J. Semicond. > Volume 38 > Issue 1 > Article Number: 014002

The effect of grain orientation on the morphological stability of the organic-inorganic perovskite films under elevated temperature

Dong Wang , Yue Chang , Shuping Pang , and Guanglei Cui ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: The fast developing perovskite solar cells shows high efficiency and low cost. However, the stability problem restricts perovskite from commercial use. In this work, we have studied the effect of grain orientation on the morphological stability of perovskite thin films. By tuning the inorganic/organic ratio in the precursor solution, perovskite thin films with both high crystallinity and good morphological stability have been fabricated. The thermal stability of perovskite solar cells based on the optimized films has been tested. The device performance shows no degradation after annealing at 100℃ for 5 h in air. This finding provides general guidelines for the development of thermally stable perovskite solar cells.

Key words: perovskite solar cellsmorphological stabilitygrain orientation

Abstract: The fast developing perovskite solar cells shows high efficiency and low cost. However, the stability problem restricts perovskite from commercial use. In this work, we have studied the effect of grain orientation on the morphological stability of perovskite thin films. By tuning the inorganic/organic ratio in the precursor solution, perovskite thin films with both high crystallinity and good morphological stability have been fabricated. The thermal stability of perovskite solar cells based on the optimized films has been tested. The device performance shows no degradation after annealing at 100℃ for 5 h in air. This finding provides general guidelines for the development of thermally stable perovskite solar cells.

Key words: perovskite solar cellsmorphological stabilitygrain orientation



References:

[1]

Sum T C, Mathews N. Advancements in perovskite solar cells:photophysics behind the photovoltaics[J]. Energy Environ Sci, 2014, 7(8): 2518. doi: 10.1039/C4EE00673A

[2]

Zuo C T, Bolink H J, Han H W, et al. Advances in perovskite solar cells. Adv Sci, 2016, n/a-n/a

[3]

Boix P P, Nonomura K, Mathews N. Current progress and future perspectives for organic/inorganic perovskite solar cells[J]. Mater Today, 2014, 17(1): 16. doi: 10.1016/j.mattod.2013.12.002

[4]

Stranks S D, Eperon G E, Grancini G. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156): 341. doi: 10.1126/science.1243982

[5]

Green M A, Emery K, Hishikawa Y. Solar cell efficiency tables (Version 45)[J]. Prog Photovoltaics:Res Appl, 2015, 23(1): 1. doi: 10.1002/pip.v23.1

[6]

Lungenschmied C, Dennler G, Neugebauer H. Flexible, long-lived, large-area, organic solar cells[J]. Sol Energy Mater Sol Cells, 2007, 91(5): 379. doi: 10.1016/j.solmat.2006.10.013

[7]

Krebs F C, Tromholt T, Jorgensen M. Upscaling of polymer solar cell fabrication using full roll-to-roll processing[J]. Nanoscale, 2010, 2(6): 873. doi: 10.1039/b9nr00430k

[8]

Im J H, Lee C R, Lee J W. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3(10): 4088. doi: 10.1039/c1nr10867k

[9]

Kim H S, Lee C R, Im J H. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci Rep, 2012, 2: 591.

[10]

Baikie T, Fang Y N, Kadro J M. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications[J]. J Mater Chem A, 2013, 1(18): 5628. doi: 10.1039/c3ta10518k

[11]

Dualeh A, Tétreault N, Moehl T. Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells[J]. Adv Funct Mater, 2014, 24: 3250. doi: 10.1002/adfm.201304022

[12]

Eperon G E, Burlakov V M, Docampo P. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells[J]. Adv Funct Mater, 2014, 24(1): 151. doi: 10.1002/adfm.v24.1

[13]

Aberle A, Dubey S, Sarvaiya J N. Temperature dependent photovoltaic (pv) efficiency and its effect on pv production in the world-a review[J]. Energy Procedia, 2013, 33: 311. doi: 10.1016/j.egypro.2013.05.072

[14]

Wang Y, Sumpter B G, Huang J S. density functional studies of stoichiometric surfaces of orthorhombic hybrid perovskite CH3NH3PbI3[J]. J Phys Chem C, 2015, 119(2): 1136. doi: 10.1021/jp511123s

