J. Semicond. > Volume 37 > Issue 11 > Article Number: 113002

Structural, morphological and magnetic properties of Zn1-xCoxO prepared by sol-gel and hydrothermal method combined

Yongde Hao , Legui Zhou , , Jun Li and Zuoqi Hu

+ Author Affiliations + Find other works by these authors

PDF

Abstract: Cobalt-doped ZnO powder samples were prepared by sol-gel and hydrothermal method combined. The prepared powder samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), electron paramagnetic resonance (EPR) and vibrating sample magnetometry (VSM). XRD patterns show that all the samples have a single pure phase with wurtzite structure suggesting that Co2+ occupied Zn2+ sites in the ZnO crystal lattice. SEM images show that crystal grains of cobalt-doped ZnO are hexagonal cone or spheroidal. EPR pattern shows that all of the samples possess oxygen vacancy. Measurement of magnetism indicates that all the samples exhibit room temperature ferromagnetism (RTFM) embedded in a dominant diamagnetic or paramagnetic signal. The dominant signal turns from diamagnetic to paramagnetic with the increase of Co concentration. The magnetic behavior can attribute to defects and Co doping.

Key words: ZnOdilute magnetic semiconductorferromagnetismsol-gelhydrothermal method

Abstract: Cobalt-doped ZnO powder samples were prepared by sol-gel and hydrothermal method combined. The prepared powder samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), electron paramagnetic resonance (EPR) and vibrating sample magnetometry (VSM). XRD patterns show that all the samples have a single pure phase with wurtzite structure suggesting that Co2+ occupied Zn2+ sites in the ZnO crystal lattice. SEM images show that crystal grains of cobalt-doped ZnO are hexagonal cone or spheroidal. EPR pattern shows that all of the samples possess oxygen vacancy. Measurement of magnetism indicates that all the samples exhibit room temperature ferromagnetism (RTFM) embedded in a dominant diamagnetic or paramagnetic signal. The dominant signal turns from diamagnetic to paramagnetic with the increase of Co concentration. The magnetic behavior can attribute to defects and Co doping.

Key words: ZnOdilute magnetic semiconductorferromagnetismsol-gelhydrothermal method



References:

[1]

Furdyna J K. Diluted magnetic semiconductors[J]. J Appl Phys, 1988, 64(4): R29. doi: 10.1063/1.341700

[2]

Mahadik M A, Hunge Y M, Shinde S S. Semiconducting properties of aluminum-doped ZnO thin films grown by spray pyrolysis technique[J]. Journal of Semiconductors, 2015, 36(3): 033002. doi: 10.1088/1674-4926/36/3/033002

[3]

Saha S K, Rahman M A, Sarkar M R H. Effect of Co doping on structural, optical, electrical and thermal properties of nanostructured ZnO thin films[J]. Journal of Semiconductors, 2015, 36(3): 033004. doi: 10.1088/1674-4926/36/3/033004

[4]

Zheng Dongmei, Wang Zongchi, Xiao Boqi. Optical properties of ionized donor-bound excitons confined in strained wurtzite ZnO/MgxZn1-xO quantum dots[J]. Journal of Semiconductors, 2015, 36(3): 033006. doi: 10.1088/1674-4926/36/3/033006

[5]

Karim A M M T, Khan M K R, Rahman M M. Structural and opto-electrical properties of pyrolized ZnO-CdO crystalline thin films[J]. Journal of Semiconductors, 2015, 36(5): 053001. doi: 10.1088/1674-4926/36/5/053001

[6]

Benhaliliba M, Tiburcio-Silver A, Avila-Garcia A. The sprayed ZnO films:nanostructures and physical parameters[J]. Journal of Semiconductors, 2015, 36(8): 083001. doi: 10.1088/1674-4926/36/8/083001

[7]

Dietl T. Zener model description of ferromagnetism in zincblende magnetic semiconductors[J]. Science, 2000, 287(5455): 1019. doi: 10.1126/science.287.5455.1019

[8]

Sato K, Hiroshi Katayama Y. Material design for transparent ferromagnets with ZnO-based magnetic semiconductors[J]. Jpn J Appl Phys, 2000, 39(6B): L555.

