J. Semicond. > 2022, Volume 43 > Issue 7 > 072501

ARTICLES

(Ca,K)(Zn,Mn)2As2: Ferromagnetic semiconductor induced by decoupled charge and spin doping in CaZn2As2

Jinou Dong1, Xueqin Zhao1, Licheng Fu1, Yilun Gu1, Rufei Zhang1, Qiaolin Yang1, Lingfeng Xie1 and Fanlong Ning1, 2, 3,

+ Author Affiliations

 Corresponding author: Fanlong Ning, ningfl@zju.edu.cn

DOI: 10.1088/1674-4926/43/7/072501

PDF

Turn off MathJax

Abstract: We have successfully synthesized a novel diluted magnetic semiconductor (Ca1−2xK2x)(Zn1−xMnx)2As2 with decoupled charge and spin doping. The substitutions of (Ca2+, K+) and (Zn2+, Mn2+) in the parent compound CaZn2As2 (space group P${\overline 3}$m1 (No. 164)) introduce carriers and magnetic moments, respectively. Doping only Mn into CaZn2As2 does not induce any type of long range magnetic ordering. The ferromagnetic ordering arise can only when K+ and Mn2+ are simultaneously doped. The resulted maximum Curie temperature reaches ~7 K, and the corresponding coercive field is ~60 Oe. The transport measurements confirm that samples with K and Mn co-doping still behave like a semiconductor.

Key words: CaZn2As2ferromagnetic orderingCurie temperaturediluted magnetic semiconductor



