J. Semicond. > Volume 34 > Issue 7 > Article Number: 073006

Large area graphene produced via the assistance of surface modification

Yang Zhang , Wei Dou , Wei Luo , Weier Lu , Jing Xie , , Chaobo Li and Yang Xia

+ Author Affilications + Find other works by these authors

PDF

Abstract: We develop a novel and convenient method to prepare large area single-layer and multi-layer graphene through surface modification with oxygen plasma. The obtained large area single-layer graphene is dozens of microns wide in the lateral dimension and characterized by optical microscopy, atomic force microscopy. Raman spectroscopy show multilayer graphene has less disorder density than single-layer graphene. X-ray photoelectron spectroscopy (XPS) analysis shows that hydroxyl groups are formed on the HOPG surface during oxygen plasma pre-treatment. Hydrogen bonds develop between hydroxyl groups on HOPG surface and silanol groups on hydroxylated SiO2/Si substrate, which facilitate the transfer process. This study may provide a potential approach to develop graphene-based devices by using the large area lithographic printing process.

Key words: graphenehydrogen-bondoxygen plasmahydroxyl groups

Abstract: We develop a novel and convenient method to prepare large area single-layer and multi-layer graphene through surface modification with oxygen plasma. The obtained large area single-layer graphene is dozens of microns wide in the lateral dimension and characterized by optical microscopy, atomic force microscopy. Raman spectroscopy show multilayer graphene has less disorder density than single-layer graphene. X-ray photoelectron spectroscopy (XPS) analysis shows that hydroxyl groups are formed on the HOPG surface during oxygen plasma pre-treatment. Hydrogen bonds develop between hydroxyl groups on HOPG surface and silanol groups on hydroxylated SiO2/Si substrate, which facilitate the transfer process. This study may provide a potential approach to develop graphene-based devices by using the large area lithographic printing process.

Key words: graphenehydrogen-bondoxygen plasmahydroxyl groups



References:

[1]

Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene[J]. Carbon, 2010, 48(8): 2127. doi: 10.1016/j.carbon.2010.01.058

[2]

Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6(3): 183. doi: 10.1038/nmat1849

[3]

Loh K P, Bao Q, Ang P K. The chemistry of graphene[J]. J Mater Chem, 2010, 20(12): 2277. doi: 10.1039/b920539j

[4]

Novoselov K, Geim A, Morozov S. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666. doi: 10.1126/science.1102896

[5]

Wang D C, Zhang Y M, Zhang Y M. Raman analysis of epitaxial graphene on 6H-SiC (0001) substrates under low pressure environment[J]. Journal of Semiconductors, 2011, 32(11): 113003. doi: 10.1088/1674-4926/32/11/113003

[6]

Tung V C, Allen M J, Yang Y. High-throughput solution processing of large-scale graphene[J]. Nat Nanotech, 2008, 4(1): 25.

[7]

Yuan G D, Zhang W J, Yang Y. Graphene sheets via microwave chemical vapor deposition[J]. Chem Phys Lett, 2009, 467(4-6): 361. doi: 10.1016/j.cplett.2008.11.059

[8]

Zhao G, Shao D, Chen C. Synthesis of few-layered graphene by H2O2 plasma etching of graphite[J]. Appl Phys Lett, 2011, 98(18): 183114. doi: 10.1063/1.3589354

[9]

Wang Y J, Miao C Q, Huang B C. Scalable synthesis of graphene on patterned Ni and transfer[J]. IEEE Trans Electron Devices, 2010, 57(12): 3472. doi: 10.1109/TED.2010.2076337

[10]

Gao L, Ren W, Xu H. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum[J]. Nat Commun, 2012, 3: 699. doi: 10.1038/ncomms1702

[11]

Huc V, Bendiab N, Rosman N. Large and flat graphene flakes produced by epoxy bonding and reverse exfoliation of highly oriented pyrolytic graphite[J]. Nanotechnology, 2008, 19(45): 455601. doi: 10.1088/0957-4484/19/45/455601

[12]

