J. Semicond. > 2022, Volume 43 > Issue 7 > 070201

RESEARCH HIGHLIGHTS

Star polymer donors

Jiamin Cao1, , Guangan Nie1, Lixiu Zhang2 and Liming Ding2,

+ Author Affiliations

 Corresponding author: Jiamin Cao, jiamincao@hnust.edu.cn; Liming Ding, ding@nanoctr.cn

DOI: 10.1088/1674-4926/43/7/070201

PDF

Turn off MathJax



[1]
Liu Q, Jiang Y, Jin K, et al. 18% Efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[2]
Chong K, Xu X, Meng H, et al. Realizing 19.05% efficiency polymer solar cells by progressively improving charge extraction and suppressing charge recombination. Adv Mater, 2022, 34, 2109516 doi: 10.1002/adma.202109516
[3]
Zeng Y, Li D, Xiao Z, et al. Exploring the charge dynamics and energy loss in ternary organic solar cells with a fill factor exceeding 80%. Adv Energy Mater, 2021, 11, 2101338 doi: 10.1002/aenm.202101338
[4]
Li D, Zeng Y, Chen Z, et al. Investigating the reason for high FF from ternary organic solar cells. J Semicond, 2021, 42, 090501 doi: 10.1088/1674-4926/42/9/090501
[5]
Luo Y, Chen X, Xiao Z, et al. A large-bandgap copolymer donor for efficient ternary organic solar cells. Mater Chem Front, 2021, 5, 6139 doi: 10.1039/D1QM00835H
[6]
Duan C, Ding L. The new era for organic solar cells: non-fullerene small molecular acceptors. Sci Bull, 2020, 65, 1231 doi: 10.1016/j.scib.2020.04.030
[7]
Cao J, Yi L, Ding L. The origin and evolution of Y6 structure. J Semicond, 2022, 43, 030202 doi: 10.1088/1674-4926/43/3/030202
[8]
Wang J, Gao Y, Xiao Z, et al. A wide-bandgap copolymer donor based on a phenanthridin-6(5H)-one unit. Mater Chem Front, 2019, 3, 2686 doi: 10.1039/C9QM00622B
[9]
Wang T, Qin J, Xiao Z, et al. A 2.16 eV bandgap polymer donor gives 16% power conversion efficiency. Sci Bull, 2020, 65, 179 doi: 10.1016/j.scib.2019.11.030
[10]
Xiong J, Xu J, Jiang Y, et al. Fused-ring bislactone building blocks for polymer donors. Sci Bull, 2020, 65, 1792 doi: 10.1016/j.scib.2020.07.018
[11]
Jiang Y, Jin K, Chen X, et al. Post-sulphuration enhances the performance of a lactone polymer donor. J Semicond, 2021, 42, 070501 doi: 10.1088/1674-4926/42/7/070501
[12]
Ou Z, Qin J, Jin K, et al. Engineering of the alkyl chain branching point on a lactone polymer donor yields 17.81% efficiency. J Mater Chem A, 2022, 10, 3314 doi: 10.1039/D1TA10233H
[13]
Zheng Z, Yao H, Ye L, et al. PBDB-T and its derivatives: A family of polymer donors enables over 17% efficiency in organic photovoltaics. Mater Today, 2020, 35, 115 doi: 10.1016/j.mattod.2019.10.023
[14]
Ma R, Liu T, Luo Z, et al. Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Sci China Chem, 2020, 63, 325 doi: 10.1007/s11426-019-9669-3
[15]
Zhou L, Meng L, Zhang J, et al. Introducing low-cost pyrazine unit into terpolymer enables high-performance polymer solar cells with efficiency of 18.23%. Adv Funct Mater, 2022, 32, 2109271 doi: 10.1002/adfm.202109271
[16]
Wang Z, Peng Z, Xiao Z, et al. Thermodynamic properties and molecular packing explain performance and processing procedures of three D18:NFA organic solar cells. Adv Mater, 2020, 32, 2005386 doi: 10.1002/adma.202005386
[17]
Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501
[18]
Jin K, Xiao Z, Ding L. 18.69% PCE from organic solar cells. J Semicond, 2021, 42, 060502 doi: 10.1088/1674-4926/42/6/060502
[19]
Meng X, Jin K, Xiao Z, et al. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J Semicond, 2021, 42, 100501 doi: 10.1088/1674-4926/42/10/100501
[20]
Li X, Xu J, Xiao Z, et al. Dithieno[3',2':3,4;2'',3'':5, 6]benzo[1,2-c][1,2,5]oxadiazole-based polymer donors with deep HOMO levels. J Semicond, 2021, 42, 060501 doi: 10.1088/1674-4926/42/6/060501
[21]
Sun A, Xu J, Zong G, et al. A wide-bandgap copolymer donor with a 5-methyl-4H-dithieno[3,2-e:2',3'-g]isoindole-4,6(5H)-dione unit. J Semicond, 2021, 42, 100502 doi: 10.1088/1674-4926/42/10/100502
[22]
Cui Y, Xu Y, Yao H, et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv Mater, 2021, 33, 2102420 doi: 10.1002/adma.202102420
[23]
Xu Y, Cui Y, Yao H, et al. A new conjugated polymer that enables the integration of photovoltaic and light-emitting functions in one device. Adv Mater, 2021, 33, 2101090 doi: 10.1002/adma.202101090
[24]
Zhang T, An C, Bi P, et al. A thiadiazole-based conjugated polymer with ultradeep HOMO level and strong electroluminescence enables 18.6% efficiency in organic solar cell. Adv Energy Mater, 2021, 11, 2101705 doi: 10.1002/aenm.202101705
[25]
Duan C, Ding L. The new era for organic solar cells: polymer donors. Sci Bull, 2020, 65, 1422 doi: 10.1016/j.scib.2020.04.044
[26]
Qin J, Zhang L, Xiao Z, et al. Over 16% efficiency from thick-film organic solar cells. Sci Bull, 2020, 65, 1979 doi: 10.1016/j.scib.2020.08.027
[27]
Xu J, Sun A, Xiao Z, et al. Efficient wide-bandgap copolymer donor with reduced synthesis cost. J Mater Chem C, 2021, 9, 16187 doi: 10.1039/D1TC01746B
[28]
Yang X, Ding L. Organic semiconductors: commercialization and market. J Semicond, 2021, 42, 090201 doi: 10.1088/1674-4926/42/9/090201
[29]
Jin K, Ou Z, Zhang L, et al. A chlorinated lactone polymer donor featuring high performance and low cost. J Semicond, 2022, 43, 050501 doi: 10.1088/1674-4926/43/5/050501
[30]
Tong Y, Xiao Z, Du X, et al. Progress of the key materials for organic solar cells. Sci China Chem, 2020, 63, 758 doi: 10.1007/s11426-020-9726-0
Fig. 1.  (Color online) The chemical structures for representative polymer donors and the PCEs.

