ARTICLES

Electrical and optical properties of hydrogen plasma treated β-Ga2O3 thin films

Qian Jiang1, 2, Junhua Meng3, Yiming Shi1, 3, Zhigang Yin1, 4, Jingren Chen1, 4, Jing Zhang2, , Jinliang Wu1 and Xingwang Zhang1, 4,

+ Author Affiliations

 Corresponding author: Jing Zhang, zhangj@ncut.edu.cn; Xingwang Zhang, xwzhang@semi.ac.cn

PDF

Turn off MathJax

Abstract: The behavior of H in β-Ga2O3 is of substantial interest because it is a common residual impurity that is present in β-Ga2O3, regardless of the synthesis methods. Herein, we report the influences of H-plasma exposure on the electric and optical properties of the heteroepitaxial β-Ga2O3 thin films grown on sapphire substrates by chemical vapor deposition. The results indicate that the H incorporation leads to a significantly increased electrical conductivity, a greatly reduced defect-related photoluminescence emission, and a slightly enhanced transmittance, while it has little effect on the crystalline quality of the β-Ga2O3 films. The significant changes in the electrical and optical properties of β-Ga2O3 may originate from the formation of shallow donor states and the passivation of the defects by the incorporated H. Temperature dependent electrical properties of the H-incorporated β-Ga2O3 films are also investigated, and the dominant scattering mechanisms at various temperatures are discussed.

Key words: β-Ga2O3 filmhydrogen plasma treatmentelectrical propertiesscattering mechanismsdefect