[9]

Sharma M, Mehra R M. Effect of thickness on structural, electrical, optical and magnetic properties of Co and Al doped ZnO films deposited by sol-gel route[J]. Appl Surf Sci, 2008, 255(5): 2527. doi: 10.1016/j.apsusc.2008.07.153

[10]

Akilan T, Srinivasan N, Saravanan R. Magnetic and optical properties of Ti doped ZnO prepared by solid state reaction method[J]. Mater Sci Semicond Process, 2015, 30: 381. doi: 10.1016/j.mssp.2014.10.025

[11]

Pal B, Dhara S, Giri P K. Room temperature ferromagnetism with high magnetic moment and optical properties of Co doped ZnO nanorods synthesized by a solvothermal route[J]. Journal of Alloys and Compounds, 2014, 615: 378. doi: 10.1016/j.jallcom.2014.06.087

[12]

Kumar S, Vats P, Gautam S. Electronic structure, magnetic and structural properties of Ni doped ZnO nanoparticles[J]. Materials Research Bulletin, 2014, 59: 377. doi: 10.1016/j.materresbull.2014.07.044

[13]

Sharma P, Gupta A, Rao K V. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO[J]. Nat Mater, 2003, 2(10): 673. doi: 10.1038/nmat984

[14]

Güner S, Gürbüz O, Çalışkan S. The structural and magnetic properties of Co+ implanted ZnO films[J]. Appl Surf Sci, 2014, 310: 235. doi: 10.1016/j.apsusc.2014.03.085

[15]

Fu C F, Liu C, Han L F. Effects of substrate temperature on the structural and magnetic properties in Cr-doped ZnO films prepared by magnetron sputtering[J]. Journal of Materials Science:Materials in Electronics, 2014, 25(9): 4139. doi: 10.1007/s10854-014-2140-7

[16]

Sharma P K, Dutta R K, Pandey A C. Doping dependent roomtemperature ferromagnetism and structural properties of dilute magnetic semiconductor ZnO:Cu2+ nanorods[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(24): 4001. doi: 10.1016/j.jmmm.2009.07.066

[17]

Murtaza G, Ahmad R, Rashid M S. Structural and magnetic studies on Zr doped ZnO diluted magnetic semiconductor[J]. Current Applied Physics, 2014, 14(2): 176. doi: 10.1016/j.cap.2013.11.002

[18]

Babu B, Thirumala Rao G, Pushpa Manjari V. Sonochemical assisted synthesis and spectroscopic characterization of Fe3+ doped ZnO diluted magnetic semiconductor[J]. Journal of Materials Science:Materials in Electronics, 2014, 25(9): 4179. doi: 10.1007/s10854-014-2146-1

[19]

Arda L, Acikgoz M, Dogan N. Synthesis, characterization and ESR studies of Zn1-xCoxO nanoparticles[J]. Journal of Superconductivity and Novel Magnetism, 2013, 27(3): 799.

[20]

Hassan M M, Khan W, Azam A. Effect of size reduction on structural and optical properties of ZnO matrix due to successive doping of Fe ions[J]. J Lumin, 2014, 145: 160. doi: 10.1016/j.jlumin.2013.06.024

[21]

Karamat S, Rawat R S, Lee P. Synthesis and characterization of bulk cobalt-doped ZnO and their thin films[J]. Journal of Superconductivity and Novel Magnetism, 2013, 26(10): 3115. doi: 10.1007/s10948-013-2128-1

[22]

Yan Z, Ma Y, Wang D. Impact of annealing on morphology and ferromagnetism of ZnO nanorods[J]. Appl Phys Lett, 2008, 92(8): 081911. doi: 10.1063/1.2887906

[23]

Kasai P H. Electron spin resonance studies of donors and acceptors in ZnO[J]. Phys Rev, 1963, 130(3): 989. doi: 10.1103/PhysRev.130.989

[24]

Lal R B, Arnett G M. Electron paramagnetic resonance of photosensitive donors in ZnO[J]. Journal of the Physical Society of Japan, 1966, 21(12): 2743. doi: 10.1143/JPSJ.21.2743

[25]

Sancier K M. ESR investigation of photodamage to zinc oxide powders[J]. Surface Science, 1970, 21(1): 1. doi: 10.1016/0039-6028(70)90059-2

