J. Semicond. > Volume 36 > Issue 12 > Article Number: 125003

A 1.8-3 GHz-band high efficiency GaAs pHEMT power amplifier MMIC

Qin Ge , , Hongqi Tao and Xuming Yu

+ Author Affiliations + Find other works by these authors

PDF

Abstract: This paper describes an S-band wideband high efficiency power amplifier based on the Nanjing Electron Device Institute's GaAs pHEMT monolithic microwave integrated circuit(MMIC) technology. To realize high efficiency, the two stage power amplifier is designed with a driver ratio of 1:8. The low-pass filter/high-pass filter combined matching circuit is applied to the amplifier to reduce the chip size, as well as to realize the optimum impedances over a wide bandwidth for high efficiency at each stage. Biased at class AB under a drain supply voltage of 5 V, the amplifier delivers 33-34 dBm saturated output power across the frequency range of 1.8 to 3 GHz with associated power-added efficiency of 35%-45% and very flat power gain of 25-26 dB in CW mode. The size of this MMIC is very compact with 2.7×2.75 mm2.

Key words: widebandMMICGaAs pHEMTpower amplifierhigh efficiency

Abstract: This paper describes an S-band wideband high efficiency power amplifier based on the Nanjing Electron Device Institute's GaAs pHEMT monolithic microwave integrated circuit(MMIC) technology. To realize high efficiency, the two stage power amplifier is designed with a driver ratio of 1:8. The low-pass filter/high-pass filter combined matching circuit is applied to the amplifier to reduce the chip size, as well as to realize the optimum impedances over a wide bandwidth for high efficiency at each stage. Biased at class AB under a drain supply voltage of 5 V, the amplifier delivers 33-34 dBm saturated output power across the frequency range of 1.8 to 3 GHz with associated power-added efficiency of 35%-45% and very flat power gain of 25-26 dB in CW mode. The size of this MMIC is very compact with 2.7×2.75 mm2.

Key words: widebandMMICGaAs pHEMTpower amplifierhigh efficiency



References:

[1]

Morikawa J, Asano K, Ishikura K. 60 W L-band power AlGaAs/GaAs heterostructure FETs[J]. IEEE MTT-S International Microwave Symposium Digest, 1997: 1413.

[2]

Nawaz M I, Malik Z Y, Mehdi G. S-band MESFET linear high power amplifier for OFDM applications[J]. IEEE International Bhurban Conference on Applied Sciences & Technology, 2007: 15.

[3]

Ishii K, Okamoto T, Ishida H. S-band 48% efficiency GaAs FET amplifier with 135 W output power for mobile communications satellite[J]. IEEE MTT-S International Microwave Symposium Digest, 1994: 269.

[4]

Megherbi A C, Benramache S, Guettaf A. Backgating effect in GaAs FETs with a channel-semi-insulating substrate boundary[J]. Journal of Semiconductors, 2014, 35(3): 034004.

[5]

Iwai T, Kebayashi K, Nakasha Y. 42% high-efficiency two-stage HBT power-amplifier MMIC for W-CDMA cellular phone systems[J]. IEEE Trans Microw Theory Tech, 2000, 48(12): 2567.

[6]

Tasaki S, Takayama Y, Ishikawa R. A 1.2-2.0 GHz-band GaAs pHEMT cascode power amplifier MMIC consisting of independently biased transistors[J]. IEEE Asia-Pacific Microwave Conference Proceedings(APMC), 2013, 722.

[7]

Kim J H, Kim J H, Noh Y S. An InGaP-GaAs HBT MMIC smart power amplifier for W-CDMA mobile handsets[J]. IEEE J Solid-State Circuits, 2003, 38(6): 905.

[8]

Hirata M, Oka T, Hasegawa M. Fully-integrated GaAs HBT power amplifier MMIC with high linear output power for 3 GHz-band broadband wireless applications[J]. Electron Lett, 2006, 42(22): 1286.

[9]

Staudinger J, Sherman R, Quach T. A 15 watt PFP GaAs PHEMT MMIC power amplifier for 3G wireless transmitter applications[J]. IEEE MTT-S International Microwave Symposium Digest, 2002: 617.

[10]

Akkul M, Sarfraz M, Mayock J. 50 watt MMIC power amplifier design for 2 GHz applications[J]. IEEE MTT-S International Microwave Symposium Digest, 2004: 1355.

[11]

Meliani C, Rudolph M, Kurpas P. A 2.4 GHz GaAs-HBT class-E MMIC amplifier with 65% PAE[J]. IEEE MTT-S International Microwave Symposium, 2007, 1087.

[12]

Mori K, Shinjo S, Kitabayashi F. An L-band high-efficiency and low-distortion power amplifier using HPF/LPF combined interstage matching circuit[J]. IEEE Trans Microw Theory Tech, 2000, 48(12): 2560.

