Citation: |
Yifan Fu, Liuhong Ma, Zhiyong Duan, Weihua Han. Effect of charge trapping on electrical characteristics of silicon junctionless nanowire transistor[J]. Journal of Semiconductors, 2022, 43(5): 054101. doi: 10.1088/1674-4926/43/5/054101
****
Yifan Fu, Liuhong Ma, Zhiyong Duan, Weihua Han. 2022: Effect of charge trapping on electrical characteristics of silicon junctionless nanowire transistor. Journal of Semiconductors, 43(5): 054101. doi: 10.1088/1674-4926/43/5/054101
|
Effect of charge trapping on electrical characteristics of silicon junctionless nanowire transistor
doi: 10.1088/1674-4926/43/5/054101
More Information-
Abstract
We investigated the effect of charge trapping on electrical characteristics of silicon junctionless nanowire transistors which are fabricated on heavily n-type doped silicon-on-insulator substrate. The obvious random telegraph noise and current hysteresis observed at the temperature of 10 K indicate the existence of acceptor-like traps. The position depth of the traps in the oxide from Si/SiO2 interface is 0.35 nm, calculated by utilizing the dependence of the capture and emission time on the gate voltage. Moreover, by constructing a three-dimensional model of tri-gate device structure in COMSOL Multiphysics simulation software, we achieved the trap density of 1.9 × 1012 cm–2 and the energy level position of traps at 0.18 eV below the intrinsic Fermi level. -
References
[1] Zhou W H, Zhang S L, Guo S Y, et al. Designing sub-10-nm metal-oxide-semiconductor field-effect transistors via ballistic transport and disparate effective mass: The case of two-dimensional BiN. Phys Rev Appl, 2020, 13(4), 044066 doi: 10.1103/PhysRevApplied.13.044066[2] Zhou W H, Zhang S L, Wang Y Y. Anisotropic in-plane ballistic transport in monolayer black arsenic-phosphorus FETs. Adv Electron Mater, 2020, 6(3), 1901281 doi: 10.1002/aelm.201901281[3] Jeon D Y, Mouis M, Barraud S, et al. Channel width dependent subthreshold operation of tri-gate junctionless transistors. Solid-State Electron, 2020, 171, 107860 doi: 10.1016/j.sse.2020.107860[4] Colinge J P, Lee C W, Afzalian A, et al. Nanowire transistors without junctions. Nat Nanotechnol, 2010, 5, 225 doi: 10.1038/nnano.2010.15[5] Mendiratta N, Tripathi S L. A review on performance comparison of advanced MOSFET structures below 45 nm technology node. J Semicond, 2020, 41(6), 061401 doi: 10.1088/1674-4926/41/6/061401[6] Lee J, Kim Y, Cho S. Design of poly-Si junctionless Fin-channel FET with quantum-mechanical drift-diffusion models for sub-10-nm technology nodes. IEEE Trans Electron Dev, 2016, 63, 4610 doi: 10.1109/TED.2016.2614990[7] Yan R, Kranti A, Ferain I, et al. Investigation of high-performance sub-50 nm junctionless nanowire transistors. Microelectron Reliab, 2011, 51(7), 1166 doi: 10.1016/j.microrel.2011.02.016[8] Rudenko T, Nazarov A, Ferain I, et al. Mobility enhancement effect in heavily doped junctionless nanowire silicon-on-insulator metal-oxide-semiconductor field-effect transistors. Appl Phys Lett, 2012, 101, 053511 doi: 10.1063/1.4767353[9] Gupta S, Nigam K, Pandey S, et al. Effect of interface trap charges on performance variation of heterogeneous gate dielectric junctionless-TFET. IEEE Trans Electron Dev, 2017, 64(11), 1 doi: 10.1109/TED.2017.2754297[10] Nazarov A N, Ferain I, Akhavan N D, et al. Random telegraph-signal noise in junctionless transistors. Appl Phys Lett, 2011, 98(9), 092111 doi: 10.1063/1.3557505[11] Berengue O M, Chiquito J. Direct evidence of traps controlling the carriers transport in SnO2 nanobelts. J Semicond, 2017, 38(12), 122001 doi: 10.1088/1674-4926/38/12/122001[12] Ma L H, Han W H, Wang H, et al. Charge trapping in surface accumulation layer of heavily doped junctionless nanowire transistors. Chin Phys B, 2015, 024(012), 589 doi: 10.1088/1674-1056/24/12/128101[13] Hu G X, Hu S Y, Feng J H, et al. Analytical models for channel potential, threshold voltage, and subthreshold swing of junctionless triple-gate FinFETs. Microelectron J, 2016, 50, 60 doi: 10.1016/j.mejo.2016.02.003[14] Liu F Y, Liu H Z, Liu B W, et al. An analytical model for nanowire junctionless SOI FinFETs with considering three-dimensional coupling effect. Chin Phys B, 2016, 25(4), 047305 doi: 10.1088/1674-1056/25/4/047305[15] Ávila-Herreraa F, Pazb B C, Cerdeira A. Charge-based compact analytical model for triple-gate junctionless nanowire transistors. Solid-State Electron, 2016, 122(1), 23 doi: 10.1016/j.sse.2016.04.013[16] Liang Y Y, Jang Kyungsoo, Velumani S, et al. Effects of interface trap density on the electrical performance of amorphous InSnZnO thin-film transistor. J Semicond, 2015, 36(2), 024007 doi: 10.1088/1674-4926/36/2/024007[17] Liu F, Wang K L, Li C, et al. Study of random telegraph signals in single-walled carbon nanotube field effect transistors. IEEE Trans Nanotechnol, 2006, 5(5), 441 doi: 10.1109/TNANO.2006.880906[18] Sun Y, Zhang L N, Ahmed Z, et al. Characterization of interface trap dynamics responsible for hysteresis in organic thin-film transistors. Org Electron, 2015, 27, 192 doi: 10.1016/j.orgel.2015.09.011[19] Amarasinghe N V, Elik-Butler Z, Vasina P, et al. Characterization of oxide traps in 0.15 μm2 MOSFETs using random telegraph signals. Microelectron Reliab, 2000, 40(11), 1875 doi: 10.1016/S0026-2714(00)00089-5[20] Celik-Butler Z, Vasina P. A method for locating the position of oxide traps responsible for random telegraph signals in submicron MOSFETs. IEEE Trans Electron Dev, 2000, 47(3), 646 doi: 10.1109/16.824742[21] Cheng Y C, Chen H B, Han M H, et al. Temperature dependence of electronic behaviors in quantum dimension junctionless thin-film transistor. Nanoscale Res Lett, 2014, 9(1), 1 doi: 10.1186/1556-276X-9-392 -
Proportional views