[1]
Liu Q, Jiang Y, Jin K, et al. 18% Efficiency organic solar cells. Sci Bull, 2020, 65, 272 doi: 10.1016/j.scib.2020.01.001
[2]
Chong K, Xu X, Meng H, et al. Realizing 19.05% efficiency polymer solar cells by progressively improving charge extraction and suppressing charge recombination. Adv Mater, 2022, 34, 2109516 doi: 10.1002/adma.202109516
[3]
Zeng Y, Li D, Xiao Z, et al. Exploring the charge dynamics and energy loss in ternary organic solar cells with a fill factor exceeding 80%. Adv Energy Mater, 2021, 11, 2101338 doi: 10.1002/aenm.202101338
[4]
Li D, Zeng Y, Chen Z, et al. Investigating the reason for high FF from ternary organic solar cells. J Semicond, 2021, 42, 090501 doi: 10.1088/1674-4926/42/9/090501
[5]
Luo Y, Chen X, Xiao Z, et al. A large-bandgap copolymer donor for efficient ternary organic solar cells. Mater Chem Front, 2021, 5, 6139 doi: 10.1039/D1QM00835H
[6]
Duan C, Ding L. The new era for organic solar cells: non-fullerene small molecular acceptors. Sci Bull, 2020, 65, 1231 doi: 10.1016/j.scib.2020.04.030
[7]
Cao J, Yi L, Ding L. The origin and evolution of Y6 structure. J Semicond, 2022, 43, 030202 doi: 10.1088/1674-4926/43/3/030202
[8]
Wang J, Gao Y, Xiao Z, et al. A wide-bandgap copolymer donor based on a phenanthridin-6(5H)-one unit. Mater Chem Front, 2019, 3, 2686 doi: 10.1039/C9QM00622B
[9]
Wang T, Qin J, Xiao Z, et al. A 2.16 eV bandgap polymer donor gives 16% power conversion efficiency. Sci Bull, 2020, 65, 179 doi: 10.1016/j.scib.2019.11.030
[10]
Xiong J, Xu J, Jiang Y, et al. Fused-ring bislactone building blocks for polymer donors. Sci Bull, 2020, 65, 1792 doi: 10.1016/j.scib.2020.07.018
[11]
Jiang Y, Jin K, Chen X, et al. Post-sulphuration enhances the performance of a lactone polymer donor. J Semicond, 2021, 42, 070501 doi: 10.1088/1674-4926/42/7/070501
[12]
Ou Z, Qin J, Jin K, et al. Engineering of the alkyl chain branching point on a lactone polymer donor yields 17.81% efficiency. J Mater Chem A, 2022, 10, 3314 doi: 10.1039/D1TA10233H
[13]
Zheng Z, Yao H, Ye L, et al. PBDB-T and its derivatives: A family of polymer donors enables over 17% efficiency in organic photovoltaics. Mater Today, 2020, 35, 115 doi: 10.1016/j.mattod.2019.10.023
[14]
Ma R, Liu T, Luo Z, et al. Improving open-circuit voltage by a chlorinated polymer donor endows binary organic solar cells efficiencies over 17%. Sci China Chem, 2020, 63, 325 doi: 10.1007/s11426-019-9669-3
[15]
Zhou L, Meng L, Zhang J, et al. Introducing low-cost pyrazine unit into terpolymer enables high-performance polymer solar cells with efficiency of 18.23%. Adv Funct Mater, 2022, 32, 2109271 doi: 10.1002/adfm.202109271
[16]