Liang X, Fu Z, Chou S Y. Graphene transistors fabricated via transfer-printing in device active-areas on large wafer[J]. Nano Lett, 2007, 7(12): 3840. doi: 10.1021/nl072566s

[13]

Bajpai R, Roy S, Jain L. Facile one-step transfer process of graphene[J]. Nanotechnology, 2011, 22(22): 225606. doi: 10.1088/0957-4484/22/22/225606

[14]

Liu L H, Yan M. Simple method for the covalent immobilization of graphene[J]. Nano Lett, 2009, 9(9): 3375. doi: 10.1021/nl901669h

[15]

Goler S, Piazza V, Roddaro S. Self-assembly and electron-beam-induced direct etching of suspended graphene nanostructures[J]. J Appl Phys, 2011, 110(6): 064308. doi: 10.1063/1.3633260

[16]

Nakahara M, Sanada Y. Modification of pyrolytic graphite surface with plasma irradiation[J]. J Mater Sci, 1993, 28(5): 1327. doi: 10.1007/BF01191973

[17]

Evans, Kuwana. Radiofrequency oxygen plasma treatment of pyrolytic graphite electrode surfaces[J]. Anal Chem, 1977, 49(11): 1632. doi: 10.1021/ac50019a042

[18]

Cvelbar U, Markoli B, Poberaj I. Formation of functional groups on graphite during oxygen plasma treatment[J]. Appl Surf Sci, 2006, 253(4): 1861. doi: 10.1016/j.apsusc.2006.03.028

[19]

You H X, Brown N, Al-Assadi K. Surface characterization of highly oriented pyrolytic graphite modified by oxygen radio-frequency plasmas[J]. J Mater Sci Lett, 1993, 12(4): 201. doi: 10.1007/BF00539797

[20]

Seah C M, Chai S P, Ichikawa S. Synthesis of single-walled carbon nanotubes over a spin-coated Fe catalyst in an ethanol-PEG colloidal solution[J]. Carbon, 2012, 50(3): 960. doi: 10.1016/j.carbon.2011.09.059

[21]

Sabio J, Seoánez C, Fratini S. Electrostatic interactions between graphene layers and their environment[J]. Phys Rev B, 2008, 77(19): 195409. doi: 10.1103/PhysRevB.77.195409

[22]

Ni Z H, Wang H M, Ma Y. Tunable stress and controlled thickness modification in graphene by annealing[J]. Acs Nano, 2008, 2(5): 1033. doi: 10.1021/nn800031m

[23]

Martins Ferreira E H, Moutinho M V O, Stavale F. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder[J]. Phys Rev B, 2010, 82(12): 125429. doi: 10.1103/PhysRevB.82.125429

[24]

Ferrari A C, Meyer J C, Scardaci V. Raman spectrum of graphene and graphene layers[J]. Phys Rev Lett, 2006, 97(18): 187401. doi: 10.1103/PhysRevLett.97.187401

[25]

Nakahara M, Sanada Y. Structural changes of a pyrolytic graphite surface oxidized by electrochemical and plasma treatment[J]. J Mater Sci, 1994, 29(12): 3193. doi: 10.1007/BF00356662

[26]

Kim Y Y, Lim W S, Park J B. Layer by layer etching of the highly oriented pyrolythic graphite by using atomic layer etching[J]. J Electrochem Soc, 2011, 158(12): D710. doi: 10.1149/2.061112jes

[27]

Dieckhoff S, Schlett V, Possart W. XPS studies of thin polycyanurate films on silicon wafers[J]. Fresenius J Anal Chem, 1995, 353(3/4): 278.