[1]
Higashiwaki M, Sasaki K, Murakami H, et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol, 2016, 31, 034001 doi: 10.1088/0268-1242/31/3/034001
[2]
Pearton S J, Yang J, Cary IV P H, et al. A review of Ga2O3 materials, processing, and devices. Appl Phys Rev, 2018, 5, 011301 doi: 10.1063/1.5006941
[3]
Xue H W, He Q M, Jian G Z, et al. An overview of the ultrawide bandgap Ga2O3 semiconductor-based Schottky barrier diode for power electronics, application. Nanoscale Res Lett, 2018, 13, 290 doi: 10.1186/s11671-018-2712-1
[4]
Chen X H, Ren F F, Gu S L, et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors. Photo Res, 2019, 7, 381 doi: 10.1364/PRJ.7.000381
[5]
Guo D, Guo Q, Chen Z, et al. Review of Ga2O3 based optoelectronic devices. Mater Today Phys, 2019, 11, 100157 doi: 10.1016/j.mtphys.2019.100157
[6]
Sharma R, Law M E, Ren F, et al. Diffusion of dopants and impurities in β-Ga2O3. J Vac Sci Technol A, 2021, 39, 060801 doi: 10.1116/6.0001307
[7]
Varley J B, Weber J R, Janotti A, et al. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett, 2010, 97, 142106 doi: 10.1063/1.3499306
[8]
Varley J B, Peelaers H, Janotti A, et al. Hydrogenated cation vacancies in semiconducting oxides. J Phys Condens Matter, 2011, 23, 334212 doi: 10.1088/0953-8984/23/33/334212
[9]
Huynh T T, Chikoidze E, Irvine C P, et al. Red luminescence in H-doped β-Ga2O3. Phy Rev Mater, 2020, 4, 085201 doi: 10.1103/PhysRevMaterials.4.085201
[10]
King P D C, McKenzie I, Veal T D. Observation of shallow-donor muonium in Ga2O3: Evidence for hydrogen-induced conductivity. Appl Phys Lett, 2010, 96, 062110 doi: 10.1063/1.3309694
[11]
Fowler W B, Stavola M, Qin Y, et al. Trapping of multiple H atoms at the Ga(1) vacancy in β-Ga2O3. Appl Phys Lett, 2020, 117, 142101 doi: 10.1063/5.0024269
[12]
Qin Y, Stavola M, Fowler W B, et al. Hydrogen centers in β-Ga2O3: Infrared spectroscopy and density functional theory. ECS J Solid State Sci Technol, 2019, 8, Q3103 doi: 10.1149/2.0221907jss
[13]
Weiser P, Stavola M, Fowler W B, et al. Structure and vibrational properties of the dominant O-H center in β-Ga2O3. Appl Phys Lett, 2018, 112, 232104 doi: 10.1063/1.5029921
[14]
Ritter J R, Huso J, Dickens P T, et al. Compensation and hydrogen passivation of magnesium acceptors in β-Ga2O3. Appl Phys Lett, 2018, 113, 052101 doi: 10.1063/1.5044627
[15]
Ingebrigtsen M E, Kuznetsov A Y, Svensson B G, et al. Impact of proton irradiation on conductivity and deep level defects in β-Ga2O3. APL Mater, 2019, 7, 022510 doi: 10.1063/1.5054826
[16]
Polyakov A Y, Lee I H, Smirnov N B, et al. Hydrogen plasma treatment of β-Ga2O3: Changes in electrical properties and deep trap spectra. Appl Phys Lett, 2019, 115, 032101 doi: 10.1063/1.5108790
[17]
Swallow J E N, Varley J B, Jones L A H, et al. Transition from electron accumulation to depletion at β-Ga2O3 surfaces: The role of hydrogen and the charge neutrality level. APL Mater, 2019, 7, 022528 doi: 10.1063/1.5054091
[18]
Polyakov A Y, Lee I H, Miakonkikh A, et al. Anisotropy of hydrogen plasma effects in bulk n-type β-Ga2O3. J Appl Phys, 2020, 127, 175702 doi: 10.1063/1.5145277
[19]
Venzie A, Portoff A, Fares C, et al. OH-Si complex in hydrogenated n-type β-Ga2O3:Si. Appl Phys Lett, 2021, 119, 062109 doi: 10.1063/5.0059769
[20]
Islam M M, Liedke M O, Winarski D, et al. Chemical manipulation of hydrogen induced high p-type and n-type conductivity in Ga2O3. Sci Rep, 2020, 10, 6134 doi: 10.1038/s41598-020-62948-2
