Citation: |
Huabin Yu, Muhammad Hunain Memon, Hongfeng Jia, Haochen Zhang, Meng Tian, Shi Fang, Danhao Wang, Yang Kang, Shudan Xiao, Shibing Long, Haiding Sun. A 10 × 10 deep ultraviolet light-emitting micro-LED array[J]. Journal of Semiconductors, 2022, 43(6): 062801. doi: 10.1088/1674-4926/43/6/062801
****
Huabin Yu, Muhammad Hunain Memon, Hongfeng Jia, Haochen Zhang, Meng Tian, Shi Fang, Danhao Wang, Yang Kang, Shudan Xiao, Shibing Long, Haiding Sun, A 10 × 10 deep ultraviolet light-emitting micro-LED array[J]. Journal of Semiconductors, 2022, 43(6), 062801 doi: 10.1088/1674-4926/43/6/062801
|
A 10 × 10 deep ultraviolet light-emitting micro-LED array
DOI: 10.1088/1674-4926/43/6/062801
More Information
-
Abstract
In this work, we design and fabricate a deep ultraviolet (DUV) light-emitting array consisting of 10 × 10 micro-LEDs (μ-LEDs) with each device having 20 μm in diameter. Strikingly, the array demonstrates a significant enhancement of total light output power by nearly 52% at the injection current of 100 mA, in comparison to a conventional large LED chip whose emitting area is the same as the array. A much higher (~22%) peak external quantum efficiency, as well as a smaller efficiency droop for μ-LED array, was also achieved. The numerical calculation reveals that the performance boost can be attributed to the higher light extraction efficiency at the edge of each μ-LED. Additionally, the far-field pattern measurement shows that the μ-LED array possesses a better forward directionality of emission. These findings shed light on the enhancement of the DUV LEDs performance and provide new insights in controlling the light behavior of the μ-LEDs.-
Keywords:
- AlGaN,
- deep ultraviolet,
- micro-LED array,
- light extraction efficiency
-
References
[1] Zhang H C, Huang C, Song K, et al. Compositionally graded III-nitride alloys: Building blocks for efficient ultraviolet optoelectronics and power electronics. Rep Prog Phys, 2021, 84, 044401 doi: 10.1088/1361-6633/abde93[2] Kneissl M, Seong T Y, Han J, et al. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat Photonics, 2019, 13, 233 doi: 10.1038/s41566-019-0359-9[3] Inagaki H, Saito A, Sugiyama H, et al. Rapid inactivation of SARS-CoV-2 with deep-UV LED irradiation. Emerg Microbes Infect, 2020, 9, 1744 doi: 10.1080/22221751.2020.1796529[4] Ren Z J, Yu H B, Liu Z L, et al. Band engineering of III-nitride-based deep-ultraviolet light-emitting diodes: A review. J Phys D, 2020, 53, 073002 doi: 10.1088/1361-6463/ab4d7b[5] Guttmann M, Susilo A, Sulmoni L, et al. Light extraction efficiency and internal quantum efficiency of fully UVC-transparent AlGaN based LEDs. J Phys D, 2021, 54, 335101 doi: 10.1088/1361-6463/ac021a[6] Zheng Z H, Chen Q, Dai J N, et al. Enhanced light extraction efficiency via double nano-pattern arrays for high-efficiency deep UV LEDs. Opt Laser Technol, 2021, 143, 107360 doi: 10.1016/j.optlastec.2021.107360[7] Zhang J, Zhao H P, Tansu N. Effect of crystal-field split-off hole and heavy-hole bands crossover on gain characteristics of high Al-content AlGaN quantum well lasers. Appl Phys Lett, 2010, 97, 111105 doi: 10.1063/1.3488825[8] Floyd R, Hussain K, Mamun A, et al. Photonics integrated circuits using Al xGa1– xN based UVC light-emitting diodes, photodetectors and waveguides. Appl Phys Express, 2020, 13, 022003 doi: 10.7567/1882-0786/ab6410[9] Peng X C, Guo W, Xu H Q, et al. Significantly boosted external quantum efficiency of AlGaN-based DUV-LED utilizing thermal annealed Ni/Al reflective electrodes. Appl Phys Express, 2021, 14, 072005 doi: 10.35848/1882-0786/ac0b07[10] Zhou S, Liu X, Gao Y, et al. Numerical and experimental investigation of GaN-based flip-chip light-emitting diodes with highly reflective Ag/TiW and ITO/DBR Ohmic contacts. Opt Express, 2017, 25, 26615 doi: 10.1364/OE.25.026615[11] Zheng Y, Zhang Y, Zhang J, et al. Effects of meshed p-type contact structure on the light extraction effect for deep ultraviolet flip-chip light-emitting diodes. Nanoscale Res Lett, 2019, 14, 149 doi: 10.1186/s11671-019-2984-0[12] Zhang G, Shao H, Zhang M Y, et al. Enhancing the light