Citation: |
Yunshan Zhang, Yifan Xu, Shijian Guan, Jilin Zheng, Hongming Gu, Lianyan Li, Rulei Xiao, Tao Fang, Hui Zou, Xiangfei Chen. Modulation bandwidth enhancement in monolithic integrated two-section DFB lasers based on the detuned loading effect[J]. Journal of Semiconductors, 2023, 44(11): 112301. doi: 10.1088/1674-4926/44/11/112301
****
Yunshan Zhang, Yifan Xu, Shijian Guan, Jilin Zheng, Hongming Gu, Lianyan Li, Rulei Xiao, Tao Fang, Hui Zou, Xiangfei Chen. 2023: Modulation bandwidth enhancement in monolithic integrated two-section DFB lasers based on the detuned loading effect. Journal of Semiconductors, 44(11): 112301. doi: 10.1088/1674-4926/44/11/112301
|
Modulation bandwidth enhancement in monolithic integrated two-section DFB lasers based on the detuned loading effect
DOI: 10.1088/1674-4926/44/11/112301
More Information
-
Abstract
Modulation bandwidth enhancement in a directly modulated two-section distributed feedback (TS-DFB) laser based on a detuned loading effect is investigated and experimentally demonstrated. The results show that the 3-dB bandwidth of the TS-DFB laser is increased to 17.6 GHz and that chirp parameter can be reduced to 2.24. Compared to the absence of a detuned loading effect, there is a 4.6 GHz increase and a 2.45 reduction, respectively. After transmitting a 10 Gb/s non-return-to-zero (NRZ) signal through a 5-km fiber, the modulation eye diagram still achieves a large opening. Eight-channel laser arrays with precise wavelength spacing are fabricated. Each TS-DFB laser in the array has side mode suppression ratios (SMSR) > 49.093 dB and the maximum wavelength residual < 0.316 nm. -
References
[1] Ishikawa T, Higashi T, Uchida T, et al. Evaluation of differential gain of 1.3/spl mu/m AlGaInAs/InP strained MQW lasers. Conference Proceedings. 1998 International Conference on Indium Phosphide and Related Materials (Cat. No. 98CH36129), 2002, 729 doi: 10.1109/ICIPRM.1998.712746[2] Morthier G. Design and optimization of strained-layer-multiquantum-well lasers for high-speed analog communications. IEEE J Quantum Electron, 1994, 30, 1520 doi: 10.1109/3.299483[3] Otsubo K, Matsuda M, Takada K, et al. 1.3-μm AlGaInAs multiple-quantum-well semi-insulating buried-heterostructure distributed-feedback lasers for high-speed direct modulation. IEEE J Sel Top Quantum Electron, 2009, 15, 687 doi: 10.1109/JSTQE.2009.2015194[4] Nakahara K, Wakayama Y, Kitatani T, et al. Direct modulation at 56 and 50 Gb/s of 1.3-μm InGaAlAs ridge-shaped-BH DFB lasers. IEEE Photonics Technol Lett, 2015, 27, 534 doi: 10.1109/LPT.2014.2384520[5] Kobayashi W, Tadokoro T, Ito T, et al. High-speed operation at 50 Gb/s and 60-km SMF transmission with 1.3-μm InGaAlAs-based DML. ISLC 2012 International Semiconductor Laser Conference, 2012, 50 doi: 10.1109/ISLC.2012.6348329[6] Sakaino G, Takiguchi T, Sakuma H, et al. 25.8Gbps direct modulation of BH AlGaInAs DFB lasers with p-InP substrate for low driving current. 