[26]

Ischenko V, Polarz S, Grote D. Zinc oxide nanoparticles with defects[J]. Advanced Functional Materials, 2005, 15(12): 1945. doi: 10.1002/(ISSN)1616-3028

[27]

Zhang L, Yin L, Wang C. Origin of visible photoluminescence of ZnO quantum dots:defect-dependent and sizedependent[J]. J Phys Chem C, 2010, 114(21): 9651. doi: 10.1021/jp101324a

[28]

Kakazey N G, Sreckovic T V, Ristic M M. Electronic paramagnetic resonance investigation of the evolution of defects in zinc oxide during tribophysical activation[J]. Journal of Materials Science, 1997, 32(17): 4619. doi: 10.1023/A:1018689721667

[29]

Jing L, Xu Z, Shang J. The preparation and characterization of ZnO ultrafine particles[J]. Materials Science & Engineering A, 2002, 332(1): 356.

[30]

Chen X G, Yang Y B, Wu R. Room temperature magnetic properties of ZnO nanostructured films[J]. Phys B, 2011, 406(6/7): 1341.

[31]

Bououdina M, Omri K, El-Hilo M. Structural and magnetic properties of Mn-doped ZnO nanocrystals[J]. Phys E, 2014, 56: 107. doi: 10.1016/j.physe.2013.08.024

[32]

Arruda L B, Leite D M G, Orlandi M O. Sonochemical synthesis and magnetism in Co-doped ZnO nanoparticles[J]. Journal of Superconductivity and Novel Magnetism, 2012, 26(7): 2515.

[33]

Köseoğlu Y. A simple microwave-assisted combustion synthesis and structural, optical and magnetic characterization of ZnO nanoplatelets[J]. Ceramics International, 2014, 40(3): 4673. doi: 10.1016/j.ceramint.2013.09.008

[34]

Coey J M D. d0, ferromagnetism[J]. Cheminform, 2005, 36(34): 660.

[35]

Hou D L, Zhao R B, Wei Y Y. Room temperature ferromagnetism in Ni-doped ZnO films[J]. Current Applied Physics, 2010, 10(1): 124. doi: 10.1016/j.cap.2009.05.007

[36]

Wangensteen T, Dhakal T, Merlak M. Growth of uniform ZnO nanoparticles by a microwave plasma process[J]. Journal of Alloys & Compounds, 2011, 509(24): 6859.

[37]

Kumar S, Thangavel R, Mok B H. Structural and magnetic characterization of undoped ZnO nanopowder[J]. Advanced Science, 2014, 6(2): 188.

[38]

Kathirvel P, Chandrasekaran J, Manoharan D. Formation and characterization of flame synthesized hexagonal zinc oxide nanorods for gas sensor applications[J]. Ceramics International, 2013, 39(5): 5321. doi: 10.1016/j.ceramint.2012.12.037

[39]

Qin G, Wang X, Zheng J. First-principles investigation of the electronic and magnetic properties of ZnO nanosheet with intrinsic defects[J]. Computational Materials Science, 2014, 81(2): 259.

[40]

Venkatesan M, Fitzgerald C B, Lunney J G. Anisotropic ferromagnetism in substituted zinc oxide[J]. Phys Rev Lett, 2004, 93(17): 177206. doi: 10.1103/PhysRevLett.93.177206

[41]

Coey J M D, Venkatesan M, Fitzgerald C B. Donor impurity band exchange in dilute ferromagnetic oxides[J]. Nature Materials, 2005, 4(2): 173. doi: 10.1038/nmat1310

[42]

Barick K C, Aslam M, Dravid V P. Self-aggregation and assembly of size-tunable transition metal doped ZnO nanocrystals[J]. J Phys Chem C, 2008, 112(39): 15163. doi: 10.1021/jp802361r

[43]

Patterson C H. Role of defects in ferromagnetism in Zn1-xCoxO:a hybrid density-functional study[J]. Phys Rev B, 2006, 74(14): 144432. doi: 10.1103/PhysRevB.74.144432

[44]

Long P, Zhang H W, Wen Q Y. Origin of room-temperature ferromagnetism for cobalt-doped ZnO diluted magnetic semiconductor[J]. Chin Phys Lett, 2008, 25(4): 1438. doi: 10.1088/0256-307X/25/4/074

[45]

Kumar S. Structural, optical and magnetic properties of sol-gel derived ZnO:Co diluted magnetic semiconductor nanocrystals:an EXAFS study[J]. J Mater Chem C, 2013, 2(3): 481.

