J. Semicond. > Volume 36 > Issue 12 > Article Number: 124006

Performance prediction of four-contact vertical Hall-devices using a conformal mapping technique

Yang Huang 1, , Yue Xu 1, 2, , and Yufeng Guo 1, 2,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: Instead of the conventional design with five contacts in the sensor active area, innovative vertical Hall devices(VHDs) with four contacts and six contacts are asymmetrical in structural design but symmetrical in the current flow that can be well fit for the spinning current technique for offset elimination. In this article, a conformal mapping calculation method is used to predict the performance of asymmetrical VHD embedded in a deep n-well with four contacts. Furthermore, to make the calculation more accurate, the junction field effect is also involved into the conformal mapping method. The error between calculated and simulated results is less than 5% for the current-related sensitivity, and approximately 13% for the voltage-related sensitivity. This proves that such calculations can be used to predict the optimal structure of the vertical Hall-devices.

Key words: conformal mapping techniquevertical Hall devicegeometry factormagnetic sensitivity

Abstract: Instead of the conventional design with five contacts in the sensor active area, innovative vertical Hall devices(VHDs) with four contacts and six contacts are asymmetrical in structural design but symmetrical in the current flow that can be well fit for the spinning current technique for offset elimination. In this article, a conformal mapping calculation method is used to predict the performance of asymmetrical VHD embedded in a deep n-well with four contacts. Furthermore, to make the calculation more accurate, the junction field effect is also involved into the conformal mapping method. The error between calculated and simulated results is less than 5% for the current-related sensitivity, and approximately 13% for the voltage-related sensitivity. This proves that such calculations can be used to predict the optimal structure of the vertical Hall-devices.

Key words: conformal mapping techniquevertical Hall devicegeometry factormagnetic sensitivity



References:

[1]

Madec M, Schell J, Kammerer J. Compact modeling of vertical Hall-effect devices:electrical behavior[J]. Analog Integrated Circuits and Signal Processing, 2013, 77(2): 213.

[2]

Huang Haiyun, Wang Dejun, Li Wenbo. A simplified compact model of miniaturized cross-shaped CMOS integrated Hall devices[J]. Journal of Semiconductors, 2012, 33(8): 084005.

[3]

Heidari H, Bonizzoni E, Gatti U. Analysis and modeling of four-folded vertical Hall devices in current domain[J]. 10th Conference on PhD Research in Microelectronics and Electronics(PRIME), 2014: 1.

[4]

Sander C, Raz R, Ruther P. Fully symmetric vertical hall devices in CMOS technology[J]. IEEE Sensors Proceedings, 2013: 1.

[5]

Schurig E, Schott C, Besse P. 0.2 mT residual offset of CMOS integrated vertical Hall sensors[J]. Sensors and Actuators A:Physical, 2004, 110(1): 98.

[6]

Jovanovic E, Pantic D, Pantic D. Simulation of vertical Hall sensor in high-voltage CMOS technology[J]. 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, 2003: 811.

[7]

Besse P A, Schott C, Popovic R S. Analytical study of vertical Hall devices using an adapted conform mapping technique[J]. International Conference on Modeling and Simulation of Microsystems, 1998: 660.

[8]

Schurig E. Highly sensitive vertical Hall sensors in CMOS technology[J]. Lausanne, Switzerland:Swiss Federal Institute of Technology Lausanne(EPFL), 2005.

[9]

Abramowitz M, Stegun I A. Handbook of mathematical functions[J]. New York:Dover Publications, 1965.

[10]

Agarwal R P, Perera K, Pinelas S. An introduction to complex analysis[J]. Springer, US, 2011.

[11]

Popoviæ R S. Hall-effect devices[J]. London:Institute of Physics Publishing, 2004.

[12]

Demierre M, Radivoje P, Popovic S. Improvements of CMOS Hall microsystems and application for absolute angular position measurements[J]. Lausanne, Switzerland:Swiss Federal Institute of Technology Lausanne(EPFL), 2003.