[1]
Hoefflinger B. ITRS: The International Technology Roadmap for Semiconductors. In: Chips 2020, Springer, 2012, 161 doi: 10.1007/978-3-642-23096-7_7
[2]
Chappert C, Fert A, Van Dau F N. The emergence of spin electronics in data storage. In: Nanoscience and Technology: A Collection of Reviews from Nature Journals, 2010, 147
[3]
Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281, 951 doi: 10.1126/science.281.5379.951
[4]
Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater, 2010, 9, 965 doi: 10.1002/chin.201116222
[5]
Zhao J H, Li Y Q, Xiong P. A pioneer in magnetic semiconductors — Professor Stephan von Molnár. J Semicond, 2021, 42, 010302 doi: 10.1088/1674-4926/42/1/010302
[6]
Dietl T, Bonanni A, Ohno H. Families of magnetic semiconductors—an overview. J Semicond, 2019, 40, 080301 doi: 10.1088/1674-4926/40/8/080301
[7]
Hao Y, Wu H Q, Yang Y C, et al. Preface to the special issue on beyond Moore: Resistive switching devices for emerging memory and neuromorphic computing. J Semicond, 2021, 42, 010101 doi: 10.1088/1674-4926/42/1/010101
[8]
Zhao G Q, Deng Z, Jin C Q. Advances in new generation diluted magnetic semiconductors with independent spin and charge doping. J Semicond, 2019, 40, 081505 doi: 10.1088/1674-4926/40/8/081505
[9]
Matsukura F, Ohno H, Dietl T. III-V ferromagnetic semiconductors. In: Handbook of Magnetic Materials. Amsterdam: Elsevier, 2002, 1 doi: 10.1016/s1567-2719(09)60005-6
[10]
Ohno H. Ferromagnetic semiconductor heterostructures. J Magn Magn Mater, 2004, 272, 1 doi: 10.1016/j.jmmm.2003.12.961
[11]
Ohno H, Shen A, Matsukura F, et al. (Ga, Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl Phys Lett, 1996, 69, 363 doi: 10.1063/1.118061
[12]
Jungwirth T, Sinova J, Mašek J, et al. Theory of ferromagnetic (III, Mn)V semiconductors. Rev Mod Phys, 2006, 78, 809 doi: 10.1103/revmodphys.78.809
[13]
Žutić I, Fabian J, Das Sarma S. Spintronics: fundamentals and applications. Rev Mod Phys, 2004, 76, 323 doi: 10.1103/revmodphys.76.323
[14]
Chen L, Yang X, Yang F H, et al. Enhancing the curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11, 2584 doi: 10.1021/nl201187m
[15]
Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287, 1019 doi: 10.1126/science.287.5455.1019
[16]
Guo S L, Ning F L. Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors. Chin Phys B, 2018, 27, 097502 doi: 10.1088/1674-1056/27/9/097502
[17]
Zhao K, Deng Z, Wang X C, et al. New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the ‘122’ iron-based superconductors. Nat Commun, 2013, 4, 1442 doi: 10.1038/ncomms2447
[18]
Chen B J, Zhao K, Deng Z, et al. (Sr, Na)(Zn, Mn)2As2: A diluted ferromagnetic semiconductor with the hexagonal CaAl2Si2 type structure. Phys Rev B, 2014, 90, 155202 doi: 10.1103/physrevb.90.239906
[19]
Deng Z, Zhao K, Gu B, et al. Diluted ferromagnetic semiconductor Li(Zn, Mn)P with decoupled charge and spin doping. Phys Rev B, 2013, 88, 081203 doi: 10.1103/physrevb.88.081203
[20]
Deng Z, Jin C Q, Liu Q Q, et al. Li(Zn, Mn)As as a new generation ferromagnet based on a I–II–V semiconductor. Nat Commun, 2011, 2, 422 doi: 10.1038/ncomms1425
[21]
Ding C, Man H Y, Qin C, et al. (La1– xBa x)(Zn1– xMn x)AsO: A two-dimensional 1111-type diluted magnetic semiconductor in bulk form. Phys Rev B, 2013, 88, 041102 doi: 10.1103/physrevb.88.041102
[22]
Han W, Zhao K, Wang X C, et al. Diluted ferromagnetic semiconductor (LaCa)(ZnMn)SbO isostructural to "1111" type iron pnictide superconductors. Sci China Phys Mech Astron, 2013, 56, 2026 doi: 10.1007/s11433-013-5320-1
[23]
Gu B, Maekawa S. Diluted magnetic semiconductors with narrow band gaps. Phys Rev B, 2016, 94, 155202 doi: 10.1103/physrevb.94.155202
[24]
Zhao K, Chen B J, Zhao G Q, et al. Ferromagnetism at 230 K in (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 diluted magnetic semiconductor. Chin Sci Bull, 2014, 59, 2524 doi: 10.1007/s11434-014-0398-z
[25]
Guo S L, Man H Y, Wang K, et al. Ba(Zn, Co)2As2: A diluted ferromagnetic semiconductor with n-type carriers and isostructural to 122 iron-based superconductors. Phys Rev B, 2019, 99, 155201 doi: 10.1103/physrevb.99.155201
[26]
Gu Y L, Zhang H J, Zhang R F, et al. A novel diluted magnetic semiconductor (Ca, Na)(Zn, Mn)2Sb2 with decoupled charge and spin dopings. Chin Phys B, 2020, 29, 057507 doi: 10.1088/1674-1056/ab892e
[27]
He H, Tyson C, Bobev S. Eight-coordinated arsenic in the zintl phases RbCd4As3 and RbZn4As3: Synthesis and structural characterization. Inorg Chem, 2011, 50, 8375 doi: 10.1021/ic2009418
[28]
Zhao K, Chen B J, Deng Z, et al. (Ca, Na)(Zn, Mn)2As2: A new spin and charge doping decoupled diluted ferromagnetic semiconductor. J Appl Phys, 2014, 116, 163906 doi: 10.1063/1.4899190
[29]
Ding C, Qin C, Man H Y, et al. NMR investigation of the diluted magnetic semiconductor Li(Zn1– xMn x)P (x = 0.1). Phys Rev B, 2013, 88, 041108 doi: 10.1103/physrevb.88.041108
[30]
Sun F, Li N N, Chen B J, et al. Pressure effect on the magnetism of the diluted magnetic semiconductor (Ba1– xK x)(Zn1– yMn y)2As2 with independent spin and charge doping. Phys Rev B, 2016, 93, 224403 doi: 10.1103/physrevb.93.224403
[31]
Nagata S, Keesom P H, Harrison H R. Low-dc-field susceptibility of CuMn spin glass. Phys Rev B, 1979, 19, 1633 doi: 10.1103/physrevb.19.1633
[32]
Monod P, Préjean J J, Tissier B. Magnetic hysteresis of CuMn in the spin glass state. J Appl Phys, 1979, 50, 7324 doi: 10.1063/1.326943
[33]
Prejean J J, Joliclerc M J, Monod P. Hysteresis in CuMn: The effect of spin orbit scattering on the anisotropy in the spin glass state. J Phys France, 1980, 41, 427 doi: 10.1051/jphys:01980004105042700
[34]
Sangeetha N S, Pandey A, Benson Z A, et al. Strong magnetic correlations to 900 K in single crystals of the trigonal antiferromagnetic insulators SrMn2As2 and CaMn2As2. Phys Rev B, 2016, 94, 094417 doi: 10.1103/physrevb.94.094417
[35]
Yu S, Zhao G Q, Peng Y, et al. A substantial increase of Curie temperature in a new type of diluted magnetic semiconductors via effects of chemical pressure. APL Mater, 2019, 7, 101119 doi: 10.1063/1.5120719
Fig. 1.  (Color online) (a) The X-ray diffraction patterns for (Ca1−2xK2x)(Zn1−xMnx)2As2 (x = 0, 0.025, 0.05, 0.1, 0.15, 0.2). Star marks the impurities of KZn4As3. (b) The crystal structure of CaZn2As2. (c) The lattice parameters a and c of (Ca1−2xK2x)(Zn1−xMnx)2As2 (x = 0, 0.025, 0.05, 0.1, 0.15, 0.2). Inset is the volume of (Ca1−2xK2x)(Zn1−xMnx)2As2 (x = 0, 0.025, 0.05, 0.1, 0.15, 0.2). (The standard data are used for x = 0.) (d) The relation of temperature dependent magnetization of Ca(Zn0.9Mn0.1)2As2 measured in the field cooling under 100 Oe. Inset is the plot of 1/(MM0) versus temperature. The data are marked by hollow dots and the fitting result is plotted by a straight line.

