Citation: |
Qian Jiang, Junhua Meng, Yiming Shi, Zhigang Yin, Jingren Chen, Jing Zhang, Jinliang Wu, Xingwang Zhang. Electrical and optical properties of hydrogen plasma treated β-Ga2O3 thin films[J]. Journal of Semiconductors, 2022, 43(9): 092802. doi: 10.1088/1674-4926/43/9/092802
****
Qian Jiang, Junhua Meng, Yiming Shi, Zhigang Yin, Jingren Chen, Jing Zhang, Jinliang Wu, Xingwang Zhang. 2022: Electrical and optical properties of hydrogen plasma treated β-Ga2O3 thin films. Journal of Semiconductors, 43(9): 092802. doi: 10.1088/1674-4926/43/9/092802
|
Electrical and optical properties of hydrogen plasma treated β-Ga2O3 thin films
doi: 10.1088/1674-4926/43/9/092802
More Information-
Abstract
The behavior of H in β-Ga2O3 is of substantial interest because it is a common residual impurity that is present in β-Ga2O3, regardless of the synthesis methods. Herein, we report the influences of H-plasma exposure on the electric and optical properties of the heteroepitaxial β-Ga2O3 thin films grown on sapphire substrates by chemical vapor deposition. The results indicate that the H incorporation leads to a significantly increased electrical conductivity, a greatly reduced defect-related photoluminescence emission, and a slightly enhanced transmittance, while it has little effect on the crystalline quality of the β-Ga2O3 films. The significant changes in the electrical and optical properties of β-Ga2O3 may originate from the formation of shallow donor states and the passivation of the defects by the incorporated H. Temperature dependent electrical properties of the H-incorporated β-Ga2O3 films are also investigated, and the dominant scattering mechanisms at various temperatures are discussed. -
References
[1] Higashiwaki M, Sasaki K, Murakami H, et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol, 2016, 31, 034001 doi: 10.1088/0268-1242/31/3/034001[2] Pearton S J, Yang J, Cary IV P H, et al. A review of Ga2O3 materials, processing, and devices. Appl Phys Rev, 2018, 5, 011301 doi: 10.1063/1.5006941[3] Xue H W, He Q M, Jian G Z, et al. An overview of the ultrawide bandgap Ga2O3 semiconductor-based Schottky barrier diode for power electronics, application. Nanoscale Res Lett, 2018, 13, 290 doi: 10.1186/s11671-018-2712-1[4] Chen X H, Ren F F, Gu S L, et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors. Photo Res, 2019, 7, 381 doi: 10.1364/PRJ.7.000381[5] Guo D, Guo Q, Chen Z, et al. Review of Ga2O3 based optoelectronic devices. Mater Today Phys, 2019, 11, 100157 doi: 10.1016/j.mtphys.2019.100157[6] Sharma R, Law M E, Ren F, et al. Diffusion of dopants and impurities in β-Ga2O3. J Vac Sci Technol A, 2021, 39, 060801 doi: 10.1116/6.0001307[7] Varley J B, Weber J R, Janotti A, et al. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett, 2010, 97, 142106 doi: 10.1063/1.3499306[8] Varley J B, Peelaers H, Janotti A, et al. Hydrogenated cation vacancies in semiconducting oxides. J Phys Condens Matter, 2011, 23, 334212 doi: 10.1088/0953-8984/23/33/334212[9] Huynh T T, Chikoidze E, Irvine C P, et al. Red luminescence in H-doped β-Ga2O3. Phy Rev Mater, 2020, 4, 085201 doi: 10.1103/PhysRevMaterials.4.085201[10] King P D C, McKenzie I, Veal T D. Observation of shallow-donor muonium in Ga2O3: Evidence for hydrogen-induced conductivity. Appl Phys Lett, 2010, 96, 062110 doi: 10.1063/1.3309694[11] Fowler W B, Stavola M, Qin Y, et al. Trapping of multiple H atoms at the Ga(1) vacancy in β-Ga2O3. Appl Phys Lett, 2020, 117, 142101 doi: 10.1063/5.0024269[12] Qin Y, Stavola M, Fowler W B, et al. Hydrogen centers in β-Ga2O3: Infrared spectroscopy and density functional theory. ECS J Solid State Sci Technol, 2019, 8, Q3103 doi: 10.1149/2.0221907jss[13] Weiser P, Stavola M, Fowler W B, et al. Structure and vibrational properties of the dominant O-H center in β-Ga2O3. Appl Phys Lett, 2018, 112, 232104 doi: 10.1063/1.5029921[14] Ritter J R, Huso J, Dickens P T, et al. Compensation and hydrogen passivation of magnesium acceptors in β-Ga2O3. Appl Phys Lett, 2018, 113, 052101 doi: 10.1063/1.5044627[15] Ingebrigtsen M E, Kuznetsov A Y, Svensson B G, et