Citation: |
Karolis Stašys, Andrejus Geižutis, Jan Devenson. Enhanced thermal emission from metal-free, fully epitaxial structures with epsilon-near-zero InAs layers[J]. Journal of Semiconductors, 2024, 45(2): 022101. doi: 10.1088/1674-4926/45/2/022101
****
Karolis Stašys, Andrejus Geižutis, Jan Devenson. 2024: Enhanced thermal emission from metal-free, fully epitaxial structures with epsilon-near-zero InAs layers. Journal of Semiconductors, 45(2): 022101. doi: 10.1088/1674-4926/45/2/022101
|
Enhanced thermal emission from metal-free, fully epitaxial structures with epsilon-near-zero InAs layers
doi: 10.1088/1674-4926/45/2/022101
More Information-
Abstract
We introduce a novel method to create mid-infrared (MIR) thermal emitters using fully epitaxial, metal-free structures. Through the strategic use of epsilon-near-zero (ENZ) thin films in InAs layers, we achieve a narrow-band, wide-angle, and p-polarized thermal emission spectra. This approach, employing molecular beam epitaxy, circumvents the complexities associated with current layered structures and yields temperature-resistant emission wavelengths. Our findings contribute a promising route towards simpler, more efficient MIR optoelectronic devices. -
References
[1] Willer U, Saraji M, Khorsandi A, et al. Near- and mid-infrared laser monitoring of industrial processes, environment and security applications. Opt Lasers Eng, 2006, 44, 699 doi: 10.1016/j.optlaseng.2005.04.015[2] Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser. Science, 1994, 264, 553 doi: 10.1126/science.264.5158.553[3] Liu X X, Li Z W, Wen Z J, et al. Large-area, lithography-free, narrow-band and highly directional thermal emitter. Nanoscale, 2019, 11, 19742 doi: 10.1039/C9NR06181A[4] Lu G Y, Nolen J R, Folland T G, et al. Narrowband polaritonic thermal emitters driven by waste heat. ACS Omega, 2020, 5, 10900 doi: 10.1021/acsomega.0c00600[5] Wu J Y, Xie Z T, Sha Y H, et al. Epsilon-near-zero photonics: Infinite potentials. Photon Res, 2021, 9, 1616 doi: 10.1364/PRJ.427246[6] Jun Y C, Luk T S, Robert Ellis A, et al. Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films. Appl Phys Lett, 2014, 105, 13 doi: 10.1063/1.4896573[7] Hwang J S, Xu J, Raman A P. Simultaneous control of spectral and directional emissivity with gradient epsilon-near-zero InAs photonic structures. Adv Mater, 2023, 35, 2302956 doi: 10.1002/adma.202302956[8] Argyropoulos C, Le K Q, Mattiucci N, et al. Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces. Phys Rev B, 2013, 87, 205112 doi: 10.1103/PhysRevB.87.205112[9] Law S, Liu R Y, Wasserman D. Doped semiconductors with band-edge plasma frequencies. J Vac Sci Technol B, 2014, 32, 325 doi: doi.org/10.1116/1.4891170[10] Liu M Q, Xia S, Wan W J, et al. Broadband mid-infrared non-reciprocal absorption using magnetized gradient epsilon-near-zero thin films. Nat Mater, 2023, 22, 1196 doi: 10.1038/s41563-023-01635-9[11] Shiba M, Ikariyama R, Takushima M, et al. Properties of low-temperature-grown InAs and their changes upon annealing. J Cryst Growth, 2007, 301/302, 256 doi: 10.1016/j.jcrysgro.2006.11.140[12] Ciattoni A, Marini A, Rizza C, et al. Polariton excitation in epsilon-near-zero slabs: Transient trapping of slow light. Phys Rev A, 2013, 87, 053853 doi: 10.1103/PhysRevA.87.053853 -
Proportional views