Fig. 2.  (Color online) (a) The dependence between temperature and DC magnetization for (Ca1−2xK2x)(Zn1−xMnx)2As2 (x = 0.025, 0.05, 0.1, 0.15, 0.2) measured in zero field cooling (ZFC) and field cooling (FC) condition under 100 Oe external field. (b) The first derivative of magnetization versus temperature for (Ca1−2xK2x)(Zn1−xMnx)2As2 (x = 0.025, 0.05, 0.1, 0.15, 0.2). The arrow marks the Curie temperature (TC) of x = 0.05. (c) The reverse of MM0 versus temperature for (Ca1−2xK2x)(Zn1−xMnx)2As2 (x = 0.025, 0.05, 0.1, 0.15, 0.2). The straight lines are the fitting lines and the hollow symbols are the data dots. The arrow marks the Weiss temperature (θ) of x = 0.05. (d) The iso-thermal magnetic hysteresis measurement for (Ca1−2xK2x)(Zn1−xMnx)2As2 (x = 0.025, 0.05, 0.1, 0.15, 0.2) under 2 K.

Fig. 3.  (Color online) (a) The dependence between temperature and DC magnetization for (Ca1−2yK2y)(Zn0.95Mn0.05)2As2 (y = 0.05, 0.1, 0.15, 0.2) measured in zero field cooling (ZFC) and field cooling (FC) condition under 100 Oe external field. (b) The first derivative of magnetization versus temperature for (Ca1−2yK2y)(Zn0.95Mn0.05)2As2 (y = 0.05, 0.1, 0.15, 0.2). The arrow marks the Curie temperature (TC) of y = 0.15. (c) The reverse of MM0 versus temperature for (Ca1−2yK2y)(Zn0.95Mn0.05)2As2 (y = 0.05, 0.1, 0.15, 0.2). The straight lines are the fitting lines and the hollow symbols are the data dots. The arrow marks the Weiss temperature (θ) of y = 0.15. (d) The iso-thermal magnetic hysteresis measurement for (Ca1−2yK2y)(Zn0.95Mn0.05)2As2 (y = 0.05, 0.1, 0.15, 0.2) under 2 K.

