Citation: |
Jingjing Wang, Baozheng Xu, Yinfang Zhu, Junyuan Zhao. Microcantilever sensors for biochemical detection[J]. Journal of Semiconductors, 2023, 44(2): 023105. doi: 10.1088/1674-4926/44/2/023105
****
Jingjing Wang, Baozheng Xu, Yinfang Zhu, Junyuan Zhao. 2023: Microcantilever sensors for biochemical detection. Journal of Semiconductors, 44(2): 023105. doi: 10.1088/1674-4926/44/2/023105
|
Microcantilever sensors for biochemical detection
doi: 10.1088/1674-4926/44/2/023105
More Information-
Abstract
Microcantilever is one of the most popular miniaturized structures in micro-electromechanical systems (MEMS). Sensors based on microcantilever are ideal for biochemical detection, since they have high sensitivity, high throughput, good specification, fast response, thus have attracted extensive attentions. A number of devices that are based on static deflections or shifts of resonant frequency of the cantilevers responding to analyte attachment have been demonstrated. This review comprehensively presents state of art of microcantilever sensors working in gaseous and aqueous environments and highlights the challenges and opportunities of microcantilever biochemical sensors.-
Keywords:
- microcantilever,
- sensor,
- biochemical detection,
- MEMS
-
References
[1] Mouro J, Pinto R, Paoletti P, et al. Microcantilever: Dynamical response for mass sensing and fluid characterization. Sensors, 2020, 21, 115 doi: 10.3390/s21010115[2] Peng R P, Chen B, Ji H F, et al. Highly sensitive and selective detection of beryllium ions using a microcantilever modified with benzo-9-crown-3 doped hydrogel. Analyst, 2012, 137, 1220 doi: 10.1039/c2an15950c[3] Ricciardi C, Ferrante I, Castagna R, et al. Immunodetection of 17β-estradiol in serum at ppt level by microcantilever resonators. Biosens Bioelectron, 2013, 40, 407 doi: 10.1016/j.bios.2012.08.043[4] Xue C G, Zhao H W, Liu H, et al. Development of sulfhydrylated antibody functionalized microcantilever immunosensor for taxol. Sens Actuat B, 2011, 156, 863 doi: 10.1016/j.snb.2011.02.055[5] Biavardi E, Federici S, Tudisco C, et al. Cavitand-grafted silicon microcantilevers as a universal probe for illicit and designer drugs in water. Angew Chem Int Ed, 2014, 53, 9183 doi: 10.1002/anie.201404774[6] Ricciardi C, Fiorilli S, Bianco S, et al. Development of microcantilever-based biosensor array to detect Angiopoietin-1, a marker of tumor angiogenesis. Biosens Bioelectron, 2010, 25, 1193 doi: 10.1016/j.bios.2009.10.006[7] Oliviero G, Chiari M, De Lorenzi E, et al. Leveraging on nanomechanical sensors to single out active small ligands for β2-microglobulin. Sens Actuat B, 2013, 176, 1026 doi: 10.1016/j.snb.2012.09.032[8] Huber F, Lang H P, Glatz K, et al. Fast diagnostics of BRAF mutations in biopsies from malignant melanoma. Nano Lett, 2016, 16, 5373 doi: 10.1021/acs.nanolett.6b01513[9] Maloney N, Lukacs G, Jensen J, et al. Nanomechanical sensors for single microbial cell growth monitoring. Nanoscale, 2014, 6, 8242 doi: 10.1039/C4NR01610F[10] Kim H H, Jeon H J, Cho H K, et al. Highly sensitive microcantilever sensors with enhanced sensitivity for detection of human papilloma virus infection. Sens Actuat B, 2015, 