Chin. J. Semicond. > 2006, Volume 27 > Issue 3 > 438-442

PAPERS

Neural-Network-Based Charge Density Quantum Correction of Nanoscale MOSFETs

Li Zunchao, Jiang Yaolin and Zhang Ruizhi

+ Author Affiliations

PDF

Abstract: For the treatment of the quantum effect of charge distribution in nanoscale MOSFETs,a quantum correction model using Levenberg-Marquardt back-propagation neural networks is presented that can predict the quantum density from the classical density.The training speed and accuracy of neural networks with different hidden layers and numbers of neurons are studied.We conclude that high training speed and accuracy can be obtained using neural networks with two hidden layers,but the number of neurons in the hidden layers does not have a noticeable effect.For single and double-gate nanoscale MOSFETs,our model can easily predict the quantum charge density in the silicon layer,and it agrees closely with the Schrodinger-Poisson approach.

Key words: neural networkquantum correctionnanoscale MOSFETcharge density

1

Optimized operation scheme of flash-memory-based neural network online training with ultra-high endurance

Yang Feng, Zhaohui Sun, Yueran Qi, Xuepeng Zhan, Junyu Zhang, et al.

Journal of Semiconductors, 2024, 45(1): 012301. doi: 10.1088/1674-4926/45/1/012301

2

Performance analysis of SiGe double-gate N-MOSFET

A. Singh, D. Kapoor, R. Sharma

Journal of Semiconductors, 2017, 38(4): 044003. doi: 10.1088/1674-4926/38/4/044003

3

Modeling on oxide dependent 2DEG sheet charge density and threshold voltage in AlGaN/GaN MOSHEMT

J. Panda, K. Jena, R. Swain, T. R. Lenka

Journal of Semiconductors, 2016, 37(4): 044003. doi: 10.1088/1674-4926/37/4/044003

4

A novel pressure sensor calibration system based on a neural network

Xiaojun Peng, Kuntao Yang, Xiuhua Yuan

Journal of Semiconductors, 2015, 36(9): 095004. doi: 10.1088/1674-4926/36/9/095004

5

Analysis of charge density and Fermi level of AlInSb/InSb single-gate high electron mobility transistor

S. Theodore Chandra, N. B. Balamurugan, M. Bhuvaneswari, N. Anbuselvan, N. Mohankumar, et al.

Journal of Semiconductors, 2015, 36(6): 064003. doi: 10.1088/1674-4926/36/6/064003

6

Model development for analyzing 2DEG sheet charge density and threshold voltage considering interface DOS for AlInN/GaN MOSHEMT

Devashish Pandey, T.R. Lenka

Journal of Semiconductors, 2014, 35(10): 104001. doi: 10.1088/1674-4926/35/10/104001

7

A 2DEG charge density based drain current model for various Al and In molefraction mobility dependent nano-scale AlInGaN/AlN/GaN HEMT devices

Godwin Raj, Hemant Pardeshi, Sudhansu Kumar Pati, N Mohankumar, Chandan Kumar Sarkar, et al.

Journal of Semiconductors, 2013, 34(4): 044002. doi: 10.1088/1674-4926/34/4/044002

8

Modeling and simulation of centroid and inversion charge density in cylindrical surrounding gate MOSFETs including quantum effects

P. Vimala, N. B. Balamurugan

Journal of Semiconductors, 2013, 34(11): 114001. doi: 10.1088/1674-4926/34/11/114001

9

Modeling of subthreshold characteristics for undoped and doped deep nanoscale short channel double-gate MOSFETs

Jin Xiaoshi, Liu Xi, Wu Meile, Chuai Rongyan, Jung-Hee Lee, et al.