[28]

Nagashio K, Yamashita T, Nishimura T. Electrical transport properties of graphene on SiO2 with specific surface structures[J]. J Appl Phys, 2011, 110(2): 024513. doi: 10.1063/1.3611394

[29]

Zhang Y, Small J P, Pontius W V. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices[J]. Appl Phys Lett, 2005, 86(7): 073104. doi: 10.1063/1.1862334

[1]

Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene[J]. Carbon, 2010, 48(8): 2127. doi: 10.1016/j.carbon.2010.01.058

[2]

Geim A K, Novoselov K S. The rise of graphene[J]. Nat Mater, 2007, 6(3): 183. doi: 10.1038/nmat1849

[3]

Loh K P, Bao Q, Ang P K. The chemistry of graphene[J]. J Mater Chem, 2010, 20(12): 2277. doi: 10.1039/b920539j

[4]

Novoselov K, Geim A, Morozov S. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666. doi: 10.1126/science.1102896

[5]

Wang D C, Zhang Y M, Zhang Y M. Raman analysis of epitaxial graphene on 6H-SiC (0001) substrates under low pressure environment[J]. Journal of Semiconductors, 2011, 32(11): 113003. doi: 10.1088/1674-4926/32/11/113003

[6]

Tung V C, Allen M J, Yang Y. High-throughput solution processing of large-scale graphene[J]. Nat Nanotech, 2008, 4(1): 25.

[7]

Yuan G D, Zhang W J, Yang Y. Graphene sheets via microwave chemical vapor deposition[J]. Chem Phys Lett, 2009, 467(4-6): 361. doi: 10.1016/j.cplett.2008.11.059

[8]

Zhao G, Shao D, Chen C. Synthesis of few-layered graphene by H2O2 plasma etching of graphite[J]. Appl Phys Lett, 2011, 98(18): 183114. doi: 10.1063/1.3589354

[9]

Wang Y J, Miao C Q, Huang B C. Scalable synthesis of graphene on patterned Ni and transfer[J]. IEEE Trans Electron Devices, 2010, 57(12): 3472. doi: 10.1109/TED.2010.2076337

[10]

Gao L, Ren W, Xu H. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum[J]. Nat Commun, 2012, 3: 699. doi: 10.1038/ncomms1702

[11]

Huc V, Bendiab N, Rosman N. Large and flat graphene flakes produced by epoxy bonding and reverse exfoliation of highly oriented pyrolytic graphite[J]. Nanotechnology, 2008, 19(45): 455601. doi: 10.1088/0957-4484/19/45/455601

[12]

Liang X, Fu Z, Chou S Y. Graphene transistors fabricated via transfer-printing in device active-areas on large wafer[J]. Nano Lett, 2007, 7(12): 3840. doi: 10.1021/nl072566s

[13]

Bajpai R, Roy S, Jain L. Facile one-step transfer process of graphene[J]. Nanotechnology, 2011, 22(22): 225606. doi: 10.1088/0957-4484/22/22/225606

[14]

Liu L H, Yan M. Simple method for the covalent immobilization of graphene[J]. Nano Lett, 2009, 9(9): 3375. doi: 10.1021/nl901669h

[15]

Goler S, Piazza V, Roddaro S. Self-assembly and electron-beam-induced direct etching of suspended graphene nanostructures[J]. J Appl Phys, 2011, 110(6): 064308. doi: 10.1063/1.3633260

[16]

Nakahara M, Sanada Y. Modification of pyrolytic graphite surface with plasma irradiation[J]. J Mater Sci, 1993, 28(5): 1327. doi: 10.1007/BF01191973

[17]

Evans, Kuwana. Radiofrequency oxygen plasma treatment of pyrolytic graphite electrode surfaces[J]. Anal Chem, 1977, 49(11): 1632. doi: 10.1021/ac50019a042

[18]

Cvelbar U, Markoli B, Poberaj I. Formation of functional groups on graphite during oxygen plasma treatment[J]. Appl Surf Sci, 2006, 253(4): 1861. doi: 10.1016/j.apsusc.2006.03.028

[19]

You H X, Brown N, Al-Assadi K. Surface characterization of highly oriented pyrolytic graphite modified by oxygen radio-frequency plasmas[J]. J Mater Sci Lett, 1993, 12(4): 201. doi: 10.1007/BF00539797

[20]

