Citation: |
Yongxu Yan, Zhexin Li, Zheng Lou. Photodetector based on Ruddlesden-Popper perovskite microwires with broader band detection[J]. Journal of Semiconductors, 2023, 44(8): 082201. doi: 10.1088/1674-4926/44/8/082201
****
Yongxu Yan, Zhexin Li, Zheng Lou. 2023: Photodetector based on Ruddlesden-Popper perovskite microwires with broader band detection. Journal of Semiconductors, 44(8): 082201. doi: 10.1088/1674-4926/44/8/082201
|
Photodetector based on Ruddlesden-Popper perovskite microwires with broader band detection
DOI: 10.1088/1674-4926/44/8/082201
More Information
-
Abstract
Recently, the two-dimensional (2D) form of Ruddlesden-Popper perovskite (RPP) has been widely studied. However, the synthesis of one-dimensional (1D) RPP is rarely reported. Here, we fabricated a photodetector based on RPP microwires (RPP-MWs) and compared it with a 2D-RPP photodetector. The results show that the RPP-MWs photodetector possesses a wider photoresponse range and higher responsivities of 233 A/W in the visible band and 30 A/W in the near-infrared (NIR) band. The analyses show that the synthesized RPP-MWs have a multi-layer, heterogeneous core-shell structure. This structure gives RPP-MWs a unique band structure, as well as abundant trap states and defect levels, which enable them to acquire better photoresponse performance. This configuration of RPP-MWs provides a new idea for the design and application of novel heterostructures. -
References
[1] Sun Y, Sun B, He J B, et al. Compositional and structural engineering of inorganic nanowires toward advanced properties and applications. InfoMat, 2019, 1(4), 496 doi: 10.1002/inf2.12049[2] Hsu C L, Chang S J. Doped ZnO 1D nanostructures: synthesis, properties, and photodetector application. Small, 2014, 10(22), 4562 doi: 10.1002/smll.201401580[3] Peng L, Hu L F, Fang X S. Low-dimensional nanostructure ultraviolet photodetectors. Adv Mater, 2013, 25(37), 5321 doi: 10.1002/adma.201301802[4] Tian W, Lu H, Li L. Nanoscale ultraviolet photodetectors based on onedimensional metal oxide nanostructures. Nano Res, 2015, 8(2), 382 doi: 10.1007/s12274-014-0661-2[5] Wang Z H, Nabet B. Nanowire optoelectronics. Nanophotonics, 2015, 4(4), 491 doi: 10.1515/nanoph-2015-0025[6] Soci C, Zhang A, Bao X Y, et al. Nanowire photodetectors. J Nanosci Nanotechnol, 2010, 10(3), 1430 doi: 10.1166/jnn.2010.2157[7] Yan R X, Gargas D, Yang P D. Nanowire photonics. Nat Photonics, 2009, 3(10), 569 doi: 10.1038/nphoton.2009.184[8] Shen G Z, Chen D. One-dimensional nanostructures for photodetectors. Recent Pat Nanotechnol, 2010, 4(1), 20 doi: 10.2174/187221010790712101[9] Sun Y, Dong T G, Yu L W, et al. Planar growth, integration, and applications of semiconducting nanowires. Adv Mater, 2020, 32(27), 1903945 doi: 10.1002/adma.201903945[10] Meng J P, Li Z. Schottky-contacted nanowire sensors. Adv Mater, 2020, 32(28), 2000130 doi: 10.1002/adma.202000130[11] Ren Z H, Wang P, Zhang K, et al. Short-wave near-infrared polarization sensitive photodetector based on GaSb nanowire. IEEE Electron Device Lett, 2021, 42(4), 549 doi: 10.1109/LED.2021.3061705[12] Li L L, Wang D P, Zhang D, et al. Near-infrared light triggered self-powered mechano-optical communication system using wearable photodetector textile. Adv Funct Mater, 2021, 31(37), 2104782 doi: 10.1002/adfm.202104782[13] Shen G, Chen H, Lou Z. Growth of aligned SnS nanowire arrays for near infrared photodetectors. J Semicond, 2020, 41(4), 042602 doi: 10.1088/1674-4926/41/4/042602[14] Yip S, Shen L, Ho Johnny C. Recent advances in flexible photodetectors based on 1D nanostructures. J Semicond, 2019, 40(11), 111602 doi: 10.1088/1674-4926/40/11/111602[15] Chen S, Lou Z, Chen D, et al. Printable Zn2GeO4 microwires based flexible photodetectors with tunable photoresponses. Adv Mater Technol, 2018, 3(5), 1800050 doi: 10.1002/admt.201800050[16] Lou Z, Li L D, Shen G Z. High-performance rigid and flexible ultraviolet photodetectors with single-crystalline ZnGa2O4 nanowires. Nano Res, 2015, 8(7), 2162 doi: 10.1007/s12274-015-0723-0[17] Ran W H, Wang L L, Zhao S F, et al. An integrated flexible all-nanowire infrared sensing system with record photosensitivity. Adv Mater, 2020, 32(16), 1908419 doi: 10.1002/adma.201908419[18] He X, Jian C Y, Hong W T, et al. Ultralong CH3NH3PbI3 