
1 |
Zia Ur Rehman, Francesco Lamberti, Zhubing He Journal of Semiconductors, 2025, 46(5): 051802. doi: 10.1088/1674-4926/24100034 |
2 |
Compositional engineering for lead-free antimony bismuth alloy-based halide perovskite solar cells Ziyu Cai, Junchi Zhu, Chenyuan Ding, Tao Dong, Boyang Yu, et al. Journal of Semiconductors, 2025, 46(5): 052803. doi: 10.1088/1674-4926/24120038 |
3 |
Chentai Cao, Yuli Tao, Quan Yang, Hai Yu, Yonggang Chen, et al. Journal of Semiconductors, 2025, 46(5): 052805. doi: 10.1088/1674-4926/25030046 |
4 |
Improved efficiency and stability of inverse perovskite solar cells via passivation cleaning Kunyang Ge, Chunjun Liang Journal of Semiconductors, 2024, 45(10): 102801. doi: 10.1088/1674-4926/24040033 |
5 |
Chen Gao, Hui Wang, Pang Wang, Jinlong Cai, Yuandong Sun, et al. Journal of Semiconductors, 2022, 43(9): 092201. doi: 10.1088/1674-4926/43/9/092201 |
6 |
Characterization of interfaces: Lessons from the past for the future of perovskite solar cells Wanlong Wang, Dongyang Zhang, Rong Liu, Deepak Thrithamarassery Gangadharan, Furui Tan, et al. Journal of Semiconductors, 2022, 43(5): 051202. doi: 10.1088/1674-4926/43/5/051202 |
7 |
Efficient MAPbI3 solar cells made via drop-coating at room temperature Lixiu Zhang, Chuantian Zuo, Liming Ding Journal of Semiconductors, 2021, 42(7): 072201. doi: 10.1088/1674-4926/42/7/072201 |
8 |
Tailoring molecular termination for thermally stable perovskite solar cells Xiao Zhang, Sai Ma, Jingbi You, Yang Bai, Qi Chen, et al. Journal of Semiconductors, 2021, 42(11): 112201. doi: 10.1088/1674-4926/42/11/112201 |
9 |
Progress in flexible perovskite solar cells with improved efficiency Hua Kong, Wentao Sun, Huanping Zhou Journal of Semiconductors, 2021, 42(10): 101605. doi: 10.1088/1674-4926/42/10/101605 |
10 |
Recent progress in developing efficient monolithic all-perovskite tandem solar cells Yurui Wang, Mei Zhang, Ke Xiao, Renxing Lin, Xin Luo, et al. Journal of Semiconductors, 2020, 41(5): 051201. doi: 10.1088/1674-4926/41/5/051201 |
11 |
Simulation and application of external quantum efficiency of solar cells based on spectroscopy Guanlin Chen, Can Han, Lingling Yan, Yuelong Li, Ying Zhao, et al. Journal of Semiconductors, 2019, 40(12): 122701. doi: 10.1088/1674-4926/40/12/122701 |
12 |
Surface passivation of perovskite film for efficient solar cells Yang (Michael) Yang Journal of Semiconductors, 2019, 40(4): 040204. doi: 10.1088/1674-4926/40/4/040204 |
13 |
Yong Chen, Yang Zhao, Qiufeng Ye, Zema Chu, Zhigang Yin, et al. Journal of Semiconductors, 2019, 40(12): 122201. doi: 10.1088/1674-4926/40/12/122201 |
14 |
Applications of cesium in the perovskite solar cells Fengjun Ye, Wenqiang Yang, Deying Luo, Rui Zhu, Qihuang Gong, et al. Journal of Semiconductors, 2017, 38(1): 011003. doi: 10.1088/1674-4926/38/1/011003 |
15 |
Calculation studies on point defects in perovskite solar cells Dan Han, Chenmin Dai, Shiyou Chen Journal of Semiconductors, 2017, 38(1): 011006. doi: 10.1088/1674-4926/38/1/011006 |
16 |
Effects of defect states on the performance of perovskite solar cells Fengjuan Si, Fuling Tang, Hongtao Xue, Rongfei Qi Journal of Semiconductors, 2016, 37(7): 072003. doi: 10.1088/1674-4926/37/7/072003 |
17 |
Aritra Acharyya, Aliva Mallik, Debopriya Banerjee, Suman Ganguli, Arindam Das, et al. Journal of Semiconductors, 2014, 35(8): 084003. doi: 10.1088/1674-4926/35/8/084003 |
18 |
An InGaAs graded buffer layer in solar cells Xiaosheng Qu, Hongyin Bao, Hanieh. S. Nikjalal, Liling Xiong, Hongxin Zhen, et al. Journal of Semiconductors, 2014, 35(1): 014011. doi: 10.1088/1674-4926/35/1/014011 |
19 |
Influence of absorber doping in a-SiC:H/a-Si:H/a-SiGe:H solar cells Muhammad Nawaz, Ashfaq Ahmad Journal of Semiconductors, 2012, 33(4): 042001. doi: 10.1088/1674-4926/33/4/042001 |
20 |