[21]
Ahn S, Ren F, Patrick E, et al. Deuterium incorporation and diffusivity in plasma-exposed bulk Ga2O3. Appl Phys Lett, 2016, 109, 242108 doi: 10.1063/1.4972265
[22]
Nickel N H, Gellert K. Monatomic hydrogen diffusion in β-Ga2O3. Appl Phys Lett, 2020, 116, 242102 doi: 10.1063/5.0007134
[23]
Reinertsen V M, Weiser P M, Frodason Y K, et al. Anisotropic and trap-limited diffusion of hydrogen/deuterium in monoclinic gallium oxide single crystals. Appl Phys Lett, 2020, 117, 232106 doi: 10.1063/5.0027333
[24]
Jiao Y J, Jiang Q, Meng J H, et al. Growth and characteristics of β-Ga2O3 thin films on sapphire (0001) by low pressure chemical vapour deposition. Vacuum, 2021, 189, 110253 doi: 10.1016/j.vacuum.2021.110253
[25]
Rafique S, Han L, Neal A T, et al. Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition. Appl Phys Lett, 2016, 109, 132103 doi: 10.1063/1.4963820
[26]
Wu C, Guo D Y, Zhang L Y, et al. Systematic investigation of the growth kinetics of β-Ga2O3 epilayer by plasma enhanced chemical vapor deposition. Appl Phys Lett, 2020, 116, 072102 doi: 10.1063/1.5142196
[27]
Tao J, Lu H L, Gu Y, et al. Investigation of growth characteristics, compositions, and properties of atomic layer deposited amorphous Zn-doped Ga2O3 films. Appl Surf Sci, 2019, 476, 733 doi: 10.1016/j.apsusc.2019.01.177
[28]
Borg R J, Dienes G J. An introduction to solid state diffusion. Boston: Elsevier, 2012
[29]
Ahn S, Ren F, Patrick E, et al. Thermal stability of implanted or plasma exposed deuterium in single crystal Ga2O3. ECS J Solid State Sci, 2017, 6, Q3026 doi: 10.1149/2.0051702jss
[30]
You J B, Zhang X W, Cai P F, et al. Enhancement of field emission of the ZnO film by the reduced work function and the increased conductivity via hydrogen plasma treatment. Appl Phys Lett, 2009, 94, 262105 doi: 10.1063/1.3167301
[31]
Rafique S, Han L, Tadjer M J, et al. Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition. Appl Phys Lett, 2016, 108, 182105 doi: 10.1063/1.4948944
[32]
Lee N Y, Lee K J, Lee C, et al. Determination of conduction band tail and Fermi energy of heavily Si-doped GaAs by room-temperature photoluminescence. J Appl Phys, 1995, 78, 3367 doi: 10.1063/1.359963
[33]
Cai P F, You J B, Zhang X W, et al. Enhancement of conductivity and transmittance of ZnO films by post hydrogen plasma treatment. J Appl Phys, 2009, 105, 083713 doi: 10.1063/1.3108543
[34]
Shimamura K, Víllora E G, Ujiie T, et al. Excitation and photoluminescence of pure and Si-doped β-Ga2O3 single crystals. Appl Phys Lett, 2008, 92, 201914 doi: 10.1063/1.2910768
[35]
Varley J B, Janotti A, Franchini C, et al. Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides. Phys Rev B, 2012, 85, 081109 doi: 10.1103/PhysRevB.85.081109
[36]
Frodason Y K, Johansen K M, Vines L, et al. Self-trapped hole and impurity-related broad luminescence in β-Ga2O3. J Appl Phys, 2020, 127, 075701 doi: 10.1063/1.5140742
[37]
Wei Y, Li X, Yang J, et al. Interaction between hydrogen and gallium vacancies in β-Ga2O3. Sci Rep, 2018, 8, 10142 doi: 10.1038/s41598-018-28461-3
Fig. 1.  (Color online) (a) XRD θ–2θ pattern of the β-Ga2O3 thin films grown on c-plane sapphire substrates. The inset shows the XRD rocking curve of the β-Ga2O3 ($\bar{2}01$) reflection. (b) In-plane XRD Phi scans of for the β-Ga2O3 film and sapphire substrate. (c) Cross-sectional HRTEM image of the β-Ga2O3 film on sapphire. (d) XPS core-level spectra of O 1s and Ga 2p.