Fig. 4.  (Color online) (a) Resistivity for CaZn2As2, Ca(Zn0.9Mn0.1)2As2 and (Ca0.8K0.2)Zn2As2 in log scale. (b) Resistivity for (Ca1−2xK2x)(Zn1−xMnx)2As2 for x = 0.025, 0.05, 0.1, 0.15, 0.2 in log scale.

Table 1.   The Curie temperature TC, the Weiss temperature θ, the effective moment Meff , the saturation moment Msat and the coercive field Hc for (Ca1−2xK2x)(Zn1−xMnx)2As2.

xTC (K)θ (K)Meff (µB/Mn)Msat (µB/Mn)Hc (Oe)
0.05343.910.479
0.1572.920.2810
0.15692.280.1540
0.2781.890.0660
DownLoad: CSV

Table 2.   The Curie temperature TC, the Weiss temperature θ, the effective moment Meff , the saturation moment Msat and the coercive field Hc for (Ca1−2yK2y)(Zn0.95Mn0.05)2As2.

yTC (K) θ (K)Meff (µB/Mn)Msat (µB/Mn)Hc (Oe)
0.05343.910.4710
0.1453.830.6410
0.15673.810.8210
0.2323.940.4810
DownLoad: CSV
[1]
Hoefflinger B. ITRS: The International Technology Roadmap for Semiconductors. In: Chips 2020, Springer, 2012, 161 doi: 10.1007/978-3-642-23096-7_7
[2]
Chappert C, Fert A, Van Dau F N. The emergence of spin electronics in data storage. In: Nanoscience and Technology: A Collection of Reviews from Nature Journals, 2010, 147
[3]
Ohno H. Making nonmagnetic semiconductors ferromagnetic. Science, 1998, 281, 951 doi: 10.1126/science.281.5379.951
[4]
Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater, 2010, 9, 965 doi: 10.1002/chin.201116222
[5]
Zhao J H, Li Y Q, Xiong P. A pioneer in magnetic semiconductors — Professor Stephan von Molnár. J Semicond, 2021, 42, 010302 doi: 10.1088/1674-4926/42/1/010302
[6]
Dietl T, Bonanni A, Ohno H. Families of magnetic semiconductors—an overview. J Semicond, 2019, 40, 080301 doi: 10.1088/1674-4926/40/8/080301
[7]
Hao Y, Wu H Q, Yang Y C, et al. Preface to the special issue on beyond Moore: Resistive switching devices for emerging memory and neuromorphic computing. J Semicond, 2021, 42, 010101 doi: 10.1088/1674-4926/42/1/010101
[8]
Zhao G Q, Deng Z, Jin C Q. Advances in new generation diluted magnetic semiconductors with independent spin and charge doping. J Semicond, 2019, 40, 081505 doi: 10.1088/1674-4926/40/8/081505
[9]
Matsukura F, Ohno H, Dietl T. III-V ferromagnetic semiconductors. In: Handbook of Magnetic Materials. Amsterdam: Elsevier, 2002, 1 doi: 10.1016/s1567-2719(09)60005-6
[10]
Ohno H. Ferromagnetic semiconductor heterostructures. J Magn Magn Mater, 2004, 272, 1 doi: 10.1016/j.jmmm.2003.12.961
[11]
Ohno H, Shen A, Matsukura F, et al. (Ga, Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl Phys Lett, 1996, 69, 363 doi: 10.1063/1.118061
[12]
Jungwirth T, Sinova J, Mašek J, et al. Theory of ferromagnetic (III, Mn)V semiconductors. Rev Mod Phys, 2006, 78, 809 doi: 10.1103/revmodphys.78.809
[13]
Žutić I, Fabian J, Das Sarma S. Spintronics: fundamentals and applications. Rev Mod Phys, 2004, 76, 323 doi: 10.1103/revmodphys.76.323
[14]
Chen L, Yang X, Yang F H, et al. Enhancing the curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200 K via nanostructure engineering. Nano Lett, 2011, 11, 2584 doi: 10.1021/nl201187m
[15]
Dietl T, Ohno H, Matsukura F, et al. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science, 2000, 287, 1019 doi: 10.1126/science.287.5455.1019
[16]
Guo S L, Ning F L. Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors. Chin Phys B, 2018, 27, 097502 doi: 10.1088/1674-1056/27/9/097502
[17]
Zhao K, Deng Z, Wang X C, et al. New diluted ferromagnetic semiconductor with Curie temperature up to 180 K and isostructural to the ‘122’ iron-based superconductors. Nat Commun, 2013, 4, 1442 doi: 10.1038/ncomms2447
[18]