Zhu Peng, Pan Liyang, Gu Haiming, Qiao Fengying, Deng Ning, et al. Journal of Semiconductors, 2010, 31(10): 104008. doi: 10.1088/1674-4926/31/10/104008 |
1. | Keshavarzi, R., Hajisharifi, F., Saki, Z. et al. Organic and perovskite solar cells based on scalable slot-die coating technique: Progress and challenges. Nano Today, 2025. doi:10.1016/j.nantod.2024.102600 | |
2. | Wang, H., Lin, W., Wang, Y. et al. Perovskite/silicon tandem solar cells: a comprehensive review of recent strategies and progress. Semiconductor Science and Technology, 2025, 40(2): 023001. doi:10.1088/1361-6641/adab11 | |
3. | Shin Thant, K.K., Seriwattanachai, C., Jittham, T. et al. Comprehensive Review on Slot-Die-Based Perovskite Photovoltaics: Mechanisms, Materials, Methods, and Marketability. Advanced Energy Materials, 2025, 15(5): 2403088. doi:10.1002/aenm.202403088 | |
4. | Kang, B., Yan, F. Emerging strategies for the large-scale fabrication of perovskite solar modules: from design to process. Energy and Environmental Science, 2025. doi:10.1039/d4ee05613b | |
5. | Hu, Z., Wang, Z., Gao, P. Advancements in Scaling Up Perovskite Solar Cells: From Small-Area Devices to Large-Scale Modules. ChemPhysChem, 2024, 25(22): e202400587. doi:10.1002/cphc.202400587 | |
6. | Wang, D., Yan, P., Yao, C. et al. A lightweight joint metric detection approach on YOLO for hot spots in photovoltaic modules. Journal of Renewable and Sustainable Energy, 2024, 16(5): 053503. doi:10.1063/5.0232136 | |
7. | Ahmad, W., Li, C., Yu, W. et al. Revolutionizing photovoltaics: From back-contact silicon to back-contact perovskite solar cells. Materials Today Electronics, 2024. doi:10.1016/j.mtelec.2024.100106 | |
8. | Duarte, V.C.M., Andrade, L. Recent Advancements on Slot-Die Coating of Perovskite Solar Cells: The Lab-to-Fab Optimisation Process. Energies, 2024, 17(16): 3896. doi:10.3390/en17163896 | |
9. | Li, X., Dimitrov, S.D. Scaling Up Perovskite Solar Cell Fabrication: Antisolvent-Controlled Crystallization of Printed Perovskite Semiconductor. Solar RRL, 2024, 8(16): 2400293. doi:10.1002/solr.202400293 | |
10. | Samantaray, M.R., Wang, Z., Hu, D. et al. Scalable Fabrication Methods of Large-Area (n-i-p) Perovskite Solar Panels. Solar RRL, 2024, 8(14): 2400235. doi:10.1002/solr.202400235 | |
11. | Kahandal, S.S., Tupke, R.S., Bobade, D.S. et al. Perovskite solar cells: Fundamental aspects, stability challenges, and future prospects. Progress in Solid State Chemistry, 2024. doi:10.1016/j.progsolidstchem.2024.100463 | |
12. | Chakar, J., Oswald, F., Dubois, A.M. et al. Six-Month Outdoor Performance Study of Stable Perovskite Solar Cells Under Real Operating Conditions. Solar RRL, 2024, 8(11): 2400093. doi:10.1002/solr.202400093 | |
13. | Matondo, J.T., Hu, H., Ding, Y. et al. Slot-Die Coating for Scalable Fabrication of Perovskite Solar Cells and Modules. Advanced Materials Technologies, 2024, 9(10): 2302082. doi:10.1002/admt.202302082 | |
14. | AlZaidy, G.A., Alanazi, H.T. Review—Recent Advancements in Perovskites Solar Cell Materials and the Investigation of Transition Metal Oxide-Based Nanocomposites for Usage in Perovskites Solar Cells. ECS Journal of Solid State Science and Technology, 2024, 13(5): 055006. doi:10.1149/2162-8777/ad4c95 | |
15. | Pathak, C.S., Choi, H., Kim, H. et al. Recent Progress in Coating Methods for Large-Area Perovskite Solar Module Fabrication. Solar RRL, 2024, 8(4): 2300860. doi:10.1002/solr.202300860 | |
16. | Maridevaru, M.C., Ashokkumar, M., Renganathan, R. et al. Review on Characteristics, Scalable Fabrication, Advancing Strategies, and Recent Enhancements in High-Performance Perovskite Photovoltaic Cells. Encyclopedia of Renewable Energy, Sustainability and the Environment: Volume 1-4, 2024. doi:10.1016/B978-0-323-93940-9.00130-4 | |
17. | Rossi, F., Rotondi, L., Stefanelli, M. et al. Comparative life cycle assessment of different fabrication processes for perovskite solar mini-modules. EPJ Photovoltaics, 2024. doi:10.1051/epjpv/2024014 | |