[1]

Madec M, Schell J, Kammerer J. Compact modeling of vertical Hall-effect devices:electrical behavior[J]. Analog Integrated Circuits and Signal Processing, 2013, 77(2): 213.

[2]

Huang Haiyun, Wang Dejun, Li Wenbo. A simplified compact model of miniaturized cross-shaped CMOS integrated Hall devices[J]. Journal of Semiconductors, 2012, 33(8): 084005.

[3]

Heidari H, Bonizzoni E, Gatti U. Analysis and modeling of four-folded vertical Hall devices in current domain[J]. 10th Conference on PhD Research in Microelectronics and Electronics(PRIME), 2014: 1.

[4]

Sander C, Raz R, Ruther P. Fully symmetric vertical hall devices in CMOS technology[J]. IEEE Sensors Proceedings, 2013: 1.

[5]

Schurig E, Schott C, Besse P. 0.2 mT residual offset of CMOS integrated vertical Hall sensors[J]. Sensors and Actuators A:Physical, 2004, 110(1): 98.

[6]

Jovanovic E, Pantic D, Pantic D. Simulation of vertical Hall sensor in high-voltage CMOS technology[J]. 6th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service, 2003: 811.

[7]

Besse P A, Schott C, Popovic R S. Analytical study of vertical Hall devices using an adapted conform mapping technique[J]. International Conference on Modeling and Simulation of Microsystems, 1998: 660.

[8]

Schurig E. Highly sensitive vertical Hall sensors in CMOS technology[J]. Lausanne, Switzerland:Swiss Federal Institute of Technology Lausanne(EPFL), 2005.

[9]

Abramowitz M, Stegun I A. Handbook of mathematical functions[J]. New York:Dover Publications, 1965.

[10]

Agarwal R P, Perera K, Pinelas S. An introduction to complex analysis[J]. Springer, US, 2011.

[11]

Popoviæ R S. Hall-effect devices[J]. London:Institute of Physics Publishing, 2004.

[12]

Demierre M, Radivoje P, Popovic S. Improvements of CMOS Hall microsystems and application for absolute angular position measurements[J]. Lausanne, Switzerland:Swiss Federal Institute of Technology Lausanne(EPFL), 2003.

[1]

Xiaofeng Zhao, Dianzhong Wen, Cuicui Zhuang, Jingya Cao, Zhiqiang Wang. Fabrication and characteristics of magnetic field sensors based on nano-polysilicon thin-film transistors. J. Semicond., 2013, 34(3): 036001. doi: 10.1088/1674-4926/34/3/036001

[2]

Liu Tong, Zhu Dazhong. Relative Sensitivity of Sector Split-Drain Magnetic Field-Effect Transistor Based on Geometrical Correction Factor of Sector Hall Plate. J. Semicond., 2006, 27(12): 2155.

[3]

Jia Zhang, Haigang Yang, Jiabin Sun, Le Yu, Yuanfeng Wei. Modeling of enclosed-gate layout transistors as ESD protection device based on conformal mapping method. J. Semicond., 2014, 35(8): 085001. doi: 10.1088/1674-4926/35/8/085001

[4]

Zhao Xiaofeng, Wen Dianzhong. Fabrication and characteristics of the nc-Si/c-Si heterojunction MAGFET. J. Semicond., 2009, 30(11): 114002. doi: 10.1088/1674-4926/30/11/114002

[5]

Wentao Dong, Chen Zhu, Wei Hu, Lin Xiao, Yong’an Huang. Stretchable human-machine interface based on skin-conformal sEMG electrodes with self-similar geometry. J. Semicond., 2018, 39(1): 014001. doi: 10.1088/1674-4926/39/1/014001

[6]

Yongtao Yu, Guoqiang Feng, Rui Chen, Jianwei Han. Laser SEU sensitivity mapping of deep submicron CMOS SRAM. J. Semicond., 2014, 35(6): 064011. doi: 10.1088/1674-4926/35/6/064011

[7]

Jing Xiaocheng, Yao Ruohe, Lin Yushu. Magnetic Field Optimization of a Reactive Ion Etching Device with Magnetic Containment. J. Semicond., 2006, 27(S1): 422.