Chen B J, Zhao K, Deng Z, et al. (Sr, Na)(Zn, Mn)2As2: A diluted ferromagnetic semiconductor with the hexagonal CaAl2Si2 type structure. Phys Rev B, 2014, 90, 155202 doi: 10.1103/physrevb.90.239906
[19]
Deng Z, Zhao K, Gu B, et al. Diluted ferromagnetic semiconductor Li(Zn, Mn)P with decoupled charge and spin doping. Phys Rev B, 2013, 88, 081203 doi: 10.1103/physrevb.88.081203
[20]
Deng Z, Jin C Q, Liu Q Q, et al. Li(Zn, Mn)As as a new generation ferromagnet based on a I–II–V semiconductor. Nat Commun, 2011, 2, 422 doi: 10.1038/ncomms1425
[21]
Ding C, Man H Y, Qin C, et al. (La1– xBa x)(Zn1– xMn x)AsO: A two-dimensional 1111-type diluted magnetic semiconductor in bulk form. Phys Rev B, 2013, 88, 041102 doi: 10.1103/physrevb.88.041102
[22]
Han W, Zhao K, Wang X C, et al. Diluted ferromagnetic semiconductor (LaCa)(ZnMn)SbO isostructural to "1111" type iron pnictide superconductors. Sci China Phys Mech Astron, 2013, 56, 2026 doi: 10.1007/s11433-013-5320-1
[23]
Gu B, Maekawa S. Diluted magnetic semiconductors with narrow band gaps. Phys Rev B, 2016, 94, 155202 doi: 10.1103/physrevb.94.155202
[24]
Zhao K, Chen B J, Zhao G Q, et al. Ferromagnetism at 230 K in (Ba0.7K0.3)(Zn0.85Mn0.15)2As2 diluted magnetic semiconductor. Chin Sci Bull, 2014, 59, 2524 doi: 10.1007/s11434-014-0398-z
[25]
Guo S L, Man H Y, Wang K, et al. Ba(Zn, Co)2As2: A diluted ferromagnetic semiconductor with n-type carriers and isostructural to 122 iron-based superconductors. Phys Rev B, 2019, 99, 155201 doi: 10.1103/physrevb.99.155201
[26]
Gu Y L, Zhang H J, Zhang R F, et al. A novel diluted magnetic semiconductor (Ca, Na)(Zn, Mn)2Sb2 with decoupled charge and spin dopings. Chin Phys B, 2020, 29, 057507 doi: 10.1088/1674-1056/ab892e
[27]
He H, Tyson C, Bobev S. Eight-coordinated arsenic in the zintl phases RbCd4As3 and RbZn4As3: Synthesis and structural characterization. Inorg Chem, 2011, 50, 8375 doi: 10.1021/ic2009418
[28]
Zhao K, Chen B J, Deng Z, et al. (Ca, Na)(Zn, Mn)2As2: A new spin and charge doping decoupled diluted ferromagnetic semiconductor. J Appl Phys, 2014, 116, 163906 doi: 10.1063/1.4899190
[29]
Ding C, Qin C, Man H Y, et al. NMR investigation of the diluted magnetic semiconductor Li(Zn1– xMn x)P (x = 0.1). Phys Rev B, 2013, 88, 041108 doi: 10.1103/physrevb.88.041108
[30]
Sun F, Li N N, Chen B J, et al. Pressure effect on the magnetism of the diluted magnetic semiconductor (Ba1– xK x)(Zn1– yMn y)2As2 with independent spin and charge doping. Phys Rev B, 2016, 93, 224403 doi: 10.1103/physrevb.93.224403
[31]
Nagata S, Keesom P H, Harrison H R. Low-dc-field susceptibility of CuMn spin glass. Phys Rev B, 1979, 19, 1633 doi: 10.1103/physrevb.19.1633
[32]
Monod P, Préjean J J, Tissier B. Magnetic hysteresis of CuMn in the spin glass state. J Appl Phys, 1979, 50, 7324 doi: 10.1063/1.326943
[33]
Prejean J J, Joliclerc M J, Monod P. Hysteresis in CuMn: The effect of spin orbit scattering on the anisotropy in the spin glass state. J Phys France, 1980, 41, 427 doi: 10.1051/jphys:01980004105042700
[34]
Sangeetha N S, Pandey A, Benson Z A, et al. Strong magnetic correlations to 900 K in single crystals of the trigonal antiferromagnetic insulators SrMn2As2 and CaMn2As2. Phys Rev B, 2016, 94, 094417 doi: 10.1103/physrevb.94.094417
[35]
Yu S, Zhao G Q, Peng Y, et al. A substantial increase of Curie temperature in a new type of diluted magnetic semiconductors via effects of chemical pressure. APL Mater, 2019, 7, 101119 doi: 10.1063/1.5120719
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1193 Times PDF downloads: 44 Times Cited by: 0 Times