18. | Zhao, J., Hou, M., Wang, Y. et al. Strategies for large-scale perovskite solar cells realization. Organic Electronics, 2023. doi:10.1016/j.orgel.2023.106892 | |
19. | Faibut, N., Jarernboon, W., Harnchana, V. et al. Anomalous p-type characteristic and recrystallization upon aging of hot-cast CH3NH3PbI3 perovskite thin films grown under atmospheric air. Thin Solid Films, 2023. doi:10.1016/j.tsf.2023.140048 | |
20. | Jin, H., Farrar, M.D., Ball, J.M. et al. Alumina Nanoparticle Interfacial Buffer Layer for Low-Bandgap Lead-Tin Perovskite Solar Cells. Advanced Functional Materials, 2023, 33(35): 2303012. doi:10.1002/adfm.202303012 | |
21. | Mahmoodpour, S., Heydari, M., Shooshtari, L. et al. Slot-Die Coated Copper Indium Disulfide as Hole-Transport Material for Perovskite Solar Cells. Sustainability (Switzerland), 2023, 15(8): 6562. doi:10.3390/su15086562 | |
22. | Szostak, R., de Souza Gonçalves, A., de Freitas, J.N. et al. In Situ and Operando Characterizations of Metal Halide Perovskite and Solar Cells: Insights from Lab-Sized Devices to Upscaling Processes. Chemical Reviews, 2023, 123(6): 3160-3236. doi:10.1021/acs.chemrev.2c00382 | |
23. | Huo, T., Yan, L., Si, J. et al. Ultrafast photoinduced carrier dynamics in single crystalline perovskite films. Journal of Materials Chemistry C, 2023, 11(11): 3736-3742. doi:10.1039/d2tc03632k | |
24. | Bidikoudi, M., Stathatos, E. Carbon Electrodes: The Rising Star for PSC Commercialization. Electronics (Switzerland), 2023, 12(4): 992. doi:10.3390/electronics12040992 | |
25. | Ma, Y., Lu, Z., Su, X. et al. Recent Progress Toward Commercialization of Flexible Perovskite Solar Cells: From Materials and Structures to Mechanical Stabilities. Advanced Energy and Sustainability Research, 2023, 4(1): 2200133. doi:10.1002/aesr.202200133 | |
26. | Stefanelli, M., Vesce, L., Di Carlo, A. Upscaling of Carbon-Based Perovskite Solar Module. Nanomaterials, 2023, 13(2): 313. doi:10.3390/nano13020313 | |
27. | Singh, R., Nazim, M., Kini, G.P. et al. Perovskite-Based Photovoltaics for Artificial Indoor Light Harvesting: A Critical Review. Solar RRL, 2023, 7(1): 2200953. doi:10.1002/solr.202200953 | |
28. | Wang, F., Han, Y., Duan, D. et al. Recent progress of scalable perovskite solar cells and modules. Energy Reviews, 2022, 1(2): 100010. doi:10.1016/j.enrev.2022.100010 | |
29. | Luo, X., Lin, X., Gao, F. et al. Recent progress in perovskite solar cells: from device to commercialization. Science China Chemistry, 2022, 65(12): 2369-2416. doi:10.1007/s11426-022-1426-x | |
30. | Chu, L., Zhai, S., Ahmad, W. et al. High-performance large-area perovskite photovoltaic modules. Nano Research Energy, 2022, 1(2): e9120024. doi:10.26599/NRE.2022.9120024 | |
31. | Qiang, Z., Wang, C., Gao, X. et al. Challenges of Scalable Development for Perovskite/Silicon Tandem Solar Cells. ACS Applied Energy Materials, 2022, 5(6): 6499-6515. doi:10.1021/acsaem.2c00354 | |
32. | Maafa, I.M.. All-Inorganic Perovskite Solar Cells: Recent Advancements and Challenges. Nanomaterials, 2022, 12(10): 1651. doi:10.3390/nano12101651 | |
33. | Parida, B., Singh, A., Kalathil Soopy, A.K. et al. Recent Developments in Upscalable Printing Techniques for Perovskite Solar Cells. Advanced Science, 2022, 9(14): 2200308. doi:10.1002/advs.202200308 | |
34. | Yang, Z., Liu, Z., Ahmadi, V. et al. Recent Progress on Metal Halide Perovskite Solar Minimodules. Solar RRL, 2022, 6(3): 2100458. doi:10.1002/solr.202100458 | |
35. | Lee, J., Kim, J., Kim, C.-S. et al. Compact SnO2 /Mesoporous TiO2 Bilayer Electron Transport Layer for Perovskite Solar Cells Fabricated at Low Process Temperature. Nanomaterials, 2022, 12(4): 718. doi:10.3390/nano12040718 | |
36. | Yan, J., Savenije, T.J., Mazzarella, L. et al. Progress and challenges on scaling up of perovskite solar cell technology. Sustainable Energy and Fuels, 2022, 6(2): 243-266. doi:10.1039/d1se01045j | |
