J. Semicond. > Volume 32 > Issue 12 > Article Number: 124001

Study and modeling of the transport mechanism in a Schottky diode on the basis of a GaAs semiinsulator

A. Resfa , Bourzig Y Smahi and Brahimi R Menezla

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The current through a metal-semiconductor junction is mainly due to the majority carriers. Three distinctly different mechanisms exist in a Schottky diode: diffusion of the semiconductor carriers in metal, thermionic emission-diffusion (TED) of carriers through a Schottky gate, and a mechanical quantum that pierces a tunnel through the gate. The system was solved by using a coupled Poisson-Boltzmann algorithm. Schottky BH is defined as the difference in energy between the Fermi level and the metal band carrier majority of the metal-semiconductor junction to the semiconductor contacts. The insulating layer converts the MS device in an MIS device and has a strong influence on its current-voltage (I-V) and the parameters of a Schottky barrier from 3.7 to 15 eV. There are several possible reasons for the error that causes a deviation of the ideal behaviour of Schottky diodes with and without an interfacial insulator layer. These include the particular distribution of interface states, the series resistance, bias voltage and temperature. The GaAs and its large concentration values of trap centers will participate in an increase in the process of thermionic electrons and holes, which will in turn act on the I-V characteristic of the diode, and an overflow maximum value [NT = 3 × 1020] is obtained. The I-V characteristics of Schottky diodes are in the hypothesis of a parabolic summit.

Key words: electrostatic potential and density of carrierscurrent thermionic emission-diffusion and tunnel current through the gatecurrent-voltage characteristics of Schottky diodestemperature

[1]
[2]
[1]

V. M. Nikale, S. S. Shinde, C. H. Bhosale, K.Y. Rajpure. Physical properties of spray deposited CdTe thin films: PEC performance. J. Semicond., 2011, 32(3): 033001. doi: 10.1088/1674-4926/32/3/033001

[2]

Kamal Zeghdar, Lakhdar Dehimi, Achour Saadoune, Nouredine Sengouga. Inhomogeneous barrier height effect on the current-voltage characteristics of an Au/n-InP Schottky diode. J. Semicond., 2015, 36(12): 124002. doi: 10.1088/1674-4926/36/12/124002

[3]

Yan Liu, Jing Yan, Hongjuan Wang, Genquan Han. Temperature dependent IDS-VGS characteristics of an N-channel Si tunneling field-effect transistor with a germanium source on Si(110) substrate. J. Semicond., 2014, 35(2): 024001. doi: 10.1088/1674-4926/35/2/024001

[4]

Chen Liu, Yuming Zhang, Yimen Zhang, Hongliang Lü, Bin Lu. Temperature dependent interfacial and electrical characteristics during atomic layer deposition and annealing of HfO2 films in p-GaAs metal-oxide-semiconductor capacitors. J. Semicond., 2015, 36(12): 124003. doi: 10.1088/1674-4926/36/12/124003

[5]

Li Meizhi, Chen Xingbi. Influence of Gate Voltages on Temperature of LDMOS Under Ultra-High Transient Currents. J. Semicond., 2007, 28(8): 1256.

[6]

Sau Koh, Willem Van Driel, G. Q. Zhang. Degradation of light emitting diodes: a proposed methodology. J. Semicond., 2011, 32(1): 014004. doi: 10.1088/1674-4926/32/1/014004

[7]

Han Ru, Li Cong, Yang Yintang, Jia Hujun. Analysis of Early Voltage in 4H-SiC BJTs. J. Semicond., 2007, 28(9): 1433.

[8]

Liu Yongpan, Yang Huazhong, Wang Hui. A Thermal-Conscious Integrated Circuit Power Model and Its Impact on Dynamic Voltage Scaling Techniques. J. Semicond., 2007, 28(4): 530.