Seah C M, Chai S P, Ichikawa S. Synthesis of single-walled carbon nanotubes over a spin-coated Fe catalyst in an ethanol-PEG colloidal solution[J]. Carbon, 2012, 50(3): 960. doi: 10.1016/j.carbon.2011.09.059

[21]

Sabio J, Seoánez C, Fratini S. Electrostatic interactions between graphene layers and their environment[J]. Phys Rev B, 2008, 77(19): 195409. doi: 10.1103/PhysRevB.77.195409

[22]

Ni Z H, Wang H M, Ma Y. Tunable stress and controlled thickness modification in graphene by annealing[J]. Acs Nano, 2008, 2(5): 1033. doi: 10.1021/nn800031m

[23]

Martins Ferreira E H, Moutinho M V O, Stavale F. Evolution of the Raman spectra from single-, few-, and many-layer graphene with increasing disorder[J]. Phys Rev B, 2010, 82(12): 125429. doi: 10.1103/PhysRevB.82.125429

[24]

Ferrari A C, Meyer J C, Scardaci V. Raman spectrum of graphene and graphene layers[J]. Phys Rev Lett, 2006, 97(18): 187401. doi: 10.1103/PhysRevLett.97.187401

[25]

Nakahara M, Sanada Y. Structural changes of a pyrolytic graphite surface oxidized by electrochemical and plasma treatment[J]. J Mater Sci, 1994, 29(12): 3193. doi: 10.1007/BF00356662

[26]

Kim Y Y, Lim W S, Park J B. Layer by layer etching of the highly oriented pyrolythic graphite by using atomic layer etching[J]. J Electrochem Soc, 2011, 158(12): D710. doi: 10.1149/2.061112jes

[27]

Dieckhoff S, Schlett V, Possart W. XPS studies of thin polycyanurate films on silicon wafers[J]. Fresenius J Anal Chem, 1995, 353(3/4): 278.

[28]

Nagashio K, Yamashita T, Nishimura T. Electrical transport properties of graphene on SiO2 with specific surface structures[J]. J Appl Phys, 2011, 110(2): 024513. doi: 10.1063/1.3611394

[29]

Zhang Y, Small J P, Pontius W V. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices[J]. Appl Phys Lett, 2005, 86(7): 073104. doi: 10.1063/1.1862334

[1]

Yanlong Yin, Jiang Li, Yang Xu, Hon Ki Tsang, Daoxin Dai. Silicon-graphene photonic devices. J. Semicond., 2018, 39(6): 061009. doi: 10.1088/1674-4926/39/6/061009

[2]

Tanmoy Das, Bhupendra K. Sharma, Ajit K. Katiyar, Jong-Hyun Ahn. Graphene-based flexible and wearable electronics. J. Semicond., 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007

[3]

K. Fobelets, C. Panteli, O. Sydoruk, Chuanbo Li. Ammonia sensing using arrays of silicon nanowires and graphene. J. Semicond., 2018, 39(6): 063001. doi: 10.1088/1674-4926/39/6/063001

[4]

Li Wuqun, Cao Juncheng. Anisotropic polarization due to electron–phonon interactions in graphene. J. Semicond., 2009, 30(11): 112002. doi: 10.1088/1674-4926/30/11/112002

[5]

Xiaowei Jiang. Broadband absorption of graphene from magnetic dipole resonances in hybrid nanostructure. J. Semicond., 2019, 40(6): 062006. doi: 10.1088/1674-4926/40/6/062006

[6]

N. Nouri, G. Rashedi. Band structure of monolayer of graphene, silicene and silicon-carbide including a lattice of empty or filled holes. J. Semicond., 2018, 39(8): 083001. doi: 10.1088/1674-4926/39/8/083001

[7]

Pulkit Sharma, Pratap Singh, Kamlesh Patel. Attenuation characteristics of monolayer graphene by Pi-and T-networks modeling of multilayer microstrip line. J. Semicond., 2017, 38(9): 093003. doi: 10.1088/1674-4926/38/9/093003

[8]

Leifeng Chen, Hong He. Answer to comments on "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition". J. Semicond., 2017, 38(4): 044007. doi: 10.1088/1674-4926/38/4/044007