37. | Thi Kim, C.M., Atourki, L., Ouafi, M. et al. A synopsis of progressive transition in precursor inks development for metal halide perovskites-based photovoltaic technology. Journal of Materials Chemistry A, 2021, 9(47): 26650-26668. doi:10.1039/d1ta06556d | |
38. | Xu, C., Zhao, X., Ma, J. et al. Recent Progresses in Carbon Counter Electrode Materials for Perovskite Solar Cells and Modules. ChemElectroChem, 2021, 8(23): 4396-4411. doi:10.1002/celc.202100811 | |
39. | Wang, H., Wang, Y., Xuan, Z. et al. Progress in perovskite solar cells towards commercialization—a review. Materials, 2021, 14(21): 6569. doi:10.3390/ma14216569 | |
40. | Sahare, S., Pham, H.D., Angmo, D. et al. Emerging Perovskite Solar Cell Technology: Remedial Actions for the Foremost Challenges. Advanced Energy Materials, 2021, 11(42): 2101085. doi:10.1002/aenm.202101085 | |
41. | Ling, J., Kizhakkedath, P.K.K., Watson, T.M. et al. A Perspective on the Commercial Viability of Perovskite Solar Cells. Solar RRL, 2021, 5(11): 2100401. doi:10.1002/solr.202100401 | |
42. | Chen, Z., He, P., Wu, D. et al. Processing and Preparation Method for High-Quality Opto-Electronic Perovskite Film. Frontiers in Materials, 2021. doi:10.3389/fmats.2021.723169 | |
43. | Pradid, P., Sanglee, K., Thongprong, N. et al. Carbon electrodes in perovskite photovoltaics. Materials, 2021, 14(20): 5989. doi:10.3390/ma14205989 | |
44. | Li, J., Dewi, H.A., Wang, H. et al. Co-Evaporated MAPbI3 with Graded Fermi Levels Enables Highly Performing, Scalable, and Flexible p-i-n Perovskite Solar Cells. Advanced Functional Materials, 2021, 31(42): 2103252. doi:10.1002/adfm.202103252 | |
45. | Wang, K.-L., Zhou, Y.-H., Lou, Y.-H. et al. Perovskite indoor photovoltaics: opportunity and challenges. Chemical Science, 2021, 12(36): 11936-11954. doi:10.1039/d1sc03251h | |
46. | Mirabi, E., Akrami Abarghuie, F., Arazi, R. Integration of buildings with third-generation photovoltaic solar cells: A review. Clean Energy, 2021, 5(3): 505-526. doi:10.1093/ce/zkab031 | |
47. | Benitez-Rodriguez, J.F., Chen, D., Gao, M. et al. Roll-to-Roll Processes for the Fabrication of Perovskite Solar Cells under Ambient Conditions. Solar RRL, 2021, 5(9): 2100341. doi:10.1002/solr.202100341 | |
48. | Murugan, P., Hu, T., Hu, X. et al. Current Development toward Commercialization of Metal-Halide Perovskite Photovoltaics. Advanced Optical Materials, 2021, 9(17): 2100390. doi:10.1002/adom.202100390 | |
49. | Onuigbo, I.O., Abdulrahman, G.N., Onwujiuba, C. et al. Magnesium-doped green solar cells using natural chromophores. International Nano Letters, 2021, 11(3): 205-214. doi:10.1007/s40089-021-00334-0 | |
50. | Cheng, J., Liu, F., Tang, Z. et al. Scalable Blade Coating: A Technique Accelerating the Commercialization of Perovskite-Based Photovoltaics. Energy Technology, 2021, 9(8): 2100204. doi:10.1002/ente.202100204 | |
51. | Liu, H., Yu, M.-H., Lee, C.-C. et al. Technical Challenges and Perspectives for the Commercialization of Solution-Processable Solar Cells. Advanced Materials Technologies, 2021, 6(6): 2000960. doi:10.1002/admt.202000960 | |
52. | Gao, L., You, J., Liu, S.F. Superior photovoltaics/optoelectronics of two-dimensional halide perovskites. Journal of Energy Chemistry, 2021. doi:10.1016/j.jechem.2020.08.022 | |
53. | Mariani, P., Najafi, L., Bianca, G. et al. Low-Temperature Graphene-Based Paste for Large-Area Carbon Perovskite Solar Cells. ACS Applied Materials and Interfaces, 2021, 13(19): 22368-22380. doi:10.1021/acsami.1c02626 | |
54. | Wu, Z., Li, W., Ye, Y. et al. Recent progress in meniscus coating for large-area perovskite solar cells and solar modules. Sustainable Energy and Fuels, 2021, 5(7): 1926-1951. doi:10.1039/d0se01774d | |