[15]

Persson I, Lyczko K, Lundberg D. Coordination chemistry study of hydrated and solvated lead (II) ions in solution and solid state[J]. Inorg Chem, 2011, 50(3): 1058. doi: 10.1021/ic1017714

[16]

Zhou H P, Chen Q, Li G. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196): 542. doi: 10.1126/science.1254050

[17]

Zhao Y X, Zhu K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3:structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells[J]. J Phys Chem C, 2014, 118(18): 9412. doi: 10.1021/jp502696w

[18]

Wang D, Liu Z H, Zhou Z M. Reproducible one-step fabrication of compact MAPbI3-xClx thin films derived from mixedlead-halide precursors[J]. Chem Mater, 2014, 26(24): 7145. doi: 10.1021/cm5037869

[19]

Xiao Z G, Wang D, Dong Q F. Unraveling the hidden function of a stabilizer in a precursor in improving hybrid perovskite film morphology for high efficiency solar cells[J]. Energy Environ Sci, 2016, 9(3): 867. doi: 10.1039/C6EE00183A

[20]

Dong Q, Fang Y, Shao Y. Electron-hole diffusion lengths > 175μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225): 967. doi: 10.1126/science.aaa5760

[21]

Tress W, Marinova N, Inganäs O. Predicting the opencircuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra:the role of radiative and non-radiative recombination[J]. Adv Energy Mater, 2015, 5(3): 1400812. doi: 10.1002/aenm.201400812

[22]

Chen B, Yang M J, Priya S. Origin of J-V hysteresis in perovskite solar cells[J]. J Am Chem Soc, 2016, 7(5): 905.

[1]

Sum T C, Mathews N. Advancements in perovskite solar cells:photophysics behind the photovoltaics[J]. Energy Environ Sci, 2014, 7(8): 2518. doi: 10.1039/C4EE00673A

[2]

Zuo C T, Bolink H J, Han H W, et al. Advances in perovskite solar cells. Adv Sci, 2016, n/a-n/a

[3]

Boix P P, Nonomura K, Mathews N. Current progress and future perspectives for organic/inorganic perovskite solar cells[J]. Mater Today, 2014, 17(1): 16. doi: 10.1016/j.mattod.2013.12.002

[4]

Stranks S D, Eperon G E, Grancini G. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156): 341. doi: 10.1126/science.1243982

[5]

Green M A, Emery K, Hishikawa Y. Solar cell efficiency tables (Version 45)[J]. Prog Photovoltaics:Res Appl, 2015, 23(1): 1. doi: 10.1002/pip.v23.1

[6]

Lungenschmied C, Dennler G, Neugebauer H. Flexible, long-lived, large-area, organic solar cells[J]. Sol Energy Mater Sol Cells, 2007, 91(5): 379. doi: 10.1016/j.solmat.2006.10.013

[7]

Krebs F C, Tromholt T, Jorgensen M. Upscaling of polymer solar cell fabrication using full roll-to-roll processing[J]. Nanoscale, 2010, 2(6): 873. doi: 10.1039/b9nr00430k

[8]

Im J H, Lee C R, Lee J W. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3(10): 4088. doi: 10.1039/c1nr10867k

[9]

Kim H S, Lee C R, Im J H. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci Rep, 2012, 2: 591.

[10]

Baikie T, Fang Y N, Kadro J M. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications[J]. J Mater Chem A, 2013, 1(18): 5628. doi: 10.1039/c3ta10518k

[11]

Dualeh A, Tétreault N, Moehl T. Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells[J]. Adv Funct Mater, 2014, 24: 3250. doi: 10.1002/adfm.201304022

[12]

Eperon G E, Burlakov V M, Docampo P. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells[J]. Adv Funct Mater, 2014, 24(1): 151. doi: 10.1002/adfm.v24.1

[13]

Aberle A, Dubey S, Sarvaiya J N. Temperature dependent photovoltaic (pv) efficiency and its effect on pv production in the world-a review[J]. Energy Procedia, 2013, 33: 311. doi: 10.1016/j.egypro.2013.05.072