221, 1372 doi: 10.1016/j.snb.2015.08.014[11] Rabe U, Janser K, Arnold W. Vibrations of free and surface-coupled atomic force microscope cantilevers: Theory and experiment. Rev Sci Instrum, 1996, 67, 3281 doi: 10.1063/1.1147409[12] Hwang K S, Eom K, Lee J H, et al. Dominant surface stress driven by biomolecular interactions in the dynamical response of nanomechanical microcantilevers. Appl Phys Lett, 2006, 89, 173905 doi: 10.1063/1.2372700[13] Dammer U, Hegner M, Anselmetti D, et al. Specific antigen/antibody interactions measured by force microscopy. Biophys J, 1996, 70, 2437 doi: 10.1016/S0006-3495(96)79814-4[14] Fritz J, Baller M K, Lang H P, et al. Translating biomolecular recognition into nanomechanics. Science, 2000, 288, 316 doi: 10.1126/science.288.5464.316[15] Wang D F, Du X, Wang X, et al. Improving picogram mass sensitivity via frequency doubling in coupled silicon micro-cantilevers. J Micromech Microeng, 2016, 26, 015006 doi: 10.1088/0960-1317/26/1/015006[16] Thundat T, Wachter E A, Sharp S L, et al. Detection of mercury vapor using resonating microcantilevers. Appl Phys Lett, 1995, 66, 1695 doi: 10.1063/1.113896[17] Ramos D, Tamayo J, Mertens J, et al. Origin of the response of nanomechanical resonators to bacteria adsorption. J Appl Phys, 2006, 100, 106105 doi: 10.1063/1.2370507[18] Nugaeva N, Gfeller K Y, Backmann N, et al. Micromechanical cantilever array sensors for selective fungal immobilization and fast growth detection. Biosens Bioelectron, 2005, 21, 849 doi: 10.1016/j.bios.2005.02.004[19] von Muhlen M G, Brault N D, Knudsen S M, et al. Label-free biomarker sensing in undiluted serum with suspended microchannel resonators. Anal Chem, 2010, 82, 1905 doi: 10.1021/ac9027356[20] Seena V, Fernandes A, Pant P, et al. Polymer nanocomposite nanomechanical cantilever sensors: Material characterization, device development and application in explosive vapour detection. Nanotechnology, 2011, 22, 295501 doi: 10.1088/0957-4484/22/29/295501[21] Pinnaduwage L A, Hawk J E, Boiadjiev V, et al. Use of microcantilevers for the monitoring of molecular binding to self-assembled monolayers. Langmuir, 2003, 19, 7841 doi: 10.1021/la034969n[22] Senesac L, Thundat T G. Nanosensors for trace explosive detection. Mater Today, 2008, 11, 28 doi: 10.1016/S1369-7021(08)70017-8[23] Hwang K S, Lee S M, Kim S K, et al. Micro- and nanocantilever devices and systems for biomolecule detection. Annu Rev Anal Chem, 2009, 2, 77 doi: 10.1146/annurev-anchem-060908-155232[24] Chen Y, Xu P C, Li X X. Self-assembling siloxane bilayer directly on SiO2 surface of micro-cantilevers for long-term highly repeatable sensing to trace explosives. Nanotechnology, 2010, 21, 265501 doi: 10.1088/0957-4484/21/26/265501[25] Zhou J, Li P, Zhang S, et al. Zeolite-modified microcantilever gas sensor for indoor air quality control. Sens Actuat B, 2003, 94, 337 doi: 10.1016/S0925-4005(03)00369-1[26] Kooser A, Gunter R L, Delinger W D, et al. Gas sensing using embedded piezoresistive microcantilever sensors. Sens Actuat B, 2004, 99, 474 doi: 10.1016/j.snb.2003.12.057[27] Porter T L, Vail T L, Eastman M P, et al. A solid-state sensor platform for the detection of hydrogen cyanide