Wang Z, Peng Z, Xiao Z, et al. Thermodynamic properties and molecular packing explain performance and processing procedures of three D18:NFA organic solar cells. Adv Mater, 2020, 32, 2005386 doi: 10.1002/adma.202005386
[17]
Qin J, Zhang L, Zuo C, et al. A chlorinated copolymer donor demonstrates a 18.13% power conversion efficiency. J Semicond, 2021, 42, 010501 doi: 10.1088/1674-4926/42/1/010501
[18]
Jin K, Xiao Z, Ding L. 18.69% PCE from organic solar cells. J Semicond, 2021, 42, 060502 doi: 10.1088/1674-4926/42/6/060502
[19]
Meng X, Jin K, Xiao Z, et al. Side chain engineering on D18 polymers yields 18.74% power conversion efficiency. J Semicond, 2021, 42, 100501 doi: 10.1088/1674-4926/42/10/100501
[20]
Li X, Xu J, Xiao Z, et al. Dithieno[3',2':3,4;2'',3'':5, 6]benzo[1,2-c][1,2,5]oxadiazole-based polymer donors with deep HOMO levels. J Semicond, 2021, 42, 060501 doi: 10.1088/1674-4926/42/6/060501
[21]
Sun A, Xu J, Zong G, et al. A wide-bandgap copolymer donor with a 5-methyl-4H-dithieno[3,2-e:2',3'-g]isoindole-4,6(5H)-dione unit. J Semicond, 2021, 42, 100502 doi: 10.1088/1674-4926/42/10/100502
[22]
Cui Y, Xu Y, Yao H, et al. Single-junction organic photovoltaic cell with 19% efficiency. Adv Mater, 2021, 33, 2102420 doi: 10.1002/adma.202102420
[23]
Xu Y, Cui Y, Yao H, et al. A new conjugated polymer that enables the integration of photovoltaic and light-emitting functions in one device. Adv Mater, 2021, 33, 2101090 doi: 10.1002/adma.202101090
[24]
Zhang T, An C, Bi P, et al. A thiadiazole-based conjugated polymer with ultradeep HOMO level and strong electroluminescence enables 18.6% efficiency in organic solar cell. Adv Energy Mater, 2021, 11, 2101705 doi: 10.1002/aenm.202101705
[25]
Duan C, Ding L. The new era for organic solar cells: polymer donors. Sci Bull, 2020, 65, 1422 doi: 10.1016/j.scib.2020.04.044
[26]
Qin J, Zhang L, Xiao Z, et al. Over 16% efficiency from thick-film organic solar cells. Sci Bull, 2020, 65, 1979 doi: 10.1016/j.scib.2020.08.027
[27]
Xu J, Sun A, Xiao Z, et al. Efficient wide-bandgap copolymer donor with reduced synthesis cost. J Mater Chem C, 2021, 9, 16187 doi: 10.1039/D1TC01746B
[28]
Yang X, Ding L. Organic semiconductors: commercialization and market. J Semicond, 2021, 42, 090201 doi: 10.1088/1674-4926/42/9/090201
[29]
Jin K, Ou Z, Zhang L, et al. A chlorinated lactone polymer donor featuring high performance and low cost. J Semicond, 2022, 43, 050501 doi: 10.1088/1674-4926/43/5/050501
[30]
Tong Y, Xiao Z, Du X, et al. Progress of the key materials for organic solar cells. Sci China Chem, 2020, 63, 758 doi: 10.1007/s11426-020-9726-0
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 854 Times PDF downloads: 81 Times Cited by: 0 Times