[14]

Wang Y, Sumpter B G, Huang J S. density functional studies of stoichiometric surfaces of orthorhombic hybrid perovskite CH3NH3PbI3[J]. J Phys Chem C, 2015, 119(2): 1136. doi: 10.1021/jp511123s

[15]

Persson I, Lyczko K, Lundberg D. Coordination chemistry study of hydrated and solvated lead (II) ions in solution and solid state[J]. Inorg Chem, 2011, 50(3): 1058. doi: 10.1021/ic1017714

[16]

Zhou H P, Chen Q, Li G. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196): 542. doi: 10.1126/science.1254050

[17]

Zhao Y X, Zhu K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3:structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells[J]. J Phys Chem C, 2014, 118(18): 9412. doi: 10.1021/jp502696w

[18]

Wang D, Liu Z H, Zhou Z M. Reproducible one-step fabrication of compact MAPbI3-xClx thin films derived from mixedlead-halide precursors[J]. Chem Mater, 2014, 26(24): 7145. doi: 10.1021/cm5037869

[19]

Xiao Z G, Wang D, Dong Q F. Unraveling the hidden function of a stabilizer in a precursor in improving hybrid perovskite film morphology for high efficiency solar cells[J]. Energy Environ Sci, 2016, 9(3): 867. doi: 10.1039/C6EE00183A

[20]

Dong Q, Fang Y, Shao Y. Electron-hole diffusion lengths > 175μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225): 967. doi: 10.1126/science.aaa5760

[21]

Tress W, Marinova N, Inganäs O. Predicting the opencircuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra:the role of radiative and non-radiative recombination[J]. Adv Energy Mater, 2015, 5(3): 1400812. doi: 10.1002/aenm.201400812

[22]

Chen B, Yang M J, Priya S. Origin of J-V hysteresis in perovskite solar cells[J]. J Am Chem Soc, 2016, 7(5): 905.

[1]

Fengjun Ye, Wenqiang Yang, Deying Luo, Rui Zhu, Qihuang Gong. Applications of cesium in the perovskite solar cells. J. Semicond., 2017, 38(1): 011003. doi: 10.1088/1674-4926/38/1/011003

[2]

Dan Han, Chenmin Dai, Shiyou Chen. Calculation studies on point defects in perovskite solar cells. J. Semicond., 2017, 38(1): 011006. doi: 10.1088/1674-4926/38/1/011006

[3]

Fengjuan Si, Fuling Tang, Hongtao Xue, Rongfei Qi. Effects of defect states on the performance of perovskite solar cells. J. Semicond., 2016, 37(7): 072003. doi: 10.1088/1674-4926/37/7/072003

[4]

Longhua Cai, Lusheng Liang, Jifeng Wu, Bin Ding, Lili Gao, Bin Fan. Large area perovskite solar cell module. J. Semicond., 2017, 38(1): 014006. doi: 10.1088/1674-4926/38/1/014006

[5]

Yamei Wu, Ruixia Yang, Hanmin Tian, Shuai Chen. Photoelectric characteristics of CH3NH3PbI3/p-Si heterojunction. J. Semicond., 2016, 37(5): 053002. doi: 10.1088/1674-4926/37/5/053002

[6]

Xiaojun Qin, Zhiguo Zhao, Yidan Wang, Junbo Wu, Qi Jiang, Jingbi You. Recent progress in stability of perovskite solar cells. J. Semicond., 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002

[7]

Jingbi You. Preface to the Special Topic on Perovskite Solar Cells. J. Semicond., 2017, 38(1): 011001. doi: 10.1088/1674-4926/38/1/011001

[8]

Yang (Michael) Yang. Surface passivation of perovskite film for efficient solar cells. J. Semicond., 2019, 40(4): 040204. doi: 10.1088/1674-4926/40/4/040204

[9]

Shihua Huang, Zhe Rui, Dan Chi, Daxin Bao. Influence of defect states on the performances of planar tin halide perovskite solar cells. J. Semicond., 2019, 40(3): 032201. doi: 10.1088/1674-4926/40/3/032201

[10]

