Citation: |
Shaolong Yan, Jianliang Huang, Ting Xue, Yanhua Zhang, Wenquan Ma. Long wavelength interband cascade photodetector with type II InAs/GaSb superlattice absorber[J]. Journal of Semiconductors, 2023, 44(4): 042301. doi: 10.1088/1674-4926/44/4/042301
****
Shaolong Yan, Jianliang Huang, Ting Xue, Yanhua Zhang, Wenquan Ma. 2023: Long wavelength interband cascade photodetector with type II InAs/GaSb superlattice absorber. Journal of Semiconductors, 44(4): 042301. doi: 10.1088/1674-4926/44/4/042301
|
Long wavelength interband cascade photodetector with type II InAs/GaSb superlattice absorber
doi: 10.1088/1674-4926/44/4/042301
More Information-
Abstract
We report on a long wavelength interband cascade photodetector with type II InAs/GaSb superlattice absorber. The device is a three-stage interband cascade structure. At 77 K, the 50% cutoff wavelength of the detector is 8.48 μm and the peak photoresponse wavelength is 7.78 μm. The peak responsivity is 0.93 A/W and the detectivity D* is 1.12 × 1011 cm·Hz0.5/W for 7.78 μm at –0.20 V. The detector can operate up to about 260 K. At 260 K, the 50% cutoff wavelength is 11.52 μm, the peak responsivity is 0.78 A/W and the D* is 5.02 × 108 cm·Hz0.5/W for the peak wavelength of 10.39 μm at –2.75 V. The dark current of the device is dominated by the diffusion current under both a small bias voltage of –0.2 V and a large one of –2.75 V for the temperature range of 120 to 260 K. -
References
[1] Zhang Y H, Ma W Q, Cao Y L, et al. Long wavelength infrared InAs/GaSb superlattice photodetectors with InSb-like and mixed interfaces. IEEE J Quantum Electron, 2011, 47, 1475 doi: 10.1109/JQE.2011.2168947[2] Müller R, Gramich V, Wauro M, et al. High operating temperature InAs/GaSb type-II superlattice detectors on GaAs substrate for the long wavelength infrared. Infrared Phys Technol, 2019, 96, 141 doi: 10.1016/j.infrared.2018.10.019[3] Haddadi A, Ramezani-Darvish S, Chen G X, et al. High operability 1024 × 1024 long wavelength type-II superlattice focal plane array. IEEE J Quantum Electron, 2012, 48, 221 doi: 10.1109/JQE.2011.2175903[4] Maimon S, Wicks G W. nBn detector, an infrared detector with reduced dark current and higher operating temperature. Appl Phys Lett, 2006, 89, 151109 doi: 10.1063/1.2360235[5] Haddadi A, Chen G, Chevallier R, et al. InAs/InAs1− xSb x type-II superlattices for high performance long wavelength infrared detection. Appl Phys Lett, 2014, 105, 121104 doi: 10.1063/1.4896271[6] Khoshakhlagh A, Myers S, Kim H, et al. Long-wave InAs/GaSb superlattice detectors based on nBn and pin designs. IEEE J Quantum Electron, 2010, 46, 959 doi: 10.1109/JQE.2010.2041635[7] Treider L A, Morath C P, Cowan V M, et al. Radiometric characterization of an LWIR, type-II strained layer superlattice pBiBn photodetector. Infrared Phys Technol, 2015, 70, 70 doi: 10.1016/j.infrared.2014.09.043[8] Ting D Z Y, Hill C J, Soibel A, et al. A high-performance long wavelength superlattice complementary barrier infrared detector. Appl Phys Lett, 2009, 95, 023508 doi: 10.1063/1.3177333[9] Nguyen B M, Hoffman D, Delaunay P Y, et al. Dark Current suppression in type II InAs∕GaSb superlattice long wavelength infrared photodiodes with M-structure barrier. Appl Phys Lett, 2007, 91, 163511 doi: 10.1063/1.2800808[10] Meyer J R, Vurgaftman I, Yang R Q, et al. Type-II and type-I interband cascade lasers. Electron Lett, 1996, 32, 45 doi: 10.1049/el:19960064[11] Zhou Y, Chai X L, Tian Y, et al. Higher performance long wavelength interband cascade photodetector compared with a PBπBN device. Appl Phys Lett, 2019, 115, 083504 doi: 10.1063/1.5089807[12] Lei L, Li L, Ye H, et al. Long wavelength interband cascade infrared photodetectors operating at high temperatures. J Appl Phys, 2016, 120, 193102 doi: 10.1063/1.4967915[13] Tian Z, Hinkey R T, Yang R Q, et al. Interband cascade infrared photodetectors with enhanced electron barriers and p-type superlattice absorbers. J Appl Phys, 2012, 111, 024510 doi: 10.1063/1.3678003[14] Yang R Q, Tian Z B, Cai Z H, et al. Interband-cascade infrared photodetectors with superlattice absorbers. J Appl Phys, 2010, 107, 054514 doi: 10.1063/1.3327415[15] Ye H, Li L, Lotfi H, et al. Molecular beam epitaxy of interband cascade structures with InAs/GaSb superlattice absorbers for long-wavelength infrared detection. Semicond Sci Technol, 2015, 30, 105029 doi: 10.1088/0268-1242/30/10/105029[16] Yang R Q, Hinkey R T. Ultimate detectivity of multiple-stage interband cascade infrared photodetectors. Appl Phys Lett, 2021, 118, 241101 doi: 10.1063/5.0054234[17] Lotfi H, Li L, Lei L, et al. High-frequency operation of a mid-infrared interband cascade system at room temperature. Appl Phys Lett, 2016, 108, 201101 doi: 10.1063/1.4950700[18] Chen Y J, Chai X L, Xie Z Y, et al. High-speed mid-infrared interband cascade photodetector based on InAs/GaAsSb type-II superlattice. J Light Technol, 2020, 38, 939 doi: 10.1109/JLT.2019.2950607[19] Chen B L. Equivalent circuit model of the RF characteristics of multi-stage infrared photodetectors. J Lightwave Technol, 2022, 40, 5224 doi: 10.1109/JLT.2022.3171812[20] Ker P J, Marshall A R J, Krysa A B, et al. Temperature dependence of leakage current in InAs avalanche photodiodes. IEEE J Quantum Electron, 2011, 47, 1123 doi: 10.1109/JQE.2011.2159194[21] Yang Q K, Fuchs F, Schmitz J, et al. Investigation of trap-assisted tunneling current in InAs/(GaIn)Sb superlattice long-wavelength photodiodes. Appl Phys Lett, 2002, 81, 4757 doi: 10.1063/1.1529306[22] Zhou Y, Chen J X, Xu Z C, et al. High quantum efficiency mid-wavelength interband cascade infrared photodetectors with one and two stages. Semicond Sci Technol, 2016, 31, 085005 doi: 10.1088/0268-1242/31/8/085005[23] Yang R Q. Shot and Johnson noises in interband cascade infrared photodetectors. Appl Phys Lett, 2022, 121, 051105 doi: 10.1063/5.0103661 -
Proportional views