[13]

Ohtomo M. Stability analysis and numerical simulation of multidevice amplifiers[J]. IEEE Trans Microw Theory Technol, 1993, 41(6): 983.

[1]

Morikawa J, Asano K, Ishikura K. 60 W L-band power AlGaAs/GaAs heterostructure FETs[J]. IEEE MTT-S International Microwave Symposium Digest, 1997: 1413.

[2]

Nawaz M I, Malik Z Y, Mehdi G. S-band MESFET linear high power amplifier for OFDM applications[J]. IEEE International Bhurban Conference on Applied Sciences & Technology, 2007: 15.

[3]

Ishii K, Okamoto T, Ishida H. S-band 48% efficiency GaAs FET amplifier with 135 W output power for mobile communications satellite[J]. IEEE MTT-S International Microwave Symposium Digest, 1994: 269.

[4]

Megherbi A C, Benramache S, Guettaf A. Backgating effect in GaAs FETs with a channel-semi-insulating substrate boundary[J]. Journal of Semiconductors, 2014, 35(3): 034004.

[5]

Iwai T, Kebayashi K, Nakasha Y. 42% high-efficiency two-stage HBT power-amplifier MMIC for W-CDMA cellular phone systems[J]. IEEE Trans Microw Theory Tech, 2000, 48(12): 2567.

[6]

Tasaki S, Takayama Y, Ishikawa R. A 1.2-2.0 GHz-band GaAs pHEMT cascode power amplifier MMIC consisting of independently biased transistors[J]. IEEE Asia-Pacific Microwave Conference Proceedings(APMC), 2013, 722.

[7]

Kim J H, Kim J H, Noh Y S. An InGaP-GaAs HBT MMIC smart power amplifier for W-CDMA mobile handsets[J]. IEEE J Solid-State Circuits, 2003, 38(6): 905.

[8]

Hirata M, Oka T, Hasegawa M. Fully-integrated GaAs HBT power amplifier MMIC with high linear output power for 3 GHz-band broadband wireless applications[J]. Electron Lett, 2006, 42(22): 1286.

[9]

Staudinger J, Sherman R, Quach T. A 15 watt PFP GaAs PHEMT MMIC power amplifier for 3G wireless transmitter applications[J]. IEEE MTT-S International Microwave Symposium Digest, 2002: 617.

[10]

Akkul M, Sarfraz M, Mayock J. 50 watt MMIC power amplifier design for 2 GHz applications[J]. IEEE MTT-S International Microwave Symposium Digest, 2004: 1355.

[11]

Meliani C, Rudolph M, Kurpas P. A 2.4 GHz GaAs-HBT class-E MMIC amplifier with 65% PAE[J]. IEEE MTT-S International Microwave Symposium, 2007, 1087.

[12]

Mori K, Shinjo S, Kitabayashi F. An L-band high-efficiency and low-distortion power amplifier using HPF/LPF combined interstage matching circuit[J]. IEEE Trans Microw Theory Tech, 2000, 48(12): 2560.

[13]

Ohtomo M. Stability analysis and numerical simulation of multidevice amplifiers[J]. IEEE Trans Microw Theory Technol, 1993, 41(6): 983.

[1]

Hongda Chen, Zan Zhang, Beiju Huang, Luhong Mao, Zanyun Zhang. Progress in complementary metal-oxide-semiconductor silicon photonics and optoelectronic integrated circuits. J. Semicond., 2015, 36(12): 121001. doi: 10.1088/1674-4926/36/12/121001

[2]

Xingheng Xia, Weijing Wu, Xiaofeng Song, Guanming Li, Lei Zhou, Lirong Zhang, Miao Xu, Lei Wang, Junbiao Peng. High-speed low-power voltage-programmed driving scheme for AMOLED displays. J. Semicond., 2015, 36(12): 125005. doi: 10.1088/1674-4926/36/12/125005

[3]

Jiao Hong, Yuling Liu, Baoguo Zhang, Xinhuan Niu, Liying Han. A new kind of chelating agent with low pH value applied in the TSV CMP slurry. J. Semicond., 2015, 36(12): 126001. doi: 10.1088/1674-4926/36/12/126001

[4]

Rongrui Liu, Yubing Wang, Dongdong Yin, Han Ye, Xiaohong Yang, Qin Han. A high-efficiency grating coupler between single-mode fiber and silicon-on-insulator waveguide. J. Semicond., 2017, 38(5): 054007. doi: 10.1088/1674-4926/38/5/054007

[5]

H. Bendjedidi, A. Attaf, H. Saidi, M. S. Aida, S. Semmari, A. Bouhdjar, Y. Benkhetta. Properties of n-type SnO2 semiconductor prepared by spray ultrasonic technique for photovoltaic applications. J. Semicond., 2015, 36(12): 123002. doi: 10.1088/1674-4926/36/12/123002