Guanhaojie Zheng, Liang Li, Ligang Wang, Xingyu Gao, Huanping Zhou. The investigation of an amidine-based additive in the perovskite films and solar cells. J. Semicond., 2017, 38(1): 014001. doi: 10.1088/1674-4926/38/1/014001

[11]

Lin Fan, Fengyou Wang, Junhui Liang, Xin Yao, Jia Fang, Dekun Zhang, Changchun Wei, Ying Zhao, Xiaodan Zhang. Perovskite/silicon-based heterojunction tandem solar cells with 14.8% conversion efficiency via adopting ultrathin Au contact. J. Semicond., 2017, 38(1): 014003. doi: 10.1088/1674-4926/38/1/014003

[12]

Tianyue Wang, Jiewei Chen, Gaoxiang Wu, Dandan Song, Meicheng Li. Designing novel thin film polycrystalline solar cells for high efficiency: sandwich CIGS and heterojunction perovskite. J. Semicond., 2017, 38(1): 014005. doi: 10.1088/1674-4926/38/1/014005

[13]

Dongxue Liu, Yongsheng Liu. Recent progress of dopant-free organic hole-transporting materials in perovskite solar cells. J. Semicond., 2017, 38(1): 011005. doi: 10.1088/1674-4926/38/1/011005

[14]

Jincheng Zhang, Chengwu Shi, Junjun Chen, Chao Ying, Ni Wu, Mao Wang. Pyrolysis preparation of WO3 thin films using ammonium metatungstate DMF/water solution for efficient compact layers in planar perovskite solar cells. J. Semicond., 2016, 37(3): 033002. doi: 10.1088/1674-4926/37/3/033002

[15]

Nanjie Guo, Taiyang Zhang, Ge Li, Feng Xu, Xufang Qian, Yixin Zhao. A simple fabrication of CH3NH3PbI3 perovskite for solar cells using low-purity PbI2. J. Semicond., 2017, 38(1): 014004. doi: 10.1088/1674-4926/38/1/014004

[16]

Xiaoyan Dai, Chengwu Shi, Yanru Zhang, Ni Wu. Hydrolysis preparation of the compact TiO2 layer using metastable TiCl4 isopropanol/water solution for inorganic-organic hybrid heterojunction perovskite solar cells. J. Semicond., 2015, 36(7): 074003. doi: 10.1088/1674-4926/36/7/074003

[17]

Liu Wen, Li Yueqiang, Chen Jianjun, Chen Yanling, Wang Xiaodong, Yang Fuhua. Optimization of grid design for solar cells. J. Semicond., 2010, 31(1): 014006. doi: 10.1088/1674-4926/31/1/014006

[18]

Tan Kaizhou, Zhang Jing, Xu Shiliu, Zhang Zhengfan, Yang Yonghui, Chen Jun, Liang Tao. Study of hybrid orientation structure wafer. J. Semicond., 2011, 32(6): 063002. doi: 10.1088/1674-4926/32/6/063002

[19]

Xiaosheng Qu, Hongyin Bao, Hanieh. S. Nikjalal, Liling Xiong, Hongxin Zhen. An InGaAs graded buffer layer in solar cells. J. Semicond., 2014, 35(1): 014011. doi: 10.1088/1674-4926/35/1/014011

[20]

Li Wei, Feng Lianghuan, Wu Lili, Cai Yaping, Zheng Jiagui, Cai Wei, Zhang Jingquan, Li Bing, Lei Zhi, Jin Yong. Investigation of Back Contacts for CdS/CdTe Solar Cells. J. Semicond., 2007, 28(4): 558.

Search

Advanced Search >>

GET CITATION

D Wang, Y Chang, S P Pang, G L Cui. The effect of grain orientation on the morphological stability of the organic-inorganic perovskite films under elevated temperature[J]. J. Semicond., 2017, 38(1): 014002. doi: 10.1088/1674-4926/38/1/014002.

Export: BibTex EndNote

Article Metrics

Article views: 684 Times PDF downloads: 21 Times Cited by: 0 Times

History

Manuscript received: 23 August 2016 Manuscript revised: 11 October 2016 Online: Published: 01 January 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误