[8]

S.K. Vishvakarma, Ankur Beohar, Vikas Vijayvargiya, Priyal Trivedi. Analysis of DC and analog/RF performance on Cyl-GAA-TFET using distinct device geometry. J. Semicond., 2017, 38(7): 074003. doi: 10.1088/1674-4926/38/7/074003

[9]

Sun Yicai, Pan Guofeng, Yang Maofeng, Ye Wei, Zhang Peng. A Mapping Technique to Draw Resistivity Isocontours for Slice-of-Silicon Monocrystal. J. Semicond., 2008, 29(7): 1281.

[10]

Liu Yu, Wang Guoyu. A New CMOS Image Sensor with a High Fill Factor and the Dynamic Digital Double Sampling Technique. J. Semicond., 2006, 27(2): 313.

[11]

Kh. S. Karimov, Noshin Fatima, Khaulah Sulaiman, M. Mahroof Tahir, Zubair Ahmad, A. Mateen. Sensitivity enhancement of OD- and OD-CNT-based humidity sensors by high gravity thin film deposition technique. J. Semicond., 2015, 36(3): 034005. doi: 10.1088/1674-4926/36/3/034005

[12]

Liu Songmin, Gu Shulin, Zhu Shunming, Ye Jiandong, Liu Wei, Zhang Rong, Zheng Youdou. Simulation of the ZnO-MOCVD Horizontal Reactor Geometry. J. Semicond., 2007, 28(S1): 309.

[13]

Zhang Shuang, Guo Shuxu, Guo Xin, Cao Junsheng, Gao Fengli, Shan Jiangdong, Ren Ruizhi. Extrinsic Ideality Factor of Laser Array. J. Semicond., 2007, 28(5): 768.

[14]

Huihui Yang, Feng Gao, Mingjin Dai, Dechang Jia, Yu Zhou, Ping'an Hu. Recent advances in preparation,properties and device applications of two-dimensional h-BN and its vertical heterostructures. J. Semicond., 2017, 38(3): 031004. doi: 10.1088/1674-4926/38/3/031004

[15]

Serdar Yilmaz. The geometric resistivity correction factor for several geometrical samples. J. Semicond., 2015, 36(8): 082001. doi: 10.1088/1674-4926/36/8/082001

[16]

Fang Dawei, Zhang Yi, Li Chenxia, Manzaneda C, Li Bo. Effect of DBR Geometry on Reflectivity and Spectral Linewidth of DBR Lasers. J. Semicond., 2005, 26(12): 2315.

[17]

Yang Pei, Haibin Wu, Jingmin Liu. Optimized geometry and electronic structure of three-dimensional β-graphyne. J. Semicond., 2015, 36(7): 072002. doi: 10.1088/1674-4926/36/7/072002

[18]

Gaobin Xu, Ye Xi, Xing Chen, Yuanming Ma. Application research on the sensitivity of porous silicon. J. Semicond., 2017, 38(9): 094003. doi: 10.1088/1674-4926/38/9/094003

[19]

Zhang Wen, Xu Yuesheng, Wang Shengli. Magnetic Viscosity of Si Melt Under a Magnetic Field. J. Semicond., 2007, 28(1): 65.

[20]

Tomasz Dietl, Alberta Bonanni, Hideo Ohno. Families of magnetic semiconductors — an overview. J. Semicond., 2019, 40(8): 080301. doi: 10.1088/1674-4926/40/8/080301

Search

Advanced Search >>

GET CITATION

Y Huang, Y Xu, Y F Guo. Performance prediction of four-contact vertical Hall-devices using a conformal mapping technique[J]. J. Semicond., 2015, 36(12): 124006. doi: 10.1088/1674-4926/36/12/124006.

Export: BibTex EndNote

Article Metrics

Article views: 1593 Times PDF downloads: 13 Times Cited by: 0 Times

History

Manuscript received: 16 April 2015 Manuscript revised: Online: Published: 01 December 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误