M L Wu, X S Jin, R Y Chuai, X Liu, J H Lee. Simulation study on short channel double-gate junctionless field-effect transistors[J]. J. Semicond., 2013, 34(3): 034004. doi: 10.1088/1674-4926/34/3/034004.
Meile Wu 1, , Xiaoshi Jin 1, , , Rongyan Chuai 1, , Xi Liu 1, and Jong-Ho Lee 2,
Abstract: We study the characteristics of short channel double-gate (DG) junctionless (JL) FETs by device simulation. Output Ⅰ-Ⅴ characteristic degradations such as an extremely reduced channel length induced subthreshold slope increase and the threshold voltage shift due to variations of body doping and channel length have been systematically analyzed. Distributions of electron concentration, electric field and potential in the body channel region are also analyzed. Comparisons with conventional inversion-mode (IM) FETs, which can demonstrate the advantages of JL FETs, have also been performed.
Key words: short channel effect, double-gate, junctionless field-effect transistor, device simulation
Abstract: We study the characteristics of short channel double-gate (DG) junctionless (JL) FETs by device simulation. Output Ⅰ-Ⅴ characteristic degradations such as an extremely reduced channel length induced subthreshold slope increase and the threshold voltage shift due to variations of body doping and channel length have been systematically analyzed. Distributions of electron concentration, electric field and potential in the body channel region are also analyzed. Comparisons with conventional inversion-mode (IM) FETs, which can demonstrate the advantages of JL FETs, have also been performed.
Key words:
short channel effect, double-gate, junctionless field-effect transistor, device simulation
References:
[1] |
Duarte J P, Kim M S, Choi S J. A compact model of quantum electron density at the subthreshold region for double-gate junctionless transistor[J]. IEEE Trans Electron Devices, 2012, 59(4): 1008. doi: 10.1109/TED.2012.2185827 |
[2] |
Jin X, Liu X, Lee J. A continuous current model of fully-depleted symmetric double-gate MOSFETs considering a wide range of body doping concentrations[J]. Semicond Sci Technol, 2010, 25(5): 055018. doi: 10.1088/0268-1242/25/5/055018 |
[3] |
Diagne B, Prégaldiny F, Lallement C. Explicit compact model for symmetric double-gate MOSFETs including solutions for small-geometry effects[J]. Solid-State Electron, 2008, 52(1): 99. doi: 10.1016/j.sse.2007.06.020 |
[4] |
Colinge J P, Lee C W, Afzalian A. Nanowire transistors without junctions[J]. Nat Nanotechnology, 2010, 5(3): 225. doi: 10.1038/nnano.2010.15 |
[5] |
Gnani E, Gnudi A, Reggiani S. Theory of the junctionless nanowire FET[J]. IEEE Trans Electron Devices, 2011, 58(9): 2903. doi: 10.1109/TED.2011.2159608 |
[6] |
Gnani E, Gnudi A, Reggiani S. Numerical investigation on the junctionless nanowire FET[J]. Solid-State Electron, 2012, 71: 13. doi: 10.1016/j.sse.2011.10.013 |
[7] |
Colinge J P, Ferain I, Kranti A. Junctionless nanowire transistor:complementary metal-oxide-semiconductor without junctions[J]. Sci Adv Mater, 2011, 3(3): 477. doi: 10.1166/sam.2011.1163 |
[8] |
SILVACO International. ATLAS User's Manual, 2005 |
[9] |
Shoji M, Horiguchi S. Electronic structures and phonon limited electron mobility of double-gate silicon-on insulator Si inversion layers[J]. J Appl Phys, 1999, 85: 2722. doi: 10.1063/1.369589 |
[1] |
Duarte J P, Kim M S, Choi S J. A compact model of quantum electron density at the subthreshold region for double-gate junctionless transistor[J]. IEEE Trans Electron Devices, 2012, 59(4): 1008. doi: 10.1109/TED.2012.2185827 |
[2] |
Jin X, Liu X, Lee J. A continuous current model of fully-depleted symmetric double-gate MOSFETs considering a wide range of body doping concentrations[J]. Semicond Sci Technol, 2010, 25(5): 055018. doi: 10.1088/0268-1242/25/5/055018 |
[3] |
Diagne B, Prégaldiny F, Lallement C. Explicit compact model for symmetric double-gate MOSFETs including solutions for small-geometry effects[J]. Solid-State Electron, 2008, 52(1): 99. doi: 10.1016/j.sse.2007.06.020 |
[4] |
Colinge J P, Lee C W, Afzalian A. Nanowire transistors without junctions[J]. Nat Nanotechnology, 2010, 5(3): 225. doi: 10.1038/nnano.2010.15 |
[5] |
Gnani E, Gnudi A, Reggiani S. Theory of the junctionless nanowire FET[J]. IEEE Trans Electron Devices, 2011, 58(9): 2903. doi: 10.1109/TED.2011.2159608 |
[6] |
Gnani E, Gnudi A, Reggiani S. Numerical investigation on the junctionless nanowire FET[J]. Solid-State Electron, 2012, 71: 13. doi: 10.1016/j.sse.2011.10.013 |
[7] |
Colinge J P, Ferain I, Kranti A. Junctionless nanowire transistor:complementary metal-oxide-semiconductor without junctions[J]. Sci Adv Mater, 2011, 3(3): 477. doi: 10.1166/sam.2011.1163 |
[8] |
SILVACO International. ATLAS User's Manual, 2005 |
[9] |
Shoji M, Horiguchi S. Electronic structures and phonon limited electron mobility of double-gate silicon-on insulator Si inversion layers[J]. J Appl Phys, 1999, 85: 2722. doi: 10.1063/1.369589 |
M L Wu, X S Jin, R Y Chuai, X Liu, J H Lee. Simulation study on short channel double-gate junctionless field-effect transistors[J]. J. Semicond., 2013, 34(3): 034004. doi: 10.1088/1674-4926/34/3/034004.
Article views: 1513 Times PDF downloads: 19 Times Cited by: 0 Times
Manuscript received: 25 July 2012 Manuscript revised: 12 September 2012 Online: Published: 01 March 2013
Journal of Semiconductors © 2017 All Rights Reserved 京ICP备05085259号-2