    History

    Received: 13 April 2022 Revised: Online: Accepted Manuscript: 18 April 2022Uncorrected proof: 18 April 2022Published: 01 July 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jiamin Cao, Guangan Nie, Lixiu Zhang, Liming Ding. Star polymer donors[J]. Journal of Semiconductors, 2022, 43(7): 070201. doi: 10.1088/1674-4926/43/7/070201 ****Jiamin Cao, Guangan Nie, Lixiu Zhang, Liming Ding, Star polymer donors[J]. Journal of Semiconductors, 2022, 43(7), 070201 doi: 10.1088/1674-4926/43/7/070201
      Citation:
      Jiamin Cao, Guangan Nie, Lixiu Zhang, Liming Ding. Star polymer donors[J]. Journal of Semiconductors, 2022, 43(7): 070201. doi: 10.1088/1674-4926/43/7/070201 ****
      Jiamin Cao, Guangan Nie, Lixiu Zhang, Liming Ding, Star polymer donors[J]. Journal of Semiconductors, 2022, 43(7), 070201 doi: 10.1088/1674-4926/43/7/070201

      Star polymer donors

      DOI: 10.1088/1674-4926/43/7/070201
      More Information
      • Jiamin Cao:got his PhD from National Center for Nanoscience and Technology in 2015 under the supervision of Professor Liming Ding. He was a visiting scholar in Ergang Wang Group at Chalmers University of Technology in 2018–2019. Now he is an associate professor in Hunan University of Science and Technology. His research focuses on organic optoelectronics
      • Guangan Nie:obtained his BS in 2021. Now he is a master student at Hunan University of Science and Technology. His research focuses on organic solar cells
      • Lixiu Zhang:got her BS degree from Soochow University in 2019. Now she is a PhD student at University of Chinese Academy of Sciences under the supervision of Prof. Liming Ding. Her research focuses on innovative materials and devices
      • Liming Ding:got his PhD from University of Science and Technology of China (was a joint student at Changchun Institute of Applied Chemistry, CAS). He started his research on OSCs and PLEDs in Olle Ingans Lab in 1998. Later on, he worked at National Center for Polymer Research, Wright-Patterson Air Force Base and Argonne National Lab (USA). He joined Konarka as a Senior Scientist in 2008. In 2010, he joined National Center for Nanoscience and Technology as a full professor. His research focuses on innovative materials and devices. He is RSC Fellow, the nominator for Xplorer Prize, and the Associate Editor for Journal of Semiconductors
      • Corresponding author: jiamincao@hnust.edu.cnding@nanoctr.cn
      • Received Date: 2022-04-13
        Available Online: 2022-04-18

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return