    History

    Received: 14 January 2022 Revised: 26 February 2022 Online: Uncorrected proof: 21 April 2022Accepted Manuscript: 21 April 2022Published: 01 July 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jinou Dong, Xueqin Zhao, Licheng Fu, Yilun Gu, Rufei Zhang, Qiaolin Yang, Lingfeng Xie, Fanlong Ning. (Ca,K)(Zn,Mn)2As2: Ferromagnetic semiconductor induced by decoupled charge and spin doping in CaZn2As2[J]. Journal of Semiconductors, 2022, 43(7): 072501. doi: 10.1088/1674-4926/43/7/072501 ****Jinou Dong, Xueqin Zhao, Licheng Fu, Yilun Gu, Rufei Zhang, Qiaolin Yang, Lingfeng Xie, Fanlong Ning. 2022: (Ca,K)(Zn,Mn)2As2: Ferromagnetic semiconductor induced by decoupled charge and spin doping in CaZn2As2. Journal of Semiconductors, 43(7): 072501. doi: 10.1088/1674-4926/43/7/072501
      Citation:
      Jinou Dong, Xueqin Zhao, Licheng Fu, Yilun Gu, Rufei Zhang, Qiaolin Yang, Lingfeng Xie, Fanlong Ning. (Ca,K)(Zn,Mn)2As2: Ferromagnetic semiconductor induced by decoupled charge and spin doping in CaZn2As2[J]. Journal of Semiconductors, 2022, 43(7): 072501. doi: 10.1088/1674-4926/43/7/072501 ****
      Jinou Dong, Xueqin Zhao, Licheng Fu, Yilun Gu, Rufei Zhang, Qiaolin Yang, Lingfeng Xie, Fanlong Ning. 2022: (Ca,K)(Zn,Mn)2As2: Ferromagnetic semiconductor induced by decoupled charge and spin doping in CaZn2As2. Journal of Semiconductors, 43(7): 072501. doi: 10.1088/1674-4926/43/7/072501

      (Ca,K)(Zn,Mn)2As2: Ferromagnetic semiconductor induced by decoupled charge and spin doping in CaZn2As2

      DOI: 10.1088/1674-4926/43/7/072501
      More Information
      • Jinou Dong:is a PhD candidate in the Department of Physics, Zhejiang University. Her supervisor is Professor Fanlong Ning, and her main research interests are the preparation and characterization of novel diluted magnetic semiconductors
      • Fanlong Ning:works on the synthesis and microscopic characterization of unconventional superconductors and novel magnetic semiconductors. He has published more than 60 papers, which have been cited more than 2300 times. He has given more than 50 invited talks at conferences and workshops
      • Corresponding author: ningfl@zju.edu.cn
      • Received Date: 2022-01-14
      • Revised Date: 2022-02-26
      • Available Online: 2022-04-21

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return