[9]

Xudong Qin, Yonghai Chen, Yu Liu, Laipan Zhu, Yuan Li, Qing Wu, Wei Huang. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials. J. Semicond., 2016, 37(1): 013002. doi: 10.1088/1674-4926/37/1/013002

[10]

Lara Valentic, Nima E. Gorji. Comment on Chen et al. "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition", Electrochimica Acta, 2014. J. Semicond., 2015, 36(9): 094012. doi: 10.1088/1674-4926/36/9/094012

[11]

Wei Feng. Hydrodynamic simulations of terahertz oscillation in double-layer graphene. J. Semicond., 2018, 39(12): 122005. doi: 10.1088/1674-4926/39/12/122005

[12]

Luqi Tao, Danyang Wang, Song Jiang, Ying Liu, Qianyi Xie, He Tian, Ningqin Deng, Xuefeng Wang, Yi Yang, Tianling Ren. Fabrication techniques and applications of flexible graphene-based electronic devices. J. Semicond., 2016, 37(4): 041001. doi: 10.1088/1674-4926/37/4/041001

[13]

Wenchao Min, Hao Sun, Qilian Zhang, Zhiying Chen, Yanhui Zhang, Guanghui Yu, Xiaowei Sun. A comparative study of Ge/Au/Ni/Au-based ohmic contact on graphene. J. Semicond., 2014, 35(5): 056001. doi: 10.1088/1674-4926/35/5/056001

[14]

Yubing Wang, Weihong Yin, Qin Han, Xiaohong Yang, Han Ye, Dongdong Yin. A method to transfer an individual graphene flake to a target position with a precision of sub-micrometer. J. Semicond., 2017, 38(4): 046001. doi: 10.1088/1674-4926/38/4/046001

[15]

S. S. Shinde, S. Park. Oriented colloidal-crystal thin films of polystyrene spheres via spin coating. J. Semicond., 2015, 36(2): 023001. doi: 10.1088/1674-4926/36/2/023001

[16]

Jiang Ran, Meng Lingguo, Zhang Xijian, Hyung-Suk Jung, Cheol Seong Hwang. Atomic layer deposition of an Al2O3 dielectric on ultrathin graphite by using electron beam irradiation. J. Semicond., 2012, 33(9): 093004. doi: 10.1088/1674-4926/33/9/093004

[17]

Jingxia Wu, Yang Hong, Bingjie Wang. The applications of carbon nanomaterials in fiber-shaped energy storage devices. J. Semicond., 2018, 39(1): 011004. doi: 10.1088/1674-4926/39/1/011004

[18]

Santosh Kumar Gupta, Rupesh Shukla. Bandgap engineered novel g-C3N4/G/h-BN heterostructure for electronic applications. J. Semicond., 2019, 40(3): 032801. doi: 10.1088/1674-4926/40/3/032801

[19]

Huihui Yang, Feng Gao, Mingjin Dai, Dechang Jia, Yu Zhou, Ping'an Hu. Recent advances in preparation,properties and device applications of two-dimensional h-BN and its vertical heterostructures. J. Semicond., 2017, 38(3): 031004. doi: 10.1088/1674-4926/38/3/031004

[20]

Zheng Lou, Zhongzhu Liang, Guozhen Shen. Photodetectors based on two dimensional materials. J. Semicond., 2016, 37(9): 091001. doi: 10.1088/1674-4926/37/9/091001

Search

Advanced Search >>

GET CITATION

Y Zhang, W Dou, W Luo, W E Lu, J Xie, C B Li, Y Xia. Large area graphene produced via the assistance of surface modification[J]. J. Semicond., 2013, 34(7): 073006. doi: 10.1088/1674-4926/34/7/073006.

Export: BibTex EndNote

Article Metrics

Article views: 559 Times PDF downloads: 10 Times Cited by: 0 Times

History

Manuscript received: 05 November 2012 Manuscript revised: 17 December 2012 Online: Published: 01 July 2013

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误