55. | Blaga, C., Christmann, G., Boccard, M. et al. Palliating the efficiency loss due to shunting in perovskite/silicon tandem solar cells through modifying the resistive properties of the recombination junction. Sustainable Energy and Fuels, 2021, 5(7): 2036-2045. doi:10.1039/d1se00030f | |
56. | Yang, Z., Zhang, W., Wu, S. et al. Slot-die coating large-area formamidinium-cesium perovskite film for efficient and stable parallel solar module. Science Advances, 2021, 7(18): eabg3749. doi:10.1126/sciadv.abg3749 | |
57. | Li, D., Zhang, D., Lim, K.-S. et al. A Review on Scaling Up Perovskite Solar Cells. Advanced Functional Materials, 2021, 31(12): 2008621. doi:10.1002/adfm.202008621 | |
58. | Yang, Z., Wu, D., Yan, X. et al. Research Progresses on the Preparation Technologies Towards Large-area Perovskite Thin Films | [大面积钙钛矿薄膜制备技术的研究进展]. Cailiao Daobao/Materials Reports, 2021, 35(1): 01046-01057. doi:10.11896/cldb.20030221 | |
59. | Jang, D., Yang, F., Dong, L. et al. Upscaling of Perovskite Photovoltaics. Perovskite Solar Cells: Materials, Processes, and Devices, 2021. doi:10.1002/9783527825790.ch14 | |
60. | Ma, Y., Zhao, Q. A strategic review on processing routes towards scalable fabrication of perovskite solar cells. Journal of Energy Chemistry, 2021. doi:10.1016/j.jechem.2021.05.019 | |
61. | Galagan, Y.. Perovskite solar cells from lab to fab: The main challenges to access the market. Oxford Open Materials Science, 2021, 1(1): itaa007. doi:10.1093/oxfmat/itaa007 | |
62. | Ghosh, A.. Potential of building integrated and attached/applied photovoltaic (BIPV/BAPV) for adaptive less energy-hungry building's skin: A comprehensive review. Journal of Cleaner Production, 2020. doi:10.1016/j.jclepro.2020.123343 | |
63. | Li, J., Dewi, H.A., Wang, H. et al. Design of Perovskite Thermally Co-Evaporated Highly Efficient Mini-Modules with High Geometrical Fill Factors. Solar RRL, 2020, 4(12): 2000473. doi:10.1002/solr.202000473 | |
64. | Gao, L., Yan, Y., Li, Y. et al. Comparison of Physical Isolation on Large Active Area Perovskite Solar Cells. Chemical Research in Chinese Universities, 2020, 36(6): 1279-1283. doi:10.1007/s40242-020-0060-z | |
65. | Bogachuk, D., Zouhair, S., Wojciechowski, K. et al. Low-temperature carbon-based electrodes in perovskite solar cells. Energy and Environmental Science, 2020, 13(11): 3880-3916. doi:10.1039/d0ee02175j | |
66. | Subbiah, A.S., Isikgor, F.H., Howells, C.T. et al. High-performance perovskite single-junction and textured perovskite/silicon tandem solar cells via slot-die-coating. ACS Energy Letters, 2020, 5(9): 3034-3040. doi:10.1021/acsenergylett.0c01297 | |
67. | Gao, W., Chen, C., Ran, C. et al. A-Site Cation Engineering of Metal Halide Perovskites: Version 3.0 of Efficient Tin-Based Lead-Free Perovskite Solar Cells. Advanced Functional Materials, 2020, 30(34): 2000794. doi:10.1002/adfm.202000794 | |
68. | Roy, A., Ghosh, A., Bhandari, S. et al. Perovskite solar cells for bipv application: A review. Buildings, 2020, 10(7): 1-33. doi:10.3390/buildings10070129 | |
69. | Schuster, C.S.. Analytical framework for the assessment and modelling of multi-junction solar cells in the outdoors. Renewable Energy, 2020. doi:10.1016/j.renene.2020.01.002 | |
70. | Li, J., Wang, H., Chin, X.Y. et al. Highly Efficient Thermally Co-evaporated Perovskite Solar Cells and Mini-modules. Joule, 2020, 4(5): 1035-1053. doi:10.1016/j.joule.2020.03.005 | |
71. | Verma, A., Martineau, D., Hack, E. et al. Towards industrialization of perovskite solar cells using slot die coating. Journal of Materials Chemistry C, 2020, 8(18): 6124-6135. doi:10.1039/d0tc00327a | |
72. | Wali, Q., Iftikhar, F.J., Elumalai, N.K. et al. Advances in stable and flexible perovskite solar cells. Current Applied Physics, 2020, 20(5): 720-737. doi:10.1016/j.cap.2020.03.007 | |