[6]

Ke Liu, Zhankun Du, Li Shao, Xiao Ma. A trimming technique for capacitive SAR ADC as sensor interface. J. Semicond., 2015, 36(12): 125004. doi: 10.1088/1674-4926/36/12/125004

[7]

Shaohua Jia, Yuling Liu, Chenwei Wang, Chenqi Yan. Influence of oxidant passivation on controlling dishing in alkaline chemical mechanical planarization. J. Semicond., 2015, 36(12): 126002. doi: 10.1088/1674-4926/36/12/126002

[8]

Zhao Yong, Wang Wanjun, Shao Haifeng, Yang Jianyi, Wang Minghua, Jiang Xiaoqing. Influence of doping position on the extinction ratio of Mach-Zehnder-interference based silicon optical modulators. J. Semicond., 2012, 33(1): 014009. doi: 10.1088/1674-4926/33/1/014009

[9]

Shujie Pan, Victoria Cao, Mengya Liao, Ying Lu, Zizhuo Liu, Mingchu Tang, Siming Chen, Alwyn Seeds, Huiyun Liu. Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate. J. Semicond., 2019, 40(10): 101302. doi: 10.1088/1674-4926/40/10/101302

[10]

Yunchou Zhao, Hao Jia, Jianfeng Ding, Lei Zhang, Xin Fu, Lin Yang. Five-port silicon optical router based on Mach-Zehnder optical switches for photonic networks-on-chip. J. Semicond., 2016, 37(11): 114008. doi: 10.1088/1674-4926/37/11/114008

[11]

Xuhan Guo, An He, Yikai Su. Recent advances of heterogeneously integrated III–V laser on Si. J. Semicond., 2019, 40(10): 101304. doi: 10.1088/1674-4926/40/10/101304

[12]

Yu Zhou, Xinxing Li, Renbing Tan, Wei Xue, Yongdan Huang, Shitao Lou, Baoshun Zhang, Hua Qin. Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor. J. Semicond., 2013, 34(2): 022002. doi: 10.1088/1674-4926/34/2/022002

[13]

Xiaoxin Wang, Jifeng Liu. Emerging technologies in Si active photonics. J. Semicond., 2018, 39(6): 061001. doi: 10.1088/1674-4926/39/6/061001

[14]

Chen Yuan, Jincheng Dai, Hao Jia, Jianfeng Ding, Lei Zhang, Xin Fu, Lin Yang. Design of a C-band polarization rotator-splitter based on a mode-evolution structure and an asymmetric directional coupler. J. Semicond., 2018, 39(12): 124008. doi: 10.1088/1674-4926/39/12/124008

[15]

Daquan Yang, Xiao Liu, Xiaogang Li, Bing Duan, Aiqiang Wang, Yunfeng Xiao. Photoic crystal nanobeam cavity devices for on-chip integrated silicon photonics. J. Semicond., 2020, 41(0): -1.

[16]

Xiaogang Tong, Jun Liu, Chenyang Xue. High-Q micro-ring resonators and grating couplers for silicon-on-insulator integrated photonic circuits. J. Semicond., 2013, 34(8): 085006. doi: 10.1088/1674-4926/34/8/085006

[17]

Wenqi Wei, Qi Feng, Zihao Wang, Ting Wang, Jianjun Zhang. Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates. J. Semicond., 2019, 40(10): 101303. doi: 10.1088/1674-4926/40/10/101303

[18]

Xinlun Cai. Progress in integrating III–V semiconductors on silicon could drive silicon photonics forward. J. Semicond., 2019, 40(10): 100301. doi: 10.1088/1674-4926/40/10/100301

[19]

Chen Shaowu, Tu Xiaoguang, Yu Hejun, Fan Zhongchao, Xu Xuejun, Yu Jinzhong. Challenges and Solution of Fabrication Techniques for Silicon-Based NanD-Photonics Devices。. J. Semicond., 2007, 28(S1): 568.

[20]

Huang Beiju, Chen Hongda, , Liu Jinbin, Gu Ming. A High-Performance Silicon Electro-Optic Phase Modulator with a Triple MOS Capacitor. J. Semicond., 2006, 27(12): 2089.

Search

Advanced Search >>

GET CITATION

Q Ge, H Q Tao, X M Yu. A 1.8-3 GHz-band high efficiency GaAs pHEMT power amplifier MMIC[J]. J. Semicond., 2015, 36(12): 125003. doi: 10.1088/1674-4926/36/12/125003.

Export: BibTex EndNote

Article Metrics

Article views: 1767 Times PDF downloads: 13 Times Cited by: 0 Times

History

Manuscript received: 30 March 2015 Manuscript revised: Online: Published: 01 December 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误