Fig. 2.  (Color online) (a) SIMS depth profiles of the H-plasma treated β-Ga2O3 film on sapphire substrate. (b) Raman spectra of the β-Ga2O3 film with and without H-plasma treatment. (c) XRD θ–2θ pattern of the β-Ga2O3 thin films with and without the H-plasma treatment. (d) XRD rocking curve of the β-Ga2O3 ($\bar{2}01$) reflection for the β-Ga2O3 film with and without the H-plasma treatment. (e) UV–vis absorption spectra of the β-Ga2O3 film with and without H-plasma treatment. The Tauc plots of (αhν)2 versus is shown in the inset. (f) PL spectra of the β-Ga2O3 film with and without H-plasma treatment. The H-plasma treatment was carried out with an RF power of 40 W and a H2 flow rate of 50 sccm for 120 min.

Fig. 3.  (Color online) Dependence of (a) the resistivity and (b) the Hall data of the β-Ga2O3 films on the H-plasma exposure time. Dependence of (c) the resistivity and (d) the Hall data of the β-Ga2O3 films on the RF power. Dependence of (e) the resistivity and (f) the Hall data of the β-Ga2O3 films on the H2 flow rate.

Fig. 4.  (Color online) Temperature dependent (a) carrier concentration, (b) electron mobility, and (c) electrical resistivity for two typical β-Ga2O3 thin films after the H-plasma treatment. Dashed lines show the contributions to mobility from different scattering mechanisms, and the solid line shows the fitting total mobility.