73. | Liu, C., Cheng, Y.-B., Ge, Z. Understanding of perovskite crystal growth and film formation in scalable deposition processes. Chemical Society Reviews, 2020, 49(6): 1653-1687. doi:10.1039/c9cs00711c | |
74. | Su, H., Xiao, J., Li, Q. et al. Carbon film electrode based square-centimeter scale planar perovskite solar cells exceeding 17% efficiency. Materials Science in Semiconductor Processing, 2020. doi:10.1016/j.mssp.2019.104809 | |
75. | Gao, L., Yang, G. Organic-Inorganic Halide Perovskites: From Crystallization of Polycrystalline Films to Solar Cell Applications. Solar RRL, 2020, 4(2): 1900200. doi:10.1002/solr.201900200 | |
76. | Shalan, A.E.. Challenges and approaches towards upscaling the assembly of hybrid perovskite solar cells. Materials Advances, 2020, 1(3): 292-309. doi:10.1039/d0ma00128g | |
77. | Verma, A., Martineau, D., Abdolhosseinzadeh, S. et al. Inkjet printed mesoscopic perovskite solar cells with custom design capability. Materials Advances, 2020, 1(2): 153-160. doi:10.1039/d0ma00077a | |
78. | Xiang, W., Tress, W. Review on Recent Progress of All-Inorganic Metal Halide Perovskites and Solar Cells. Advanced Materials, 2019, 31(44): 1902851. doi:10.1002/adma.201902851 | |
79. | Qiu, L., He, S., Ono, L.K. et al. Scalable Fabrication of Metal Halide Perovskite Solar Cells and Modules. ACS Energy Letters, 2019, 4(9): 2147-2167. doi:10.1021/acsenergylett.9b01396 | |
80. | He, R., Huang, X., Chee, M. et al. Carbon-based perovskite solar cells: From single-junction to modules. Carbon Energy, 2019, 1(1): 109-123. doi:10.1002/cey2.11 | |
81. | Wu, C., Wang, D., Zhang, Y. et al. FAPbI3 Flexible Solar Cells with a Record Efficiency of 19.38% Fabricated in Air via Ligand and Additive Synergetic Process. Advanced Functional Materials, 2019, 29(34): 1902974. doi:10.1002/adfm.201902974 | |
82. | Howard, I.A., Abzieher, T., Hossain, I.M. et al. Coated and Printed Perovskites for Photovoltaic Applications. Advanced Materials, 2019, 31(26): 1806702. doi:10.1002/adma.201806702 | |
83. | Swartwout, R., Hoerantner, M.T., Bulović, V. Scalable Deposition Methods for Large-area Production of Perovskite Thin Films. Energy and Environmental Materials, 2019, 2(2): 119-145. doi:10.1002/eem2.12043 | |
84. | Wong-Stringer, M., Routledge, T.J., McArdle, T. et al. A flexible back-contact perovskite solar micro-module. Energy and Environmental Science, 2019, 12(6): 1928-1937. doi:10.1039/c8ee03517b | |
85. | Gao, L., Chen, L., Huang, S. et al. Series and Parallel Module Design for Large-Area Perovskite Solar Cells. ACS Applied Energy Materials, 2019, 2(5): 3851-3859. doi:10.1021/acsaem.9b00531 | |
86. | Huang, F., Li, M., Siffalovic, P. et al. From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy and Environmental Science, 2019, 12(2): 518-549. doi:10.1039/c8ee03025a | |
87. | Heo, J.H., Lee, D.S., Shin, D.H. et al. Recent advancements in and perspectives on flexible hybrid perovskite solar cells. Journal of Materials Chemistry A, 2019, 7(3): 888-900. doi:10.1039/c8ta09452g | |
88. | Almosni, S., Delamarre, A., Jehl, Z. et al. Material challenges for solar cells in the twenty-first century: directions in emerging technologies. Science and Technology of Advanced Materials, 2018, 19(1): 336-369. doi:10.1080/14686996.2018.1433439 | |
89. | Heasley, R., Davis, L.M., Chua, D. et al. Vapor Deposition of Transparent, p-Type Cuprous Iodide Via a Two-Step Conversion Process. ACS Applied Energy Materials, 2018, 1(12): 6953-6963. doi:10.1021/acsaem.8b01363 | |
90. | Galagan, Y., Di Giacomo, F., Gorter, H. et al. Roll-to-Roll Slot Die Coated Perovskite for Efficient Flexible Solar Cells. Advanced Energy Materials, 2018, 8(32): 1801935. doi:10.1002/aenm.201801935 | |
91. | Burkitt, D., Searle, J., A.Worsley, D. et al. Sequential slot-die deposition of perovskite solar cells using dimethylsulfoxide lead iodide ink. Materials, 2018, 11(11): 2106. doi:10.3390/ma11112106 | |