gas. Sens Actuat B, 2007, 123, 313 doi: 10.1016/j.snb.2006.08.025[28] Pinnaduwage L A, Thundat T, Hawk J E, et al. Detection of 2, 4-dinitrotoluene using microcantilever sensors. Sens Actuat B, 2004, 99, 223 doi: 10.1016/j.snb.2003.11.011[29] Kong J, Chapline M G, Dai H. Functionalized carbon nanotubes for molecular hydrogen sensors. Adv Mater, 2001, 13, 1384 doi: 10.1002/1521-4095(200109)13:18<1384::AID-ADMA1384>3.0.CO;2-8[30] Kim T H, Lee B Y, Jaworski J, et al. Selective and sensitive TNT sensors using biomimetic polydiacetylene-coated CNT-FETs. ACS Nano, 2011, 5, 2824 doi: 10.1021/nn103324p[31] Kuang Z F, Kim S N, Crookes-Goodson W J, et al. Biomimetic chemosensor: Designing peptide recognition elements for surface functionalization of carbon nanotube field effect transistors. ACS Nano, 2010, 4, 452 doi: 10.1021/nn901365g[32] Ruan W Z, Li Y C, Tan Z M, et al. In situ synthesized carbon nanotube networks on a microcantilever for sensitive detection of explosive vapors. Sens Actuat B, 2013, 176, 141 doi: 10.1016/j.snb.2012.10.026[33] Rahimi M, Chae I, Hawk E J, et al. Methane sensing at room temperature using photothermal cantilever deflection spectroscopy. Sens Actuat B, 2015, 221, 564 doi: 10.1016/j.snb.2015.07.006[34] Longo G, Alonso-Sarduy L, Rio L M, et al. Rapid detection of bacterial resistance to antibiotics using AFM cantilevers as nanomechanical sensors. Nat Nanotechnol, 2013, 8, 522 doi: 10.1038/nnano.2013.120[35] Etayash H, Khan M F, Kaur K, et al. Microfluidic cantilever detects bacteria and measures their susceptibility to antibiotics in small confined volumes. Nat Commun, 2016, 7, 12947 doi: 10.1038/ncomms12947[36] Shekhawat G, Tark S H, Dravid V P. MOSFET-embedded microcantilevers for measuring deflection in biomolecular sensors. Science, 2006, 311, 1592 doi: 10.1126/science.1122588[37] Timurdogan E, Alaca B E, Kavakli I H, et al. MEMS biosensor for detection of hepatitis A and C viruses in serum. Biosens Bioelectron, 2011, 28, 189 doi: 10.1016/j.bios.2011.07.014[38] Liu X C, Wang L H, Zhao J Y, et al. Enhanced binding efficiency of microcantilever biosensor for the detection of yersinia. Sensors, 2019, 19, 3326 doi: 10.3390/s19153326[39] Wang S P, Wang J J, Zhu Y F, et al. A new device for liver cancer biomarker detection with high accuracy. Sens Bio Sens Res, 2015, 4, 40 doi: 10.1016/j.sbsr.2014.10.002[40] Wang J J, Wang S P, Wang X, et al. Cantilever array sensor for multiple liver cancer biomarkers detection. 2014 IEEE SENSORS, 2014, 343 doi: 10.1109/ICSENS.2014.6985004[41] Zhang J, Lang H P, Huber F, et al. Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA. Nat Nanotechnol, 2006, 1, 214 doi: 10.1038/nnano.2006.134[42] Mertens J, Rogero C, Calleja M, et al. Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films. Nat Nanotechnol, 2008, 3, 301 doi: 10.1038/nnano.2008.91[43] Ansari M Z, Cho C. A study on increasing sensitivity of rectangular microcantilevers used in biosensors. Sensors, 2008, 8, 7530 doi: 10.3390/s8117530[44] Ansari M Z, Cho C. Deflection, frequency, and stress characteristics of rectangular, triangular, and step profile microcantilevers for biosensors. Sensors, 2009, 9, 6046 doi: 10.3390/s90806046[45] Ansari M Z, Cho C, Kim J, et al. Comparison between deflection and vibration characteristics of rectangular and trapezoidal profile microcantilevers. Sensors, 2009, 9, 2706 doi: 10.3390/s90402706[46] Liu Y, Wang H, Qin H, et al. Geometry and profile modification of microcantilevers for sensitivity enhancement in sensing applications. Sens Mater, 2017, 29(6), 689 doi: 10.18494/SAM.2017.1465[47] Hawari H F, Wahab Y, Azmi M T, et al. Design and analysis of various microcantilever shapes for MEMS based sensing. J Phys: Conf Ser, 2014, 495, 012045 doi: 10.1088/1742-6596/495/1/012045[48] Lim Y C, Kouzani A Z, Duan W, et al. Effects of design parameters on sensitivity of microcantilever biosensors. IEEE/ICME International Conference on Complex Medical Engineering, 2010, 177 doi: 10.1109/ICCME.2010.5558847[49] Zhao R, Ma W, Wen Y, et al. Trace level detections of abrin with high SNR piezoresistive cantilever biosensor. Sens Actuat B, 2015, 212, 112 doi: 10.1016/j.snb.2015.02.002[50] Kim D S, Jeong Y J, Lee B K, et al. Piezoresistive sensor-integrated PDMS cantilever: A new class of device for measuring the drug-induced changes in the mechanical activity of cardiomyocytes. Sens Actuat B, 2017, 240, 566 doi: 10.1016/j.snb.2016.08.167[51] Zhao R, Sun Y. Polymeric flexible immunosensor based on piezoresistive micro-cantilever with PEDOT/PSS conductive layer. Sensors, 2018, 18, 451 doi: 10.3390/s18020451[52] Li K W,Yen Y K. Gentamicin drug monitoring for peritonitis patients by using a CMOS-BioMEMS-based microcantilever sensor. Biosens Bioelectron, 2019, 130, 420 doi: 10.1016/j.bios.2018.09.014[53] Zheng F J, Wang P X, Du Q F, et al. Simultaneous and ultrasensitive detection of foodborne bacteria by gold nanoparticles-amplified microcantilever array biosensor. Front Chem, 2019, 7, 232 doi: 10.3389/fchem.2019.00232[54] Wang L H, Fu D Y, Liu X C, et al. Highly sensitive biosensor based on a microcantilever and alternating current electrothermal technology. J Micromech Microeng, 2021, 31, 015009 doi: 10.1088/1361-6439/abcae6[55] Leahy S, Lai Y. A cantilever biosensor exploiting electrokinetic capture to detect Escherichia coli in real time. Sens Actuat B, 2017, 238, 292 doi: 10.1016/j.snb.2016.07.069[56] Boisen A, Thundat T. Design & fabrication of cantilever array biosensors. Mater Today, 2009, 12, 32 doi: 10.1016/S1369-7021(09)70249-4[57] Feng X L, White C J, Hajimiri A, et al. A self-sustaining ultrahigh-frequency nanoelectromechanical oscillator. Nat Nanotechnol, 2008, 3, 342 doi: 10.1038/nnano.2008.125[58] Ekinci K L, Yang Y T, Roukes M L. Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems. J Appl Phys, 2004, 95, 2682 doi: 10.1063/1.1642738[59] Vig J R, Kim Y. Noise in microelectromechanical system resonators. IEEE Trans Ultrason Ferroelectr Freq Control, 1999, 46, 1558 doi: 10.1109/58.808881[60] Meng J W, Tang S J, Sun, J L, et al. Dissipative acousto-optic interactions in optical microcavities. Phys Rev Lett, 2022, 9, 7 doi: 10.1103/PhysRevLett.129.073901[61] Kim W, Kouh T. Simple optical knife-edge effect based motion detection approach for a microcantilever. Appl Phys Lett, 2020, 116, 163104 doi: 10.1063/5.0005924 -
Proportional views