Journal of Semiconductors, 2012, 33(12): 124003. doi: 10.1088/1674-4926/33/12/124003

10

A CMOS AC/DC charge pump for a wireless sensor network

Zhang Qiang, Ni Weining, Shi Yin, Yu Yude

Journal of Semiconductors, 2012, 33(10): 105003. doi: 10.1088/1674-4926/33/10/105003

11

Analytical modeling of drain current and RF performance for double-gate fully depleted nanoscale SOI MOSFETs

Rajiv Sharma, Sujata Pandey, Shail Bala Jain

Journal of Semiconductors, 2012, 33(2): 024001. doi: 10.1088/1674-4926/33/2/024001

12

Gate current modeling and optimal design of nanoscale non-overlapped gate to source/drain MOSFET

Ashwani K. Rana, Narottam Chand, Vinod Kapoor

Journal of Semiconductors, 2011, 32(7): 074001. doi: 10.1088/1674-4926/32/7/074001

13

Local charge neutrality condition, Fermi level and majority carrier density of a semiconductor with multiple localized multi-level intrinsic/impurity defects

Ken K. Chin

Journal of Semiconductors, 2011, 32(11): 112001. doi: 10.1088/1674-4926/32/11/112001

14

A novel modified charge pumping method for trapped charge characterization in nanometer-scale devices

Zhu Peng, Pan Liyang, Gu Haiming, Qiao Fengying, Deng Ning, et al.

Journal of Semiconductors, 2010, 31(10): 104008. doi: 10.1088/1674-4926/31/10/104008

15

Low-field mobility and carrier transport mechanism transition in nanoscale MOSFETs

Liu Hongwei, Wang Runsheng, Huang Ru, Zhang Xing

Journal of Semiconductors, 2010, 31(4): 044006. doi: 10.1088/1674-4926/31/4/044006

16

Nanoscale strained-Si MOSFET physics and modeling approaches: a review

Amit Chaudhry, J. N. Roy, Garima Joshi

Journal of Semiconductors, 2010, 31(10): 104001. doi: 10.1088/1674-4926/31/10/104001

17

Compact Modeling for Inversion Charge in Nanoscale DG-MOSFETs

Li Meng, Yu Zhiping

Chinese Journal of Semiconductors , 2007, 28(11): 1717-1721.

18

Modeling of Gate Tunneling Current for Nanoscale MOSFETs with High-k Gate Stacks

Wang Wei, Sun Jianping, Gu Ning

Chinese Journal of Semiconductors , 2006, 27(7): 1170-1176.

19

Analytical Modeling of Threshold Voltage for Double-Gate MOSFET Fully Comprising Quantum Mechanical Effects

Zhang Dawei, Tian Lilin,and Yu Zhiping

Chinese Journal of Semiconductors , 2005, 26(3): 429-435.

20

Device Simulation for Nanoscale MOSFET

Liu Xiaoyan, Liu Enfeng, Du Gang, Liu Yibo, Xia Zhiliang, et al.

Chinese Journal of Semiconductors , 2003, 24(S1): 148-152.

  • Search

    Advanced Search >>

    GET CITATION

    Li Zunchao, Jiang Yaolin, Zhang Ruizhi. Neural-Network-Based Charge Density Quantum Correction of Nanoscale MOSFETs[J]. Journal of Semiconductors, 2006, 27(3): 438-442.
    Li Z C, Jiang Y L, Zhang R Z. Neural-Network-Based Charge Density Quantum Correction of Nanoscale MOSFETs[J]. Chin. J. Semicond., 2006, 27(3): 438.
    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3291 Times PDF downloads: 2002 Times Cited by: 0 Times

    History

    Received: 20 August 2015 Revised: Online: Published: 01 March 2006

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Li Zunchao, Jiang Yaolin, Zhang Ruizhi. Neural-Network-Based Charge Density Quantum Correction of Nanoscale MOSFETs[J]. Journal of Semiconductors, 2006, 27(3): 438-442. ****Li Z C, Jiang Y L, Zhang R Z. Neural-Network-Based Charge Density Quantum Correction of Nanoscale MOSFETs[J]. Chin. J. Semicond., 2006, 27(3): 438.
      Citation:
      Li Zunchao, Jiang Yaolin, Zhang Ruizhi. Neural-Network-Based Charge Density Quantum Correction of Nanoscale MOSFETs[J]. Journal of Semiconductors, 2006, 27(3): 438-442. ****
      Li Z C, Jiang Y L, Zhang R Z. Neural-Network-Based Charge Density Quantum Correction of Nanoscale MOSFETs[J]. Chin. J. Semicond., 2006, 27(3): 438.

      Neural-Network-Based Charge Density Quantum Correction of Nanoscale MOSFETs

      • Received Date: 2015-08-20

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return