92. | Kim, D.H., Whitaker, J.B., Li, Z. et al. Outlook and Challenges of Perovskite Solar Cells toward Terawatt-Scale Photovoltaic Module Technology. Joule, 2018, 2(8): 1437-1451. doi:10.1016/j.joule.2018.05.011 | |
93. | Galagan, Y.. Perovskite Solar Cells: Toward Industrial-Scale Methods. Journal of Physical Chemistry Letters, 2018, 9(15): 4326-4335. doi:10.1021/acs.jpclett.8b01356 | |
94. | Abbel, R., Galagan, Y., Groen, P. Roll-to-Roll Fabrication of Solution Processed Electronics. Advanced Engineering Materials, 2018, 20(8): 1701190. doi:10.1002/adem.201701190 | |
95. | Di Giacomo, F., Shanmugam, S., Fledderus, H. et al. Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating. Solar Energy Materials and Solar Cells, 2018. doi:10.1016/j.solmat.2017.11.010 | |
96. | Rong, Y., Ming, Y., Ji, W. et al. Toward Industrial-Scale Production of Perovskite Solar Cells: Screen Printing, Slot-Die Coating, and Emerging Techniques. Journal of Physical Chemistry Letters, 2018, 9(10): 2707-2713. doi:10.1021/acs.jpclett.8b00912 | |
97. | Xu, Q., Yang, D., Lv, J. et al. Perovskite Solar Absorbers: Materials by Design. Small Methods, 2018, 2(5): 1700316. doi:10.1002/smtd.201700316 | |
98. | Yang, M., Kim, D.H., Klein, T.R. et al. Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization. ACS Energy Letters, 2018, 3(2): 322-328. doi:10.1021/acsenergylett.7b01221 | |
99. | Kajal, P., Ghosh, K., Powar, S. Manufacturing Techniques of Perovskite Solar Cells. Energy, Environment, and Sustainability, 2018. doi:10.1007/978-981-10-7206-2_16 | |
100. | Cai, Y., Liang, L., Gao, P. Promise of commercialization: Carbon materials for low-cost perovskite solar cells. Chinese Physics B, 2018, 27(1): 018805. doi:10.1088/1674-1056/27/1/018805 | |
101. | Yang, Z., Zhang, S., Li, L. et al. Research progress on large-area perovskite thin films and solar modules. Journal of Materiomics, 2017, 3(4): 231-244. doi:10.1016/j.jmat.2017.09.002 | |
102. | Chen, H., Yang, S. Stabilizing and scaling up carbon-based perovskite solar cells. Journal of Materials Research, 2017, 32(16): 3011-3020. doi:10.1557/jmr.2017.294 |
Article views: 2440 Times PDF downloads: 809 Times Cited by: 102 Times
Received: 20 August 2015 Revised: Online: Published: 01 February 1982
Citation: |
陈新之, 孙体忠, 乔墉. GaAs-GaAlAs DH激光器暗线(DLD)的观察[J]. 半导体学报(英文版), 1982, 3(2): 159-161.
|
Six years after the first report of a perovskite solar cell, the power conversion efficiency of small devices has increased from merely 3% [1] to over 22% [2]. This is the most impressive advancement in the history of photovoltaic technologies. In comparison, it took 40 years for crystalline silicon research cells to get over 22%, starting from 5%. However, the reported record efficiencies for perovskite solar cells generally come from devices with a very small active area of around 0.1 cm2 [3-6]. Depositing flat, uniform and fully covered perovskite thin-film by industrial available approaches is still a thorny issue.
Previously, we reported a facile and scalable gas pump method by accelerating the solvent evaporation to speed up the precipitation of perovskite, and deposit extremely dense and uniform perovskite thin-films. We prepared planar perovskite solar cells by using this process, reaching the efficiency up to 19% with an average efficiency of (17.38±0.7)% [7]. The perovskite films were fabricated in air conditions with a relative humidity of 45%-55%, which would have a prospect in industrial applications of large-area perovskite solar panels. We also applied this method on PET-ITO flexible substrates and fabricated flexible perovskite solar cells with efficiencies up to 11.34%[8].
This work is about our up-scaling efforts on this gas pumping method. By optimizing the equipment and techniques, we are able to fabricate large area perovskite modules of 17.3 cm2 active area with over 10% power conversion efficiencies.