[46]

Kaminski A, Das S S. Polaron percolation in diluted magnetic semiconductors[J]. Phys Rev Lett, 2002, 88(24): 930.

[47]

Pal B, Giri P K. Defect mediated magnetic interaction and high Tc ferromagnetism in Co doped ZnO nanoparticles[J]. Journal of Nanoscience & Nanotechnology, 2011, 11(11): 9167.

[1]

Furdyna J K. Diluted magnetic semiconductors[J]. J Appl Phys, 1988, 64(4): R29. doi: 10.1063/1.341700

[2]

Mahadik M A, Hunge Y M, Shinde S S. Semiconducting properties of aluminum-doped ZnO thin films grown by spray pyrolysis technique[J]. Journal of Semiconductors, 2015, 36(3): 033002. doi: 10.1088/1674-4926/36/3/033002

[3]

Saha S K, Rahman M A, Sarkar M R H. Effect of Co doping on structural, optical, electrical and thermal properties of nanostructured ZnO thin films[J]. Journal of Semiconductors, 2015, 36(3): 033004. doi: 10.1088/1674-4926/36/3/033004

[4]

Zheng Dongmei, Wang Zongchi, Xiao Boqi. Optical properties of ionized donor-bound excitons confined in strained wurtzite ZnO/MgxZn1-xO quantum dots[J]. Journal of Semiconductors, 2015, 36(3): 033006. doi: 10.1088/1674-4926/36/3/033006

[5]

Karim A M M T, Khan M K R, Rahman M M. Structural and opto-electrical properties of pyrolized ZnO-CdO crystalline thin films[J]. Journal of Semiconductors, 2015, 36(5): 053001. doi: 10.1088/1674-4926/36/5/053001

[6]

Benhaliliba M, Tiburcio-Silver A, Avila-Garcia A. The sprayed ZnO films:nanostructures and physical parameters[J]. Journal of Semiconductors, 2015, 36(8): 083001. doi: 10.1088/1674-4926/36/8/083001

[7]

Dietl T. Zener model description of ferromagnetism in zincblende magnetic semiconductors[J]. Science, 2000, 287(5455): 1019. doi: 10.1126/science.287.5455.1019

[8]

Sato K, Hiroshi Katayama Y. Material design for transparent ferromagnets with ZnO-based magnetic semiconductors[J]. Jpn J Appl Phys, 2000, 39(6B): L555.

[9]

Sharma M, Mehra R M. Effect of thickness on structural, electrical, optical and magnetic properties of Co and Al doped ZnO films deposited by sol-gel route[J]. Appl Surf Sci, 2008, 255(5): 2527. doi: 10.1016/j.apsusc.2008.07.153

[10]

Akilan T, Srinivasan N, Saravanan R. Magnetic and optical properties of Ti doped ZnO prepared by solid state reaction method[J]. Mater Sci Semicond Process, 2015, 30: 381. doi: 10.1016/j.mssp.2014.10.025

[11]

Pal B, Dhara S, Giri P K. Room temperature ferromagnetism with high magnetic moment and optical properties of Co doped ZnO nanorods synthesized by a solvothermal route[J]. Journal of Alloys and Compounds, 2014, 615: 378. doi: 10.1016/j.jallcom.2014.06.087

[12]

Kumar S, Vats P, Gautam S. Electronic structure, magnetic and structural properties of Ni doped ZnO nanoparticles[J]. Materials Research Bulletin, 2014, 59: 377. doi: 10.1016/j.materresbull.2014.07.044

[13]

Sharma P, Gupta A, Rao K V. Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO[J]. Nat Mater, 2003, 2(10): 673. doi: 10.1038/nmat984

[14]

Güner S, Gürbüz O, Çalışkan S. The structural and magnetic properties of Co+ implanted ZnO films[J]. Appl Surf Sci, 2014, 310: 235. doi: 10.1016/j.apsusc.2014.03.085