[9]

Zhang Min, Ban Shiliang. Temperature effects on interface polarons in a strained (111)-oriented zinc-blende GaN/AlGaN heterojunction under pressure. J. Semicond., 2009, 30(3): 032001. doi: 10.1088/1674-4926/30/3/032001

[10]

M. Tiotsop, A. J. Fotue, S. C. Kenfack, N. Issofa, A. V. Wirngo, M. P. Tabue Djemmo, H. Fotsin, L. C. Fai. Electro-magnetic weak coupling optical polaron and temperature effect in quantum dot. J. Semicond., 2015, 36(10): 102001. doi: 10.1088/1674-4926/36/10/102001

[11]

Sanjeet Kumar Sinha, Saurabh Chaudhury. Comparative study of leakage power in CNTFET over MOSFET device. J. Semicond., 2014, 35(11): 114002. doi: 10.1088/1674-4926/35/11/114002

[12]

Jingrui Chai, Gang Dong, Zheng Mei, Weijun Zhu. Steady state electrical–thermal coupling analysis of TSV. J. Semicond., 2018, 39(9): 095001. doi: 10.1088/1674-4926/39/9/095001

[13]

Jianhui Bu, Shuzhen Li, Jiajun Luo, Zhengsheng Han. The STI stress effect on deep submicron PDSOI MOSFETs. J. Semicond., 2014, 35(3): 034008. doi: 10.1088/1674-4926/35/3/034008

[14]

Hongqi Jing, Li Zhong, Yuxi Ni, Junjie Zhang, Suping Liu, Xiaoyu Ma. Design and simulation of a novel high-efficiency cooling heat-sink structure using fluid-thermodynamics. J. Semicond., 2015, 36(10): 102006. doi: 10.1088/1674-4926/36/10/102006

[15]

Lily Liu, Changbin Song, Bin Xue, Jing Li, Junxi Wang, Jinmin Li. Exploration of photosensitive polyimide as the modification layer in thin film microcircuit. J. Semicond., 2018, 39(2): 026001. doi: 10.1088/1674-4926/39/2/026001

[16]

A. Menani, L. Dehimi, S. Dehimi, F. Pezzimenti. Modelling and optical response of a compressive-strained AlGaN/GaN quantum well laser diode. J. Semicond., 2020, 41(6): 062301. doi: 10.1088/1674-4926/41/6/062301

[17]

Qian Yang, Yongzhou Xue, Hao Chen, Xiuming Dou, Baoquan Sun. Photo-induced doping effect and dynamic process in monolayer MoSe2. J. Semicond., 2020, 41(8): 082004. doi: 10.1088/1674-4926/41/8/082004

[18]

Jian Qin, Ruohe Yao. Modeling of current-voltage characteristics for dual-gate amorphous silicon thin-film transistors considering deep Gaussian density-of-state distribution. J. Semicond., 2015, 36(12): 124005. doi: 10.1088/1674-4926/36/12/124005

[19]

Dou Qingping, Chen Zhanguo, Jia Gang, Ma Haitao, Cao Kun, Zhang Tiechen. Nonlinear Current-Voltage Characteristics and Electroluminescence of cBN Crystal. J. Semicond., 2006, 27(4): 609.

[20]

Li Zhiming, Xu Shengrui, Zhang Jincheng, Chang Yongming, Ni Jingyu, Zhou Xiaowei, Hao Yue. Finite element analysis of the temperature field in a vertical MOCVD reactor by induction heating. J. Semicond., 2009, 30(11): 113004. doi: 10.1088/1674-4926/30/11/113004

Search

Advanced Search >>

GET CITATION

A Resfa, B Y Smahi, B R Menezla. Study and modeling of the transport mechanism in a Schottky diode on the basis of a GaAs semiinsulator[J]. J. Semicond., 2011, 32(12): 124001. doi: 10.1088/1674-4926/32/12/124001.

Export: BibTex EndNote

Article Metrics

Article views: 2598 Times PDF downloads: 4220 Times Cited by: 0 Times

History

Manuscript received: 20 August 2015 Manuscript revised: 22 July 2011 Online: Published: 01 December 2011

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误