nanowires synthesized by a ligand-assisted reprecipitation strategy for high-performance photodetectors. J Mater Chem C, 2020, 8(22), 7378 doi: 10.1039/D0TC00807A[19] Yuan M, Zhao Y J, Feng J G, et al. Ultrasensitive photodetectors based on strongly interacted layered-perovskite nanowires. ACS Appl Mater Interfaces, 2022, 14(1), 1601 doi: 10.1021/acsami.1c20851[20] Zhao Y J, Qiu Y C, Gao H F, et al. Layered-perovskite nanowires with long-range orientational order for ultrasensitive photodetectors. Adv Mater, 2020, 32(9), 1905298 doi: 10.1002/adma.201905298[21] Zhou J C, Huang J. Photodetectors based on organic-inorganic hybrid lead halide perovskites. Adv Sci, 2018, 5(1), 1700256 doi: 10.1002/advs.201700256[22] Wang H B, Chen H Y, Li L, et al. High responsivity and high rejection ratio of self-powered solar-blind ultraviolet photodetector based on PEDOT: PSS/beta-Ga2O3 organic/inorganic p-n junction. J Phys Chem Lett, 2019, 10(21), 6850 doi: 10.1021/acs.jpclett.9b02793[23] Guan Y W, Zhang C H, Liu Z, et al. Single-crystalline perovskite p-n junction nanowire arrays for ultrasensitive photodetection. Adv Mater, 2022, 34(35), 2203201 doi: 10.1002/adma.202203201[24] Luo J L, Zheng Z, Yan S K, et al. Photocurrent enhanced in UV-vis-NIR photodetector based on CdSe/CdTe core/shell nanowire arrays by piezo-phototronic effect. ACS Photonics, 2020, 7(6), 1461 doi: 10.1021/acsphotonics.0c00122[25] Xiao M Q, Yang H, Shen W F, et al. Symmetry-reduction enhanced polarization-sensitive photodetection in core-shell SbI3/Sb2O3 van der Waals heterostructure. Small, 2020, 16(7), 1907172 doi: 10.1002/smll.201907172[26] Yan Y X, Ran W H, Li Z X, et al. Modify Cd3As2 nanowires with sulfur to fabricate self-powered NIR photodetectors with enhanced performance. Nano Res, 2021, 14(10), 3379 doi: 10.1007/s12274-021-3367-2[27] Chen Y N, Sun Y, Peng J J, et al. 2D Ruddlesden-Popper perovskites for optoelectronics. Adv Mater, 2018, 30(2), 1703487 doi: 10.1002/adma.201703487[28] Ricciardulli A G, Yang S, Smet J H, et al. Emerging perovskite monolayers. Nat Mater, 2021, 20(10), 1325 doi: 10.1038/s41563-021-01029-9[29] Xie C, Liu C K, Loi H L, et al. Perovskite-based phototransistors and hybrid photodetectors. Adv Funct Mater, 2020, 30(20), 1903907 doi: 10.1002/adfm.201903907[30] Xu Y K, Wang M, Lei Y T, et al. Crystallization kinetics in 2D perovskite solar cells. Adv Energy Mater, 2020, 10(43), 2002558 doi: 10.1002/aenm.202002558[31] Hong X, Ishihara T, Nurmikko A V. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys Rev B, 1992, 45(12), 6961 doi: 10.1103/PhysRevB.45.6961[32] Wang W, Zhang D, Liu R, et al. Characterization of interfaces: Lessons from the past for the future of perovskite solar cells. J Semicond, 2022, 43(5), 051202 doi: 10.1088/1674-4926/43/5/051202[33] Zhang D, Qin C, Ding L. Domain controlling and defect passivation for efficient quasi-2D perovskite LEDs. J Semicond, 2022, 43(5), 050201 doi: 10.1088/1674-4926/43/5/050201[34] Mei L, Mu H, Zhu L, et al. Frontier applications of perovskites beyond photovoltaics. J Semicond, 2022, 43(4), 040203 doi: 10.1088/1674-4926/43/4/040203[35] Li J Z, Wang J, Ma J Q, et al. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals. Nat Commun, 2019, 10(1), 806 doi: 10.1038/s41467-019-08768-z[36] Jiang J Y, Zou X M, Lv Y W, et al. Rational design of Al2O3/2D perovskite heterostructure dielectric for high performance MoS2 phototransistors. Nat Commun, 2020, 11(1), 4266 doi: 10.1038/s41467-020-18100-9[37] Liu C K, Loi H L, Cao J P, et al. High-performance quasi-2D perovskite/single-walled carbon nanotube phototransistors for low-cost and sensitive broadband photodetection. Small Struct, 2021, 2(2), 2000084 doi: 10.1002/sstr.202000084[38] Wei S L, Wang F, Zou X M, et al. Flexible quasi-2D perovskite/IGZO phototransistors for ultrasensitive and broadband photodetection. Adv Mater, 2020, 32(6), 1907527 doi: 10.1002/adma.201907527[39] Wang J, Li J Z, Lan S G, et al. Controllable growth of centimeter-sized 2D perovskite heterostructures for highly narrow dual-band photodetectors. ACS Nano, 2019, 13(5), 5473 doi: 10.1021/acsnano.9b00259[40] Zhou H, Wang H, Ding L. Perovskite nanowire networks for photodetectors. J Semicond, 2021, 42(11), 110202 doi: 10.1088/1674-4926/42/11/110202 -
Proportional views