al. Impact of proton irradiation on conductivity and deep level defects in β-Ga2O3. APL Mater, 2019, 7, 022510 doi: 10.1063/1.5054826[16] Polyakov A Y, Lee I H, Smirnov N B, et al. Hydrogen plasma treatment of β-Ga2O3: Changes in electrical properties and deep trap spectra. Appl Phys Lett, 2019, 115, 032101 doi: 10.1063/1.5108790[17] Swallow J E N, Varley J B, Jones L A H, et al. Transition from electron accumulation to depletion at β-Ga2O3 surfaces: The role of hydrogen and the charge neutrality level. APL Mater, 2019, 7, 022528 doi: 10.1063/1.5054091[18] Polyakov A Y, Lee I H, Miakonkikh A, et al. Anisotropy of hydrogen plasma effects in bulk n-type β-Ga2O3. J Appl Phys, 2020, 127, 175702 doi: 10.1063/1.5145277[19] Venzie A, Portoff A, Fares C, et al. OH-Si complex in hydrogenated n-type β-Ga2O3:Si. Appl Phys Lett, 2021, 119, 062109 doi: 10.1063/5.0059769[20] Islam M M, Liedke M O, Winarski D, et al. Chemical manipulation of hydrogen induced high p-type and n-type conductivity in Ga2O3. Sci Rep, 2020, 10, 6134 doi: 10.1038/s41598-020-62948-2[21] Ahn S, Ren F, Patrick E, et al. Deuterium incorporation and diffusivity in plasma-exposed bulk Ga2O3. Appl Phys Lett, 2016, 109, 242108 doi: 10.1063/1.4972265[22] Nickel N H, Gellert K. Monatomic hydrogen diffusion in β-Ga2O3. Appl Phys Lett, 2020, 116, 242102 doi: 10.1063/5.0007134[23] Reinertsen V M, Weiser P M, Frodason Y K, et al. Anisotropic and trap-limited diffusion of hydrogen/deuterium in monoclinic gallium oxide single crystals. Appl Phys Lett, 2020, 117, 232106 doi: 10.1063/5.0027333[24] Jiao Y J, Jiang Q, Meng J H, et al. Growth and characteristics of β-Ga2O3 thin films on sapphire (0001) by low pressure chemical vapour deposition. Vacuum, 2021, 189, 110253 doi: 10.1016/j.vacuum.2021.110253[25] Rafique S, Han L, Neal A T, et al. Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition. Appl Phys Lett, 2016, 109, 132103 doi: 10.1063/1.4963820[26] Wu C, Guo D Y, Zhang L Y, et al. Systematic investigation of the growth kinetics of β-Ga2O3 epilayer by plasma enhanced chemical vapor deposition. Appl Phys Lett, 2020, 116, 072102 doi: 10.1063/1.5142196[27] Tao J, Lu H L, Gu Y, et al. Investigation of growth characteristics, compositions, and properties of atomic layer deposited amorphous Zn-doped Ga2O3 films. Appl Surf Sci, 2019, 476, 733 doi: 10.1016/j.apsusc.2019.01.177[28] Borg R J, Dienes G J. An introduction to solid state diffusion. Boston: Elsevier, 2012[29] Ahn S, Ren F, Patrick E, et al. Thermal stability of implanted or plasma exposed deuterium in single crystal Ga2O3. ECS J Solid State Sci, 2017, 6, Q3026 doi: 10.1149/2.0051702jss[30] You J B, Zhang X W, Cai P F, et al. Enhancement of field emission of the ZnO film by the reduced work function and the increased conductivity via hydrogen plasma treatment. Appl Phys Lett, 2009, 94, 262105 doi: 10.1063/1.3167301[31] Rafique S, Han L, Tadjer M J, et al. Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition. Appl Phys Lett, 2016, 108, 182105 doi: 10.1063/1.4948944[32] Lee N Y, Lee K J, Lee C, et al. Determination of conduction band tail and Fermi energy of heavily Si-doped GaAs by room-temperature photoluminescence. J Appl Phys, 1995, 78, 3367 doi: 10.1063/1.359963[33] Cai P F, You J B, Zhang X W, et al. Enhancement of conductivity and transmittance of ZnO films by post hydrogen plasma treatment. J Appl Phys, 2009, 105, 083713 doi: 10.1063/1.3108543[34] Shimamura K, Víllora E G, Ujiie T, et al. Excitation and photoluminescence of pure and Si-doped β-Ga2O3 single crystals. Appl Phys Lett, 2008, 92, 201914 doi: 10.1063/1.2910768[35] Varley J B, Janotti A, Franchini C, et al. Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides. Phys Rev B, 2012, 85, 081109 doi: 10.1103/PhysRevB.85.081109[36] Frodason Y K, Johansen K M, Vines L, et al. Self-trapped hole and impurity-related broad luminescence in β-Ga2O3. J Appl Phys, 2020, 127, 075701 doi: 10.1063/1.5140742[37] Wei Y, Li X, Yang J, et al. Interaction between hydrogen and gallium vacancies in β-Ga2O3. Sci Rep, 2018, 8, 10142 doi: 10.1038/s41598-018-28461-3 -
Proportional views