ARTICLES

Enhanced thermal emission from metal-free, fully epitaxial structures with epsilon-near-zero InAs layers

Karolis Stašys, Andrejus Geižutis and Jan Devenson

+ Author Affiliations

 Corresponding author: Karolis Stašys, karolis.stasys@ftmc.lt

PDF

Turn off MathJax

Abstract: We introduce a novel method to create mid-infrared (MIR) thermal emitters using fully epitaxial, metal-free structures. Through the strategic use of epsilon-near-zero (ENZ) thin films in InAs layers, we achieve a narrow-band, wide-angle, and p-polarized thermal emission spectra. This approach, employing molecular beam epitaxy, circumvents the complexities associated with current layered structures and yields temperature-resistant emission wavelengths. Our findings contribute a promising route towards simpler, more efficient MIR optoelectronic devices.

Key words: epsilon-near-zerothermal emittersindium arsenideLWIR (long wave infraRed)molecular beam epitaxy



[1]
Willer U, Saraji M, Khorsandi A, et al. Near- and mid-infrared laser monitoring of industrial processes, environment and security applications. Opt Lasers Eng, 2006, 44, 699 doi: 10.1016/j.optlaseng.2005.04.015
[2]
Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser. Science, 1994, 264, 553 doi: 10.1126/science.264.5158.553
[3]
Liu X X, Li Z W, Wen Z J, et al. Large-area, lithography-free, narrow-band and highly directional thermal emitter. Nanoscale, 2019, 11, 19742 doi: 10.1039/C9NR06181A
[4]
Lu G Y, Nolen J R, Folland T G, et al. Narrowband polaritonic thermal emitters driven by waste heat. ACS Omega, 2020, 5, 10900 doi: 10.1021/acsomega.0c00600
[5]
Wu J Y, Xie Z T, Sha Y H, et al. Epsilon-near-zero photonics: Infinite potentials. Photon Res, 2021, 9, 1616 doi: 10.1364/PRJ.427246
[6]
Jun Y C, Luk T S, Robert Ellis A, et al. Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films. Appl Phys Lett, 2014, 105, 13 doi: 10.1063/1.4896573
[7]
Hwang J S, Xu J, Raman A P. Simultaneous control of spectral and directional emissivity with gradient epsilon-near-zero InAs photonic structures. Adv Mater, 2023, 35, 2302956 doi: 10.1002/adma.202302956
[8]
Argyropoulos C, Le K Q, Mattiucci N, et al. Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces. Phys Rev B, 2013, 87, 205112 doi: 10.1103/PhysRevB.87.205112
[9]
Law S, Liu R Y, Wasserman D. Doped semiconductors with band-edge plasma frequencies. J Vac Sci Technol B, 2014, 32, 325 doi: doi.org/10.1116/1.4891170
[10]
Liu M Q, Xia S, Wan W J, et al. Broadband mid-infrared non-reciprocal absorption using magnetized gradient epsilon-near-zero thin films. Nat Mater, 2023, 22, 1196 doi: 10.1038/s41563-023-01635-9
[11]
Shiba M, Ikariyama R, Takushima M, et al. Properties of low-temperature-grown InAs and their changes upon annealing. J Cryst Growth, 2007, 301/302, 256 doi: 10.1016/j.jcrysgro.2006.11.140
[12]
Ciattoni A, Marini A, Rizza C, et al. Polariton excitation in epsilon-near-zero slabs: Transient trapping of slow light. Phys Rev A, 2013, 87, 053853 doi: 10.1103/PhysRevA.87.053853
Fig. 1.  (Color online) Structure of samples grown using molecular beam epitaxy.

Fig. 2.  (Color online) Experimental setup for powering-up the epitaxial structures and measuring thermal emission.

Fig. 3.  (Color online) High-resolution X-ray diffraction rocking curves from samples VGS0055 (a) (grown on a GaSb substrate) and VIA0027 (b) (grown on an InAs substrate).

Fig. 4.  (Color online) Nomarski microscopy surface images of the samples VGS0055 (a) and VIA0027 (b). The scale bar at the bottom right represents 20 µm.

Fig. 5.  (Color online) Reflectance (black) and thermal emission (red) spectra measured on samples VGS0055 (a) and VIA0027 (b).

Fig. 6.  P-polarised emission intensity dependence on the sample orientation. 0 degrees position corresponds to the polarisation plate p-orientation along [001] direction. (a) Sample VIA0027, (b) sample VGS0055.

Fig. 7.  (Color online) Thermal emission spectra measured of both samples at different excitation temperatures. (a) Sample VIA0027, (b) sample VGS0055.

