Citation: |
Dongmei He, Shirong Lu, Juan Hou, Cong Chen, Jiangzhao Chen, Liming Ding. Doping organic hole-transport materials for high-performance perovskite solar cells[J]. Journal of Semiconductors, 2023, 44(2): 020202. doi: 10.1088/1674-4926/44/2/020202
****
Dongmei He, Shirong Lu, Juan Hou, Cong Chen, Jiangzhao Chen, Liming Ding. 2023: Doping organic hole-transport materials for high-performance perovskite solar cells. Journal of Semiconductors, 44(2): 020202. doi: 10.1088/1674-4926/44/2/020202
|
Doping organic hole-transport materials for high-performance perovskite solar cells
DOI: 10.1088/1674-4926/44/2/020202
More Information
-
References
[1] National Renewable Energy Laboratory. Best Research Cell Efficiencies. 2022[2] Zhang T, Wang F, Kim H B, et al. Ion-modulated radical doping of spiro-OMeTAD for more efficient and stable perovskite solar cells. Science, 2022, 377, 495 doi: 10.1126/science.abo2757[3] Li Z, Li B, Wu X, et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science, 2022, 376, 416 doi: 10.1126/science.abm8566[4] Kim M, Jeong J, Lu H, et al. Conformal quantum dot-SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 2022, 375, 302 doi: 10.1126/science.abh1885[5] Jiang Q, Tong J, Xian Y, et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature, 2022, 611, 278 doi: 10.1038/s41586-022-05268-x[6] Zhao Y, Ma F, Qu Z, et al. Inactive (PbI2)2RbCl stabilizes perovskite films for efficient solar cells. Science, 2022, 377, 531 doi: 10.1126/science.abp8873[7] Jeong J, Kim M, Seo J, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592, 381 doi: 10.1038/s41586-021-03406-5[8] Al-Ashouri A, Köhnen E, Li B, et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science, 2020, 370, 1300 doi: 10.1126/science.abd4016[9] Zhang L, Pan X, Liu L, et al. Star perovskite materials. J Semicond, 2022, 43, 030203 doi: 10.1088/1674-4926/43/3/030203[10] Fang Z, Meng X, Zuo C, et al. Interface engineering gifts CsPbI2.25Br0.75 solar cells high performance. Sci Bull, 2019, 64, 1743 doi: 10.1016/j.scib.2019.09.023[11] Zhang Z, Li J, Fang Z, et al. Adjusting energy level alignment between HTL and CsPbI2Br to improve solar cell efficiency. J Semicond, 2021, 42, 030501 doi: 10.1088/1674-4926/42/3/030501[12] Cheng M, Zuo C, Wu Y, et al. Charge-transport layer engineering in perovskite solar cells. Sci Bull, 2020, 65, 1237 doi: 10.1016/j.scib.2020.04.021[13] Kim G, Min H, Lee K S, et al. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science, 2020, 370, 108 doi: 10.1126/science.abc4417[14] Zhu L, Zhang X, Li M, et al. Trap state passivation by rational ligand molecule engineering toward efficient and stable perovskite solar cells exceeding 23% efficiency. Adv Energy Mater, 2021, 11, 2100529 doi: 10.1002/aenm.202100529[15] Li M, Li H, Zhuang Q, et al. Stabilizing perovskite precursor by synergy of functional groups for niox-based inverted solar cells with 23.5 % efficiency. Angew Chem Int Ed, 2022, 61, e202206914 doi: 10.1002/anie.202206914[16] Wang T, Zhang Y, Kong W, et al. Transporting holes stably under iodide invasion in efficient perovskite solar cells. Science, 2022, 377, 1227 doi: 10.1126/science.abq6235[17] Li Z, Xiao C, Yang Y, et al. Extrinsic ion migration in perovskite solar cells. Energ Environ Sci, 2017, 10, 1234 doi: 10.1039/C7EE00358G[18] Wang Y, Wu T, Barbaud J, et al. Stabilizing heterostructures of soft perovskite semiconductors. Science, 2019, 365, 687 doi: 10.1126/science.aax8018[19] Bi E, Chen H, Xie F, et al. Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nat Commun, 2017, 8, 15330 doi: 10.1038/ncomms15330[20] Badia L, Mas-Marzá E, Sánchez R S, et al. New iridium complex as additive to the spiro-OMeTAD in perovskite solar cells with enhanced stability. APL Mater, 2014, 2, 081507 doi: 10.1063/1.4890545[21] Koh T M, Dharani S, Li H, et al. Cobalt dopant with deep redox potential for organometal halide hybrid solar cells. ChemSusChem, 2014, 7, 1909 doi: 10.1002/cssc.201400081[22] Zhang J, Daniel Q, Zhang T, et al. Chemical dopant engineering in hole transport layers for efficient perovskite solar cells: insight into the interfacial recombination. ACS Nano, 2018, 12, 10452 doi: 10.1021/acsnano.8b06062[23] Wu T, Zhuang R, Zhao R, et al. Understanding the effects of fluorine substitution in lithium salt on photovoltaic properties and stability of perovskite solar cells. ACS Energy Lett, 2021, 6, 2218 doi: 10.1021/acsenergylett.1c00685[24] Zhang J, Zhang T, Jiang L, et al. 4-tert-butylpyridine free hole transport materials for efficient perovskite solar cells: A new strategy to enhance the environmental and thermal stability. ACS Energy Lett, 2018, 3, 1677 doi: 10.1021/acsenergylett.8b00786[25] Calio L, Salado M, Kazim S, et al. A generic route of hydrophobic doping in hole transporting material to increase longevity of perovskite solar cells. Joule, 2018, 2, 1800 doi: 10.1016/j.joule.2018.06.012[26] Xu B, Huang J, Ågren H, et al. AgTFSI as p-type dopant for efficient and stable solid-state dye-sensitized and perovskite solar cells. ChemSusChem, 2014, 7, 3252 doi: 10.1002/cssc.201402678[27] Seo J Y, Kim H S, Akin S, et al. Novel p-dopant toward highly efficient and stable perovskite solar cells. Energ Environ Sci, 2018, 11, 2985 doi: 10.1039/C8EE01500G[28] Saygili Y, Kim H-S, Yang B, et al. Revealing the mechanism of doping of spiro-MeOTAD via Zn complexation in the absence of oxygen and light. ACS Energy Lett, 2020, 5, 1271 doi: 10.1021/acsenergylett.0c00319[29] Nguyen W H, Bailie C D, Unger E L, et al. Enhancing the hole-conductivity of spiro-ometad without oxygen or lithium salts by using spiro(TFSI)2 in perovskite and dye-sensitized solar Cells. J Am Chem Soc, 2014, 136, 10996 doi: 10.1021/ja504539w[30] Tan B, Raga S R, Chesman A S R, et al. LiTFSI-free spiro-OMeTAD-based perovskite solar cells with power conversion efficiencies exceeding 19%. Adv Energy Mater, 2019, 9, 1901519 doi: 10.1002/aenm.201901519[31] Wang S, Huang Z, Wang X, et al. Unveiling the role of tBP–LiTFSI complexes in perovskite solar cells. J Am Chem Soc, 2018, 140, 16720 doi: 10.1021/jacs.8b09809[32] Lamberti F, Gatti T, Cescon E, et al. Evidence of spiro-ometad de-doping by tert-butylpyridine additive in hole-transporting layers for perovskite solar cells. Chem, 2019, 5, 1806 doi: 10.1016/j.chempr.2019.04.003[33] Luo J, Xia J, Yang H, et al. Toward high-efficiency, hysteresis-less, stable perovskite solar cells: unusual doping of a hole-transporting material using a fluorine-containing hydrophobic lewis acid. Energ Environ Sci, 2018, 11, 2035 doi: 10.1039/C8EE00036K[34] Xia J, Zhang Y, Xiao C, et al. Tailoring electric dipole of hole-transporting material p-dopants for perovskite solar cells. Joule, 2022, 6, 1689 doi: 10.1016/j.joule.2022.05.012 -
Proportional views