22nd IEEE International Semiconductor Laser Conference, 2010, 197 doi: 10.1109/ISLC.2010.5642644[7] Tadokoro T, Kobayashi W, Fujisawa T, et al. 43 Gb/s 1.3 μm DFB laser for 40 km transmission. J Light Technol, 2012, 30, 2520 doi: 10.1109/JLT.2012.2203095[8] Uetake A, Otsubo K, Matsuda M, et al. 40-Gbps direct modulation of 1.55-µm AlGaInAs semi-insulating buried-heterostructure distributed reflector lasers up to 85°C. 2009 IEEE LEOS Annual Meeting Conference Proceedings, 2009, 839 doi: 10.1109/LEOS.2009.5343421[9] Henry C. Performance of distributed feedback lasers designed to favor the energy gap mode. IEEE J Quantum Electron, 1985, 21, 1913 doi: 10.1109/JQE.1985.1072611[10] Matsui Y, Schatz R, Che D. Isolator-free > 67-GHz bandwidth DFB+R laser with suppressed chirp. 2020 Optical Fiber Communications Conference and Exhibition, 2020, 1 doi: 10.1364/OFC.2020.Th4A.1[11] Che D, Matsui Y, Schatz R, et al. Direct modulation of a 54-GHz distributed Bragg reflector laser with 100-GBaud PAM-4 and 80-GBaud PAM-8. 2020 Optical Fiber Communications Conference and Exhibition (OFC), 2020, 1 doi: 10.1364/OFC.2020.Th3C.1[12] Guan S J, Zhang Y S, Zheng J L, et al. Modulation bandwidth enhancement and frequency chirp suppression in two-section DFB laser. J Light Technol, 2022, 40, 7383 doi: 10.1109/JLT.2022.3203723[13] Zhao W, Mao Y F, Lu D, et al. Modulation bandwidth enhancement of monolithically integrated mutually coupled distributed feedback laser. Appl Sci, 2020, 10, 4375 doi: 10.3390/app10124375[14] Yamaoka S, Diamantopoulos N P, Nishi H, et al. Directly modulated membrane lasers with 108 GHz bandwidth on a high-thermal-conductivity silicon carbide substrate. Nat Photonics, 2021, 15, 28 doi: 10.1038/s41566-020-00700-y[15] Matsui Y, Schatz R, Che D, et al. Low-chirp isolator-free 65-GHz-bandwidth directly modulated lasers. Nat Photonics, 2021, 15, 59 doi: 10.1038/s41566-020-00742-2[16] Yuan B C, Shi J Q, Qi W X, et al. A monolithic integrated dual-wavelength DFB laser with equivalent inverse-Gaussian apodized grating. IEEE Photonics J, 2020, 12, 1 doi: 10.1109/JPHOT.2020.3030669[17] Guan S J, Zhang Y S, Yuan B C, et al. Research on the asymmetric corrugation-pitch-modulated HR-AR DFB lasers with sampled gratings. J Light Technol, 2021, 39, 4725 doi: 10.1109/JLT.2021.3075484[18] Zhang Y S, Yuan B C, Shi J Q, et al. A stable dual-wavelength DFB semiconductor laser with equivalent chirped sampled grating. IEEE J Quantum Electron, 2022, 58, 1 doi: 10.1109/JQE.2022.3223172[19] Vieu C, Carcenac F, Pépin A, et al. Electron beam lithography: Resolution limits and applications. Appl Surf Sci, 2000, 164, 111 doi: 10.1016/S0169-4332(00)00352-4[20] Dai Y T, Chen X F, Xia L, et al. Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp. Opt Lett, 2004, 29, 1333 doi: 10.1364/OL.29.001333[21] Sun Z X, Xiao R L, Zhao Y, et al. Design of four-channel wavelength-selectable In-series DFB laser array with 100-GHz spacing. J Light Technol, 2020, 38, 2299 doi: 10.1109/JLT.2020.2970788[22] Bandelow U, Schatz R, Wunsche H J. A correct single-mode photon rate equation for multisection lasers. IEEE Photonics Technol Lett, 1996, 8, 614 doi: 10.1109/68.491556[23] Chaciński M, Schatz R. Impact of losses in the Bragg section on the dynamics of detuned loaded DBR lasers. IEEE J Quantum Electron, 2010, 46, 1360 doi: 10.1109/JQE.2010.2048013[24] Devaux F, Sorel Y, Kerdiles J F. Simple measurement of fiber dispersion and of chirp parameter of intensity modulated light emitter. J Light Technol, 1993, 11, 1937 doi: 10.1109/50.257953 -
Proportional views