[15]

Fu C F, Liu C, Han L F. Effects of substrate temperature on the structural and magnetic properties in Cr-doped ZnO films prepared by magnetron sputtering[J]. Journal of Materials Science:Materials in Electronics, 2014, 25(9): 4139. doi: 10.1007/s10854-014-2140-7

[16]

Sharma P K, Dutta R K, Pandey A C. Doping dependent roomtemperature ferromagnetism and structural properties of dilute magnetic semiconductor ZnO:Cu2+ nanorods[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(24): 4001. doi: 10.1016/j.jmmm.2009.07.066

[17]

Murtaza G, Ahmad R, Rashid M S. Structural and magnetic studies on Zr doped ZnO diluted magnetic semiconductor[J]. Current Applied Physics, 2014, 14(2): 176. doi: 10.1016/j.cap.2013.11.002

[18]

Babu B, Thirumala Rao G, Pushpa Manjari V. Sonochemical assisted synthesis and spectroscopic characterization of Fe3+ doped ZnO diluted magnetic semiconductor[J]. Journal of Materials Science:Materials in Electronics, 2014, 25(9): 4179. doi: 10.1007/s10854-014-2146-1

[19]

Arda L, Acikgoz M, Dogan N. Synthesis, characterization and ESR studies of Zn1-xCoxO nanoparticles[J]. Journal of Superconductivity and Novel Magnetism, 2013, 27(3): 799.

[20]

Hassan M M, Khan W, Azam A. Effect of size reduction on structural and optical properties of ZnO matrix due to successive doping of Fe ions[J]. J Lumin, 2014, 145: 160. doi: 10.1016/j.jlumin.2013.06.024

[21]

Karamat S, Rawat R S, Lee P. Synthesis and characterization of bulk cobalt-doped ZnO and their thin films[J]. Journal of Superconductivity and Novel Magnetism, 2013, 26(10): 3115. doi: 10.1007/s10948-013-2128-1

[22]

Yan Z, Ma Y, Wang D. Impact of annealing on morphology and ferromagnetism of ZnO nanorods[J]. Appl Phys Lett, 2008, 92(8): 081911. doi: 10.1063/1.2887906

[23]

Kasai P H. Electron spin resonance studies of donors and acceptors in ZnO[J]. Phys Rev, 1963, 130(3): 989. doi: 10.1103/PhysRev.130.989

[24]

Lal R B, Arnett G M. Electron paramagnetic resonance of photosensitive donors in ZnO[J]. Journal of the Physical Society of Japan, 1966, 21(12): 2743. doi: 10.1143/JPSJ.21.2743

[25]

Sancier K M. ESR investigation of photodamage to zinc oxide powders[J]. Surface Science, 1970, 21(1): 1. doi: 10.1016/0039-6028(70)90059-2

[26]

Ischenko V, Polarz S, Grote D. Zinc oxide nanoparticles with defects[J]. Advanced Functional Materials, 2005, 15(12): 1945. doi: 10.1002/(ISSN)1616-3028

[27]

Zhang L, Yin L, Wang C. Origin of visible photoluminescence of ZnO quantum dots:defect-dependent and sizedependent[J]. J Phys Chem C, 2010, 114(21): 9651. doi: 10.1021/jp101324a

[28]

Kakazey N G, Sreckovic T V, Ristic M M. Electronic paramagnetic resonance investigation of the evolution of defects in zinc oxide during tribophysical activation[J]. Journal of Materials Science, 1997, 32(17): 4619. doi: 10.1023/A:1018689721667

[29]

Jing L, Xu Z, Shang J. The preparation and characterization of ZnO ultrafine particles[J]. Materials Science & Engineering A, 2002, 332(1): 356.

[30]

Chen X G, Yang Y B, Wu R. Room temperature magnetic properties of ZnO nanostructured films[J]. Phys B, 2011, 406(6/7): 1341.

