.1559437
[38]
Nada M, Yokoyama H, Muramoto Y, et al. A 50-Gbit/s vertical illumination avalanche photodiode for 400-Gbit/s Ethernet systems. Opt Express, 2014, 22, 14681 doi: 10.1364/OE.22.014681
[39]
Nada M, Nakamura M, Matsuzaki H. 25-Gbit/s burst-mode optical receiver using high-speed avalanche photodiode for 100-Gbit/s optical packet switching. Opt Express, 2014, 22, 443 doi: 10.1364/OE.22.000443
[40]
Zhao Y L, Zhang D D, Qin L, et al. InGaAs–InP avalanche photodiodes with dark current limited by generation-recombination. Opt Express, 2011, 19, 8546 doi: 10.1364/OE.19.008546
[41]
Meng X, Tan C H, Dimler S, et al. 1550 nm InGaAs/InAlAs single photon avalanche diode at room temperature. Opt Express, 2014, 22, 22608 doi: 10.1364/OE.22.022608
[42]
Liu M G, Hu C, Bai X G, et al. High-performance InGaAs/InP single-photon avalanche photodiode. IEEE J Sel Top Quantum Electron, 2007, 13, 887 doi: 10.1109/JSTQE.2007.903855
[43]
Ren M, Gu X R, Liang Y, et al. Laser ranging at 1550 nm with 1-GHz sine-wave gated InGaAs/InP APD single-photon detector. Opt Express, 2011, 19, 13497 doi: 10.1364/OE.19.013497
[44]
Liu X B, Li Li. Design of the optical system of flash lidar based on an APD array. Infrared Laser Eng, 2009, 38, 893 doi: 10.1007/978-0-387-74660-9_12
[45]
Schwarz B. Mapping the world in 3D. Nat Photonics, 2010, 4, 429 doi: 10.1038/nphoton.2010.148
[46]
Adamo G, Busacca A. Time of flight measurements via two LiDAR systems with SiPM and APD. 2016 AEIT International Annual Conference (AEIT), 2016 doi: 10.23919/AEIT.2016.7892802
[47]
Elshaari A W, Pernice W, Srinivasan K, et al. Hybrid integrated quantum photonic circuits. Nat Photonics, 2020, 14, 285 doi: 10.1038/s41566-020-0609-x
[48]
Moody G, Sorger V J, Juodawlkis P W, et al. Roadmap on integrated quantum photonics. arXiv preprint arXiv: 2102.03323, 2021
[49]
Keyvaninia S, Muneeb M, Stanković S, et al. Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Opt Mater Express, 2012, 3, 35 doi: 10.1364/OME.3.000035
[50]
Zhang J, Muliuk G, Juvert J, et al. III-V-on-Si photonic integrated circuits realized using micro-transfer-printing. APL Photonics, 2019, 4, 110803 doi: 10.1063/1.5120004
[51]
Lucci I, Charbonnier S, Pedesseau L, et al. Universal description of III-V/Si epitaxial growth processes. Phys Rev Materials, 2018, 2, 060401 doi: 10.1103/PhysRevMaterials.2.060401
[52]
Yuan Y, Jung D, Sun K, et al. III-V on silicon avalanche photodiodes by heteroepitaxy. Opt Lett, 2019, 44, 3538 doi: 10.1364/OL.44.003538
[53]
Nakata T, Ishihara J, Makita K, et al. Multiplication noise characterization of InAlAs-APD with heterojunction. IEEE Photonics Technol Lett, 2009, 21, 1852 doi: 10.1109/LPT.2009.2032783
[54]
Jutzi M, Berroth M, Wöhl G, et al. Zero biased Ge-on-Si photodetector on a thin buffer with a bandwidth of 3.2 GHz at 1300 nm. Mater Sci Semicond Process, 2005, 8, 423 doi: 10.1016/j.mssp.2004.09.079
[55]
Colace L, Ferrara P, Assanto G, et al. Low dark-current germanium-on-silicon near-infrared detectors. IEEE Photonics Technol Lett, 2007, 19, 1813 doi: 10.1109/LPT.2007.907578
[56]
Tossoun B, Kurczvcil G, Zhang C, et al. High-speed 1310 nm hybrid silicon quantum dot photodiodes with ultra-low dark current. 2018 76th Device Research Conference (DRC), 2018, 1 doi: 10.1109/DRC.2018.8442178
[57]
Fang A W, Park H, Jones R, et al. A continuous-wave hybrid AlGaInAs-silicon evanescent laser. IEEE Photon Technol Lett, 2006, 18, 1143 doi: 10.1109/LPT.2006.874690
[58]
Bowers J E. Evolution of photonic integrated circuits. 2017 75th Annual Device Research Conference (DRC), 2017, 1 doi: 10.1109/DRC.2017.7999388
[59]