[1]
Higashiwaki M, Sasaki K, Murakami H, et al. Recent progress in Ga2O3 power devices. Semicond Sci Technol, 2016, 31, 034001 doi: 10.1088/0268-1242/31/3/034001
[2]
Pearton S J, Yang J, Cary IV P H, et al. A review of Ga2O3 materials, processing, and devices. Appl Phys Rev, 2018, 5, 011301 doi: 10.1063/1.5006941
[3]
Xue H W, He Q M, Jian G Z, et al. An overview of the ultrawide bandgap Ga2O3 semiconductor-based Schottky barrier diode for power electronics, application. Nanoscale Res Lett, 2018, 13, 290 doi: 10.1186/s11671-018-2712-1
[4]
Chen X H, Ren F F, Gu S L, et al. Review of gallium-oxide-based solar-blind ultraviolet photodetectors. Photo Res, 2019, 7, 381 doi: 10.1364/PRJ.7.000381
[5]
Guo D, Guo Q, Chen Z, et al. Review of Ga2O3 based optoelectronic devices. Mater Today Phys, 2019, 11, 100157 doi: 10.1016/j.mtphys.2019.100157
[6]
Sharma R, Law M E, Ren F, et al. Diffusion of dopants and impurities in β-Ga2O3. J Vac Sci Technol A, 2021, 39, 060801 doi: 10.1116/6.0001307
[7]
Varley J B, Weber J R, Janotti A, et al. Oxygen vacancies and donor impurities in β-Ga2O3. Appl Phys Lett, 2010, 97, 142106 doi: 10.1063/1.3499306
[8]
Varley J B, Peelaers H, Janotti A, et al. Hydrogenated cation vacancies in semiconducting oxides. J Phys Condens Matter, 2011, 23, 334212 doi: 10.1088/0953-8984/23/33/334212
[9]
Huynh T T, Chikoidze E, Irvine C P, et al. Red luminescence in H-doped β-Ga2O3. Phy Rev Mater, 2020, 4, 085201 doi: 10.1103/PhysRevMaterials.4.085201
[10]
King P D C, McKenzie I, Veal T D. Observation of shallow-donor muonium in Ga2O3: Evidence for hydrogen-induced conductivity. Appl Phys Lett, 2010, 96, 062110 doi: 10.1063/1.3309694
[11]
Fowler W B, Stavola M, Qin Y, et al. Trapping of multiple H atoms at the Ga(1) vacancy in β-Ga2O3. Appl Phys Lett, 2020, 117, 142101 doi: 10.1063/5.0024269
[12]
Qin Y, Stavola M, Fowler W B, et al. Hydrogen centers in β-Ga2O3: Infrared spectroscopy and density functional theory. ECS J Solid State Sci Technol, 2019, 8, Q3103 doi: 10.1149/2.0221907jss
[13]
Weiser P, Stavola M, Fowler W B, et al. Structure and vibrational properties of the dominant O-H center in β-Ga2O3. Appl Phys Lett, 2018, 112, 232104 doi: 10.1063/1.5029921
[14]
Ritter J R, Huso J, Dickens P T, et al. Compensation and hydrogen passivation of magnesium acceptors in β-Ga2O3. Appl Phys Lett, 2018, 113, 052101 doi: 10.1063/1.5044627
[15]
Ingebrigtsen M E, Kuznetsov A Y, Svensson B G, et al. Impact of proton irradiation on conductivity and deep level defects in β-Ga2O3. APL Mater, 2019, 7, 022510 doi: 10.1063/1.5054826
[16]
Polyakov A Y, Lee I H, Smirnov N B, et al. Hydrogen plasma treatment of β-Ga2O3: Changes in electrical properties and deep trap spectra. Appl Phys Lett, 2019, 115, 032101 doi: 10.1063/1.5108790
[17]
Swallow J E N, Varley J B, Jones L A H, et al. Transition from electron accumulation to depletion at β-Ga2O3 surfaces: The role of hydrogen and the charge neutrality level. APL Mater, 2019, 7, 022528 doi: 10.1063/1.5054091
[18]
Polyakov A Y, Lee I H, Miakonkikh A, et al. Anisotropy of hydrogen plasma effects in bulk n-type β-Ga2O3. J Appl Phys, 2020, 127, 175702 doi: 10.1063/1.5145277
[19]
Venzie A, Portoff A, Fares C, et al. OH-Si complex in hydrogenated n-type β-Ga2O3:Si. Appl Phys Lett, 2021, 119, 062109 doi: 10.1063/5.0059769
[20]
Islam M M, Liedke M O, Winarski D, et al. Chemical manipulation of hydrogen induced high p-type and n-type conductivity in Ga2O3. Sci Rep, 2020, 10, 6134 doi: 10.1038/s41598-020-62948-2
[21]
Ahn S, Ren F, Patrick E, et al. Deuterium incorporation and diffusivity in plasma-exposed bulk Ga2O3. Appl Phys Lett, 2016, 109, 242108 doi: 10.1063/1.4972265
[22]
Nickel N H, Gellert K. Monatomic hydrogen diffusion in β-Ga2O3. Appl Phys Lett, 2020, 116, 242102 doi: 10.1063/5.0007134
[23]
Reinertsen V M, Weiser P M, Frodason Y K, et al. Anisotropic and trap-limited diffusion of hydrogen/deuterium in monoclinic gallium oxide single crystals. Appl Phys Lett, 2020, 117, 232106 doi: 10.1063/5.0027333
[24]
Jiao Y J, Jiang Q, Meng J H, et al. Growth and characteristics of β-Ga2O3 thin films on sapphire (0001) by low pressure chemical vapour deposition. Vacuum, 2021, 189, 110253 doi: 10.1016/j.vacuum.2021.110253
[25]
Rafique S, Han L, Neal A T, et al. Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition. Appl Phys Lett, 2016, 109, 132103 doi: 10.1063/1.4963820
[26]
Wu C, Guo D Y, Zhang L Y, et al. Systematic investigation of the growth kinetics of β-Ga2O3 epilayer by plasma enhanced chemical vapor deposition. Appl Phys Lett, 2020, 116, 072102 doi: 10.1063/1.5142196
[27]
Tao J, Lu H L, Gu Y, et al. Investigation of growth characteristics, compositions, and properties of atomic layer deposited amorphous Zn-doped Ga2O3 films. Appl Surf Sci, 2019, 476, 733 doi: 10.1016/j.apsusc.2019.01.177
[28]
Borg R J, Dienes G J. An introduction to solid state diffusion. Boston: Elsevier, 2012
[29]
Ahn S, Ren F, Patrick E, et al. Thermal stability of implanted or plasma exposed deuterium in single crystal Ga2O3. ECS J Solid State Sci, 2017, 6, Q3026 doi: 10.1149/2.0051702jss
[30]
You J B, Zhang X W, Cai P F, et al. Enhancement of field emission of the ZnO film by the reduced work function and the increased conductivity via hydrogen plasma treatment. Appl Phys Lett, 2009, 94, 262105 doi: 10.1063/1.3167301
[31]
Rafique S, Han L, Tadjer M J, et al. Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition. Appl Phys Lett, 2016, 108, 182105 doi: 10.1063/1.4948944
[32]
Lee N Y, Lee K J, Lee C, et al. Determination of conduction band tail and Fermi energy of heavily Si-doped GaAs by room-temperature photoluminescence. J Appl Phys, 1995, 78, 3367 doi: 10.1063/1.359963
[33]
Cai P F, You J B, Zhang X W, et al. Enhancement of conductivity and transmittance of ZnO films by post hydrogen plasma treatment. J Appl Phys, 2009, 105, 083713 doi: 10.1063/1.3108543
[34]
Shimamura K, Víllora E G, Ujiie T, et al. Excitation and photoluminescence of pure and Si-doped β-Ga2O3 single crystals. Appl Phys Lett, 2008, 92, 201914 doi: 10.1063/1.2910768
[35]
Varley J B, Janotti A, Franchini C, et al. Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides. Phys Rev B, 2012, 85, 081109 doi: 10.1103/PhysRevB.85.081109
[36]
Frodason Y K, Johansen K M, Vines L, et al. Self-trapped hole and impurity-related broad luminescence in β-Ga2O3. J Appl Phys, 2020, 127, 075701 doi: 10.1063/1.5140742
[37]
Wei Y, Li X, Yang J, et al. Interaction between hydrogen and gallium vacancies in β-Ga2O3. Sci Rep, 2018, 8, 10142 doi: 10.1038/s41598-018-28461-3
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 1398 Times PDF downloads: 161 Times Cited by: 0 Times