extraction efficiency for AlGaN-based DUV LEDs with a laterally over-etched p-GaN layer at the top of truncated cones. Opt Express, 2021, 29, 30532 doi: 10.1364/OE.435302[13] Shin W, Pandey A, Liu X, et al. Photonic crystal tunnel junction deep ultraviolet light emitting diodes with enhanced light extraction efficiency. Opt Express, 2019, 27, 38413 doi: 10.1364/OE.380739[14] Liang R L, Dai J N, Xu L L, et al. High light extraction efficiency of deep ultraviolet LEDs enhanced using nanolens arrays. IEEE Trans Electron Devices, 2018, 65, 2498 doi: 10.1109/TED.2018.2823742[15] Inoue S I, Naoki T, Kinoshita T, et al. Light extraction enhancement of 265 nm deep-ultraviolet light-emitting diodes with over 90 mW output power via an AlN hybrid nanostructure. Appl Phys Lett, 2015, 106, 131104 doi: 10.1063/1.4915255[16] Ooi Y K, Zhang J. Light extraction efficiency analysis of flip-chip ultraviolet light-emitting diodes with patterned sapphire substrate. IEEE Photonics J, 2018, 10, 1 doi: 10.1109/JPHOT.2018.2847226[17] Manley P, Walde S, Hagedorn S, et al. Nanopatterned sapphire substrates in deep-UV LEDs: Is there an optical benefit. Opt Express, 2020, 28, 3619 doi: 10.1364/OE.379438[18] Yu H, Jia H, Liu Z, et al. Development of highly efficient ultraviolet LEDs on hybrid patterned sapphire substrates. Opt Lett, 2021, 46, 5356 doi: 10.1364/OL.441300[19] Hu H P, Tang B, Wan H, et al. Boosted ultraviolet electroluminescence of InGaN/AlGaN quantum structures grown on high-index contrast patterned sapphire with silica array. Nano Energy, 2020, 69, 104427 doi: 10.1016/j.nanoen.2019.104427[20] Zhang C, Tang N, Shang L L, et al. Local surface plasmon enhanced polarization and internal quantum efficiency of deep ultraviolet emissions from AlGaN-based quantum wells. Sci Rep, 2017, 7, 2358 doi: 10.1038/s41598-017-02590-7[21] Zhou S J, Xu H H, Tang B, et al. High-power and reliable GaN-based vertical light-emitting diodes on 4-inch silicon substrate. Opt Express, 2019, 27, A1506 doi: 10.1364/OE.27.0A1506[22] Chen Q, Zhang H X, Dai J N, et al. Enhanced the optical power of AlGaN-based deep ultraviolet light-emitting diode by optimizing mesa sidewall angle. IEEE Photonics J, 2018, 10, 1 doi: 10.1109/JPHOT.2018.2850038[23] Lee J W, Park J H, Kim D Y, et al. Arrays of truncated cone AlGaN deep-ultraviolet light-emitting diodes facilitating efficient outcoupling of in-plane emission. ACS Photonics, 2016, 3, 2030 doi: 10.1021/acsphotonics.6b00572[24] Zhang J, Chang L, Zheng Y, et al. Integrating remote reflector and air cavity into inclined sidewalls to enhance the light extraction efficiency for AlGaN-based DUV LEDs. Opt Express, 2020, 28, 17035 doi: 10.1364/OE.393166[25] Tian M, Yu H, Memon M H, et al. Enhanced light extraction of the deep-ultraviolet micro-LED via rational design of chip sidewall. Opt Lett, 2021, 46, 4809 doi: 10.1364/OL.441285[26] Yu H, Memon M H, Wang D, et al. AlGaN-based deep ultraviolet micro-LED emitting at 275 nm. Opt Lett, 2021, 46, 3271 doi: 10.1364/OL.431933[27] Floyd R, Gaevski M, Hussain K, et al. Enhanced light extraction efficiency of micropixel geometry AlGaN DUV light-emitting diodes. Appl Phys Express, 2021, 14, 084002 doi: 10.35848/1882-0786/ac0fb8[28] Floyd R, Gaevski M, Alam M D, et al. An opto-thermal study of high brightness 280 nm emission AlGaN micropixel light-emitting diode arrays. Appl Phys Express, 2021, 14, 014002 doi: 10.35848/1882-0786/abd140[29] Ley R T, Smith J M, Wong M S, et al. Revealing the importance of light extraction efficiency in InGaN/GaN microLEDs via chemical treatment and dielectric passivation. Appl Phys Lett, 2020, 116, 251104 doi: 10.1063/5.0011651[30] Zhang S, Liu Y, Zhang J, et al. Optical polarization characteristics and light extraction behavior of deep-ultraviolet LED flip-chip with full-spatial omnidirectional reflector system. Opt Express, 2019, 27, A1601 doi: 10.1364/OE.27.0A1601[31] Wei T B, Wu K, Lan D, et al. Selectively grown photonic crystal structures for high efficiency InGaN emitting diodes using nanospherical-lens lithography. Appl Phys Lett, 2012, 101, 211111 doi: 10.1063/1.4767334 -
Proportional views