Tossoun B, Kurczveil G, Zhang C, et al. Indium arsenide quantum dot waveguide photodiodes heterogeneously integrated on silicon. Optica, 2019, 6, 1277 doi: 10.1364/OPTICA.6.001277
[60]
Tossoun B, Srinivasan S, Descos A, et al. High-speed heterogeneous quantum dot avalanche photodiodes with polarization dependent gain. 2020 IEEE Photonics Conference (IPC), 2020, 1 doi: 10.1109/IPC47351.2020.9252355
[61]
Tossoun B, Kurczveil G, Srinivasan S, et al. 32  Gbps heterogeneously integrated quantum dot waveguide avalanche photodiodes on silicon. Opt Lett, 2021, 46, 3821 doi: 10.1364/OL.433654
[62]
Ishikawa H, Shoji H, Nakata Y, et al. Self-organized quantum dots and quantum dot lasers. J Vac Sci Technol A, 1998, 16, 794 doi: 10.1116/1.581060
[63]
Liang D, Bowers J E. Highly efficient vertical outgassing channels for low-temperature InP-to-silicon direct wafer bonding on the silicon-on-insulator substrate. J Vac Sci Technol B, 2008, 26, 1560 doi: 10.1116/1.2943667
[64]
Jin P, Li C M, Zhang Z Y, et al. Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs∕GaAs quantum dots. Appl Phys Lett, 2004, 85, 2791 doi: 10.1063/1.1801678
[65]
Umezawa T, Akahane K, Matsumoto A, et al. Polarization dependence of avalanche multiplication factor in 1.5 μm quantum dot waveguide photodetector. Conference on Lasers and Electro-Optics, 2016 doi: 10.1364/CLEO_SI.2016.SM4E.8
[66]
Wu J, Jiang Q, Chen S M, et al. Monolithically integrated InAs/GaAs quantum dot mid-infrared photodetectors on silicon substrates. ACS Photonics, 2016, 3, 749 doi: 10.1021/acsphotonics.6b00076
[67]
Sandall I, Ng J S, David J P R, et al. 1300 nm wavelength InAs quantum dot photodetector grown on silicon. Opt Express, 2012, 20, 10446 doi: 10.1364/OE.20.010446
[68]
Wan Y T, Zhang Z Y, Chao R L, et al. Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates. Opt Express, 2017, 25, 27715 doi: 10.1364/OE.25.027715
[69]
Chen B L, Wan Y T, Xie Z Y, et al. Low dark current high gain InAs quantum dot avalanche photodiodes monolithically grown on Si. ACS Photonics, 2020, 7, 528 doi: 10.1021/acsphotonics.9b01709
[70]
Pauchard A, Bitter M, Sengupta D, et al. High-performance InGaAs-on-silicon avalanche photodiodes. Optical Fiber Communication Conference and Exhibit, 2002, 345 doi: 10.1109/OFC.2002.1036407
[71]
Umezawa T, Akahane K, Kanno A, et al. Investigation of a 1.5-µm-wavelength InAs-quantum-dot absorption layer for high-speed photodetector. Appl Phys Express, 2014, 7, 032201 doi: 10.7567/APEX.7.032201
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4561 Times PDF downloads: 607 Times Cited by: 0 Times

    History

    Received: 03 July 2021 Revised: 03 September 2021 Online: Accepted Manuscript: 08 November 2021Uncorrected proof: 23 December 2021Published: 01 February 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yuan Yuan, Bassem Tossoun, Zhihong Huang, Xiaoge Zeng, Geza Kurczveil, Marco Fiorentino, Di Liang, Raymond G. Beausoleil. Avalanche photodiodes on silicon photonics[J]. Journal of Semiconductors, 2022, 43(2): 021301. doi: 10.1088/1674-4926/43/2/021301 ****Y Yuan, B Tossoun, Z H Huang, X G Zeng, G Kurczveil, M Fiorentino, D Liang, R G Beausoleil, Avalanche photodiodes on silicon photonics[J]. J. Semicond., 2022, 43(2): 021301. doi: 10.1088/1674-4926/43/2/021301.
      Citation:
      Yuan Yuan, Bassem Tossoun, Zhihong Huang, Xiaoge Zeng, Geza Kurczveil, Marco Fiorentino, Di Liang, Raymond G. Beausoleil. Avalanche photodiodes on silicon photonics[J]. Journal of Semiconductors, 2022, 43(2): 021301. doi: 10.1088/1674-4926/43/2/021301 ****
      Y Yuan, B Tossoun, Z H Huang, X G Zeng, G Kurczveil, M Fiorentino, D Liang, R G Beausoleil, Avalanche photodiodes on silicon photonics[J]. J. Semicond., 2022, 43(2): 021301. doi: 10.1088/1674-4926/43/2/021301.