    History

    Received: 09 March 2022 Revised: 01 April 2022 Online: Uncorrected proof: 25 May 2022Published: 02 September 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Qian Jiang, Junhua Meng, Yiming Shi, Zhigang Yin, Jingren Chen, Jing Zhang, Jinliang Wu, Xingwang Zhang. Electrical and optical properties of hydrogen plasma treated β-Ga2O3 thin films[J]. Journal of Semiconductors, 2022, 43(9): 092802. doi: 10.1088/1674-4926/43/9/092802 ****Qian Jiang, Junhua Meng, Yiming Shi, Zhigang Yin, Jingren Chen, Jing Zhang, Jinliang Wu, Xingwang Zhang. 2022: Electrical and optical properties of hydrogen plasma treated β-Ga2O3 thin films. Journal of Semiconductors, 43(9): 092802. doi: 10.1088/1674-4926/43/9/092802
      Citation:
      Qian Jiang, Junhua Meng, Yiming Shi, Zhigang Yin, Jingren Chen, Jing Zhang, Jinliang Wu, Xingwang Zhang. Electrical and optical properties of hydrogen plasma treated β-Ga2O3 thin films[J]. Journal of Semiconductors, 2022, 43(9): 092802. doi: 10.1088/1674-4926/43/9/092802 ****
      Qian Jiang, Junhua Meng, Yiming Shi, Zhigang Yin, Jingren Chen, Jing Zhang, Jinliang Wu, Xingwang Zhang. 2022: Electrical and optical properties of hydrogen plasma treated β-Ga2O3 thin films. Journal of Semiconductors, 43(9): 092802. doi: 10.1088/1674-4926/43/9/092802

      Electrical and optical properties of hydrogen plasma treated β-Ga2O3 thin films

      doi: 10.1088/1674-4926/43/9/092802
      More Information
      • Qian Jiang:received his BSc Degree from Shaoxing University in 2016. He is currently a joint ME student of North China University of Technology and the Institute of Semiconductors, Chinese Academy of Sciences under the supervision of Prof. Jing Zhang and Prof. Xingwang Zhang. He is mainly engaged in the research of ultrawide bandgap semiconductor material
      • Jing Zhang:received her BSc degree in physics and MSc degree in electronic devices and materials engineering from Lanzhou University, in 1996 and 2003, respectively. She is currently a professor at the School of Information Science and Technology, North China University of Technology. Her current research interests include silicon-based SiC power devices and the related testing of ICs
      • Xingwang Zhang:is a full professor at the Institute of Semiconductors, Chinese Academy of Sciences (ISCAS). He received his BSc and PhD from Lanzhou University in 1994 and 1999, respectively. He then worked as a postdoctoral at the Chinese University of Hong Kong (CUHK) from 1999 to 2001, and as a visiting scientist and a Humboldt Research Fellow at the University of Ulm, Germany from 2001 to 2004. His current research interests include ultra-wide bandgap semiconductors, 2D materials, and photovoltaic materials and devices
      • Corresponding author: zhangj@ncut.edu.cnxwzhang@semi.ac.cn
      • Received Date: 2022-03-09
      • Revised Date: 2022-04-01
      • Available Online: 2022-05-25

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return