[1]
Willer U, Saraji M, Khorsandi A, et al. Near- and mid-infrared laser monitoring of industrial processes, environment and security applications. Opt Lasers Eng, 2006, 44, 699 doi: 10.1016/j.optlaseng.2005.04.015
[2]
Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser. Science, 1994, 264, 553 doi: 10.1126/science.264.5158.553
[3]
Liu X X, Li Z W, Wen Z J, et al. Large-area, lithography-free, narrow-band and highly directional thermal emitter. Nanoscale, 2019, 11, 19742 doi: 10.1039/C9NR06181A
[4]
Lu G Y, Nolen J R, Folland T G, et al. Narrowband polaritonic thermal emitters driven by waste heat. ACS Omega, 2020, 5, 10900 doi: 10.1021/acsomega.0c00600
[5]
Wu J Y, Xie Z T, Sha Y H, et al. Epsilon-near-zero photonics: Infinite potentials. Photon Res, 2021, 9, 1616 doi: 10.1364/PRJ.427246
[6]
Jun Y C, Luk T S, Robert Ellis A, et al. Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films. Appl Phys Lett, 2014, 105, 13 doi: 10.1063/1.4896573
[7]
Hwang J S, Xu J, Raman A P. Simultaneous control of spectral and directional emissivity with gradient epsilon-near-zero InAs photonic structures. Adv Mater, 2023, 35, 2302956 doi: 10.1002/adma.202302956
[8]
Argyropoulos C, Le K Q, Mattiucci N, et al. Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces. Phys Rev B, 2013, 87, 205112 doi: 10.1103/PhysRevB.87.205112
[9]
Law S, Liu R Y, Wasserman D. Doped semiconductors with band-edge plasma frequencies. J Vac Sci Technol B, 2014, 32, 325 doi: doi.org/10.1116/1.4891170
[10]
Liu M Q, Xia S, Wan W J, et al. Broadband mid-infrared non-reciprocal absorption using magnetized gradient epsilon-near-zero thin films. Nat Mater, 2023, 22, 1196 doi: 10.1038/s41563-023-01635-9
[11]
Shiba M, Ikariyama R, Takushima M, et al. Properties of low-temperature-grown InAs and their changes upon annealing. J Cryst Growth, 2007, 301/302, 256 doi: 10.1016/j.jcrysgro.2006.11.140
[12]
Ciattoni A, Marini A, Rizza C, et al. Polariton excitation in epsilon-near-zero slabs: Transient trapping of slow light. Phys Rev A, 2013, 87, 053853 doi: 10.1103/PhysRevA.87.053853
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 624 Times PDF downloads: 87 Times Cited by: 0 Times

    History

    Received: 11 July 2023 Revised: 26 September 2023 Online: Accepted Manuscript: 13 November 2023Uncorrected proof: 08 December 2023Published: 10 February 2024

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Karolis Stašys, Andrejus Geižutis, Jan Devenson. Enhanced thermal emission from metal-free, fully epitaxial structures with epsilon-near-zero InAs layers[J]. Journal of Semiconductors, 2024, 45(2): 022101. doi: 10.1088/1674-4926/45/2/022101 ****Karolis Stašys, Andrejus Geižutis, Jan Devenson. 2024: Enhanced thermal emission from metal-free, fully epitaxial structures with epsilon-near-zero InAs layers. Journal of Semiconductors, 45(2): 022101. doi: 10.1088/1674-4926/45/2/022101
      Citation:
      Karolis Stašys, Andrejus Geižutis, Jan Devenson. Enhanced thermal emission from metal-free, fully epitaxial structures with epsilon-near-zero InAs layers[J]. Journal of Semiconductors, 2024, 45(2): 022101. doi: 10.1088/1674-4926/45/2/022101 ****
      Karolis Stašys, Andrejus Geižutis, Jan Devenson. 2024: Enhanced thermal emission from metal-free, fully epitaxial structures with epsilon-near-zero InAs layers. Journal of Semiconductors, 45(2): 022101. doi: 10.1088/1674-4926/45/2/022101

      Enhanced thermal emission from metal-free, fully epitaxial structures with epsilon-near-zero InAs layers

      doi: 10.1088/1674-4926/45/2/022101
      More Information
      • Karolis Stašys got his MSc degree from Vilnius University in 2014. Now he is a PhD student at State research institute Center for Physical Sciences and Technology under the supervision of Assoc. Prof. Jan Devenson. His research focuses on development of emitters and detectors for mid infrared range using molecular beam epitaxy
      • Corresponding author: karolis.stasys@ftmc.lt
      • Received Date: 2023-07-11
      • Revised Date: 2023-09-26
      • Available Online: 2023-11-13

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return