[31]

Bououdina M, Omri K, El-Hilo M. Structural and magnetic properties of Mn-doped ZnO nanocrystals[J]. Phys E, 2014, 56: 107. doi: 10.1016/j.physe.2013.08.024

[32]

Arruda L B, Leite D M G, Orlandi M O. Sonochemical synthesis and magnetism in Co-doped ZnO nanoparticles[J]. Journal of Superconductivity and Novel Magnetism, 2012, 26(7): 2515.

[33]

Köseoğlu Y. A simple microwave-assisted combustion synthesis and structural, optical and magnetic characterization of ZnO nanoplatelets[J]. Ceramics International, 2014, 40(3): 4673. doi: 10.1016/j.ceramint.2013.09.008

[34]

Coey J M D. d0, ferromagnetism[J]. Cheminform, 2005, 36(34): 660.

[35]

Hou D L, Zhao R B, Wei Y Y. Room temperature ferromagnetism in Ni-doped ZnO films[J]. Current Applied Physics, 2010, 10(1): 124. doi: 10.1016/j.cap.2009.05.007

[36]

Wangensteen T, Dhakal T, Merlak M. Growth of uniform ZnO nanoparticles by a microwave plasma process[J]. Journal of Alloys & Compounds, 2011, 509(24): 6859.

[37]

Kumar S, Thangavel R, Mok B H. Structural and magnetic characterization of undoped ZnO nanopowder[J]. Advanced Science, 2014, 6(2): 188.

[38]

Kathirvel P, Chandrasekaran J, Manoharan D. Formation and characterization of flame synthesized hexagonal zinc oxide nanorods for gas sensor applications[J]. Ceramics International, 2013, 39(5): 5321. doi: 10.1016/j.ceramint.2012.12.037

[39]

Qin G, Wang X, Zheng J. First-principles investigation of the electronic and magnetic properties of ZnO nanosheet with intrinsic defects[J]. Computational Materials Science, 2014, 81(2): 259.

[40]

Venkatesan M, Fitzgerald C B, Lunney J G. Anisotropic ferromagnetism in substituted zinc oxide[J]. Phys Rev Lett, 2004, 93(17): 177206. doi: 10.1103/PhysRevLett.93.177206

[41]

Coey J M D, Venkatesan M, Fitzgerald C B. Donor impurity band exchange in dilute ferromagnetic oxides[J]. Nature Materials, 2005, 4(2): 173. doi: 10.1038/nmat1310

[42]

Barick K C, Aslam M, Dravid V P. Self-aggregation and assembly of size-tunable transition metal doped ZnO nanocrystals[J]. J Phys Chem C, 2008, 112(39): 15163. doi: 10.1021/jp802361r

[43]

Patterson C H. Role of defects in ferromagnetism in Zn1-xCoxO:a hybrid density-functional study[J]. Phys Rev B, 2006, 74(14): 144432. doi: 10.1103/PhysRevB.74.144432

[44]

Long P, Zhang H W, Wen Q Y. Origin of room-temperature ferromagnetism for cobalt-doped ZnO diluted magnetic semiconductor[J]. Chin Phys Lett, 2008, 25(4): 1438. doi: 10.1088/0256-307X/25/4/074

[45]

Kumar S. Structural, optical and magnetic properties of sol-gel derived ZnO:Co diluted magnetic semiconductor nanocrystals:an EXAFS study[J]. J Mater Chem C, 2013, 2(3): 481.

[46]

Kaminski A, Das S S. Polaron percolation in diluted magnetic semiconductors[J]. Phys Rev Lett, 2002, 88(24): 930.

[47]

Pal B, Giri P K. Defect mediated magnetic interaction and high Tc ferromagnetism in Co doped ZnO nanoparticles[J]. Journal of Nanoscience & Nanotechnology, 2011, 11(11): 9167.

Search

Advanced Search >>

GET CITATION

Y D Hao, L G Zhou, J Li, Z Q Hu. Structural, morphological and magnetic properties of Zn1-xCoxO prepared by sol-gel and hydrothermal method combined[J]. J. Semicond., 2016, 37(11): 113002. doi: 10.1088/1674-4926/37/11/113002.

Export: BibTex EndNote

Article Metrics

Article views: 2039 Times PDF downloads: 13 Times Cited by: 0 Times

History

Manuscript received: 25 October 2015 Manuscript revised: 30 March 2016 Online: Published: 01 November 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误