      Avalanche photodiodes on silicon photonics

      DOI: 10.1088/1674-4926/43/2/021301
      More Information
      • Yuan Yuan:received the BS degree from Nanjing University of Aeronautics and Astronautics, Nanjing, China, in 2016 and a PhD degree from University of Virginia, Charlottesville, VA, USA, in 2019, both in electrical engineering. He is currently a Research Scientist with Hewlett Packard Labs of Hewlett Packard Enterprise (HPE), Milpitas, CA, USA. His research interests include avalanche photodiodes, single photon counting, III–V and silicon photonics. He is a member of IEEE and OSA
      • Bassem Tossoun:received his BS degree in Computer Engineering and MS degree in Electrical Engineering from Cal Poly San Luis Obispo in 2014. He completed his PhD in Electrical Engineering at the University of Virginia in 2019 with his research interests including silicon photonics and the design, fabrication, and characterization of optoelectronic devices. Currently, he is a Research Scientist at Hewlett Packard Labs working on quantum dot photodiodes and memristor photonics for next-generation supercomputers
      • Zhihong Huang:received a BS degree from Peking University, Beijing, China, and the MS and PhD degrees in electrical engineering from The University of Texas at Austin, Austin, TX, USA. She is a Research Scientist with Hewlett Packard Labs, leading the development of low power optical transceivers for optical interconnects.Her research topics include avalanche photodiodes, single photon counting, optical sensors, nano-photonics, silicon photonics, as well as quantum information processing. She has authored or coauthored more than 70 journal and conference papers, and was granted more than 20 US/international patents with another dozen pending
      • Xiaoge Zeng:received a BSc degree in physics from the University of Science and Technology of China, Hefei, China, in 2008 and a PhD degree in physics from the University of Colorado Boulder, Boulder, CA, USA, in 2015. Since 2016, he has been a Research Scientist with the Hewlett Packard Labs, CA, USA. His research interests include silicon photonics, integrated optics, optical communications, nonlinear, and quantum optics
      • Geza Kurczveil:is a research scientist in HPE’s Large-Scale Integrated Photonics Lab in Santa Barbara, California. He received his PhD degree in Electrical and Computer Engineering from the University of California, Santa Barbara in 2012 working on optical buffers. His current research interests include comb lasers, silicon photonic-integrated circuits, and nano-photonics. He has authored and co-authored over 50 journal and conference papers
      • Marco Fiorentino:received a PhD degree in physics from the University of Naples, Naples, Italy, in 2000. His doctoral work focused on quantum optics. He is a Research Scientist at the Large-Scale Integrated Photonics Lab, Hewlett Packard Enterprise Labs, Milpitas, CA, USA. Before working with the HP/HPE Labs, in 2005, he was with Northwestern University, the University of Rome, and MIT. In the past, he has worked on optics, high-precision measurements, and optical communications
      • Di Liang:is currently a Distinguished Technologist and Research Manager at Hewlett Packard Labs of Hewlett Packard Enterprise (HPE). His research interests include III–V and silicon photonics and heterogeneous material integration. He has authored and co-authored over 240 journal and conference papers, 7 book chapters, and was granted by 44 patents with another 55+ pending. He is a Fellow of OSA, a senior member of IEEE, and a member of SPIE
      • Raymond G. Beausoleil:received the B.S. degree from Caltech, Pasadena, CA, USA, in 1980, and a PhD degree from Stanford University, Stanford, CA, in 1986, both in physics. He is currently a Senior Fellow and Senior Vice President at Hewlett Packard Enterprise (HPE), San Jose, CA, where he is the Director of the Large-Scale Integrated Photonics Lab in Hewlett Packard Labs. Prior to HPE, his research was focused on high-power all- solid-state laser and nonlinear optical systems, as well as numerical algorithms for computer firmware (leading to the navigation algorithms for the optical mouse). At Hewlett Packard Labs, he performs basic and applied research in microscale and nanoscale classical and quantum optics for information processing technologies. He is an Adjunct Professor of Applied Physics at Stanford University, a Fellow of the American Physical Society and the Optical Society of America, and the recipient of the 2016 APS Distinguished Lectureship on the Applications of Physics
      • Corresponding author: di.liang@hpe.com
      • Received Date: 2021-07-03
      • Revised Date: 2021-09-03
      • Published Date: 2022-02-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return