The architecture of the module is shown in Fig. 1. A compact zinc oxide (ZnO) layer of about 50 nm thick was coated on top of the fluorine doped tin oxide (FTO) transparent electrode by magnetron controlled plasma sputtering. The compact ZnO layer acts as the collector of electrons and the blocking layer for positive charges. Schematic procedures to prepare the perovskite films by the gas pump method are shown in Fig. 2. First, 40% CH3NH3PbI3 precursor solution in N, N-dimethylformamide (DMF) was casted with a slotdie coater on top of the ZnO layer. Then the substrate was put into a sample chamber connecting to the gas pump system. The system is comprised of a large low pressure chamber and a sample chamber, these chambers are connected by gas drainage pipes controlled by valves. By opening the valves connecting the sample chamber and the low pressure system maintaining at 100 Pa, the fast pumping of the sample chamber leads to rapid evaporation of the DMF solvent. Brown perovskite films can be obtained with 20 s. The color of the film became dark brown after being annealed at 100 ℃ for 10 min.
After annealing, a carbon layer was screen-printed on top of the perovskite film from a home-made carbon paste. This carbon layer acts as a collector for positive charges and back contact. These layers were scribed by laser into eight strips, forming seven cells with series connection (Fig. 1).
Photocurrent-voltage (J-V) characteristics of the devices were measured by employing a Keithley 2400 source-measure under illumination of 100 mW/cm2 by a 450 W class AAA solar simulator equipped with an AM1.5G filter (Sol2A, Oriel Instruments). The exact light intensity was determined by a standard silicon reference cell (91150V, Oriel Instruments). A metal mask which was a little smaller than the nominal active area of the device defined as the overlap between FTO and the carbon electrode was applied when measuring the solar cell efficiency, as to avoided edge effects.
The J-V curve of the best performing 5×5 cm2 module (Fig. 3(b)) exhibits the short-circuit current density (JSC) of 3.25 mA/cm2, the open-circuit voltage (VOC) of 6.14 V, the fill factor of 0.53 and the power conversion efficiency (PCE) of 10.6%. Since the modules consisted of seven cells connected in series, the module voltage is the sum of these cells, while the module current is limited by the lowest one of them. Therefore, the homogeneities of all the four layers (FTO, ZnO, perovskite and carbon) became decisive for the performance of the module. As shown in Fig. 3(c), the average PCE of 50 modules is (9.97±0.35)%, showing that our film processing techniques are well controlled and reproducible.
We may also expect the resistance of the series contacts to play an important role in the solar-electricity generation. If the contact resistances become significant, the series resistance of the module will rise and hence reduce the fill factor. To verify this effect, single cells (1 cm2 active area) of the same architecture were fabricated for comparison. As shown in Fig. 3(a) and Table 1, the PCE of the best single cells reached 15.1%, which is significantly higher than that of the modules. By comparing the data given in Table 1, we found that the current outputs for the small device and module are similar (3.25 mA/cm2 × 7 = 22.75 mA/cm2), while the VOC and fill factor of the small device are larger (1.05 V×7 = 7.35 V).
Parameter | Active area (cm2) | JSC (mA/cm2) | VOC (V) | FF | η (%) |
Small device | 1 | 22.9 | 1.05 | 0.63 | 15.1 |
Modile | 17.6 | 3.25 | 6.14 | 0.53 | 10.6 |
Looking into the SEM image taken on the cross section of the device (Fig. 4), we can see that the carbon layer consists of large graphite flakes of several micro-meters in size filled with a lot of carbon black particles. The main conducting pathways are formed by graphite flakes which make contacts to each other. Numbers of hollows can be found between the carbon layer and the perovskite layer, which will obviously hinder the charge collection. Densely distributed hollows are also found between the contact of carbon and FTO, which should result in a high contact resistivity, adding series resistance into the module, leading to a lowered fill factor and VOC.
The operating lifetime is also a major concern for perovskite solar cells. We sealed the module with plane glass and water-proof sealant. The sealed devices were placed outdoors and tested with a certain time interval. The well capped devices were rather stable through the changing weather of the tropics in south China. As we recorded in Fig. 5, for over 140 days we did not see any trend of degradation. The fluctuation of PCE is the result from the changing solar intensity in different weather conditions.
Based on the techniques applied on the 5×5 cm2 modules, we further increase the module size to 45×65 cm2. A demonstration power station made of 32 perovskite panels was set up on our site (Fig. 6). These works on module fabrication and characterization are still going on, and will be published elsewhere.
We have developed a gas-pumping method for fabricating unique and compact perovskite film in large area. Based on these techniques, we are able to produce large area perovskite modules from 5×5 cm2 to 45×65 cm2. The power conversion efficiencies for 5×5 cm2 modules reached 10.6% with good reproducibility. No significant degradation was found after 140 days of outdoors testing. The great drop of PCE from single cells to modules can be attributed to large series resistivity resulting from the poor contact between carbon and TCO.
Journal of Semiconductors © 2017 All Rights Reserved 京ICP备05085259号-2