J. Semicond. > Volume 38 > Issue 1 > Article Number: 014002

The effect of grain orientation on the morphological stability of the organic-inorganic perovskite films under elevated temperature

Dong Wang , Yue Chang , Shuping Pang , and Guanglei Cui ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: The fast developing perovskite solar cells shows high efficiency and low cost. However, the stability problem restricts perovskite from commercial use. In this work, we have studied the effect of grain orientation on the morphological stability of perovskite thin films. By tuning the inorganic/organic ratio in the precursor solution, perovskite thin films with both high crystallinity and good morphological stability have been fabricated. The thermal stability of perovskite solar cells based on the optimized films has been tested. The device performance shows no degradation after annealing at 100℃ for 5 h in air. This finding provides general guidelines for the development of thermally stable perovskite solar cells.

Key words: perovskite solar cellsmorphological stabilitygrain orientation

Abstract: The fast developing perovskite solar cells shows high efficiency and low cost. However, the stability problem restricts perovskite from commercial use. In this work, we have studied the effect of grain orientation on the morphological stability of perovskite thin films. By tuning the inorganic/organic ratio in the precursor solution, perovskite thin films with both high crystallinity and good morphological stability have been fabricated. The thermal stability of perovskite solar cells based on the optimized films has been tested. The device performance shows no degradation after annealing at 100℃ for 5 h in air. This finding provides general guidelines for the development of thermally stable perovskite solar cells.

Key words: perovskite solar cellsmorphological stabilitygrain orientation



References:

[1]

Sum T C, Mathews N. Advancements in perovskite solar cells:photophysics behind the photovoltaics[J]. Energy Environ Sci, 2014, 7(8): 2518. doi: 10.1039/C4EE00673A

[2]

Zuo C T, Bolink H J, Han H W, et al. Advances in perovskite solar cells. Adv Sci, 2016, n/a-n/a

[3]

Boix P P, Nonomura K, Mathews N. Current progress and future perspectives for organic/inorganic perovskite solar cells[J]. Mater Today, 2014, 17(1): 16. doi: 10.1016/j.mattod.2013.12.002

[4]

Stranks S D, Eperon G E, Grancini G. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156): 341. doi: 10.1126/science.1243982

[5]

Green M A, Emery K, Hishikawa Y. Solar cell efficiency tables (Version 45)[J]. Prog Photovoltaics:Res Appl, 2015, 23(1): 1. doi: 10.1002/pip.v23.1

[6]

Lungenschmied C, Dennler G, Neugebauer H. Flexible, long-lived, large-area, organic solar cells[J]. Sol Energy Mater Sol Cells, 2007, 91(5): 379. doi: 10.1016/j.solmat.2006.10.013

[7]

Krebs F C, Tromholt T, Jorgensen M. Upscaling of polymer solar cell fabrication using full roll-to-roll processing[J]. Nanoscale, 2010, 2(6): 873. doi: 10.1039/b9nr00430k

[8]

Im J H, Lee C R, Lee J W. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3(10): 4088. doi: 10.1039/c1nr10867k

[9]

Kim H S, Lee C R, Im J H. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci Rep, 2012, 2: 591.

[10]

Baikie T, Fang Y N, Kadro J M. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications[J]. J Mater Chem A, 2013, 1(18): 5628. doi: 10.1039/c3ta10518k

[11]

Dualeh A, Tétreault N, Moehl T. Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells[J]. Adv Funct Mater, 2014, 24: 3250. doi: 10.1002/adfm.201304022

[12]

Eperon G E, Burlakov V M, Docampo P. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells[J]. Adv Funct Mater, 2014, 24(1): 151. doi: 10.1002/adfm.v24.1

[13]

Aberle A, Dubey S, Sarvaiya J N. Temperature dependent photovoltaic (pv) efficiency and its effect on pv production in the world-a review[J]. Energy Procedia, 2013, 33: 311. doi: 10.1016/j.egypro.2013.05.072

[14]

Wang Y, Sumpter B G, Huang J S. density functional studies of stoichiometric surfaces of orthorhombic hybrid perovskite CH3NH3PbI3[J]. J Phys Chem C, 2015, 119(2): 1136. doi: 10.1021/jp511123s

[15]

Persson I, Lyczko K, Lundberg D. Coordination chemistry study of hydrated and solvated lead (II) ions in solution and solid state[J]. Inorg Chem, 2011, 50(3): 1058. doi: 10.1021/ic1017714

[16]

Zhou H P, Chen Q, Li G. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196): 542. doi: 10.1126/science.1254050

[17]

Zhao Y X, Zhu K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3:structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells[J]. J Phys Chem C, 2014, 118(18): 9412. doi: 10.1021/jp502696w

[18]

Wang D, Liu Z H, Zhou Z M. Reproducible one-step fabrication of compact MAPbI3-xClx thin films derived from mixedlead-halide precursors[J]. Chem Mater, 2014, 26(24): 7145. doi: 10.1021/cm5037869

[19]

Xiao Z G, Wang D, Dong Q F. Unraveling the hidden function of a stabilizer in a precursor in improving hybrid perovskite film morphology for high efficiency solar cells[J]. Energy Environ Sci, 2016, 9(3): 867. doi: 10.1039/C6EE00183A

[20]

Dong Q, Fang Y, Shao Y. Electron-hole diffusion lengths > 175μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225): 967. doi: 10.1126/science.aaa5760

[21]

Tress W, Marinova N, Inganäs O. Predicting the opencircuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra:the role of radiative and non-radiative recombination[J]. Adv Energy Mater, 2015, 5(3): 1400812. doi: 10.1002/aenm.201400812

[22]

Chen B, Yang M J, Priya S. Origin of J-V hysteresis in perovskite solar cells[J]. J Am Chem Soc, 2016, 7(5): 905.

[1]

Sum T C, Mathews N. Advancements in perovskite solar cells:photophysics behind the photovoltaics[J]. Energy Environ Sci, 2014, 7(8): 2518. doi: 10.1039/C4EE00673A

[2]

Zuo C T, Bolink H J, Han H W, et al. Advances in perovskite solar cells. Adv Sci, 2016, n/a-n/a

[3]

Boix P P, Nonomura K, Mathews N. Current progress and future perspectives for organic/inorganic perovskite solar cells[J]. Mater Today, 2014, 17(1): 16. doi: 10.1016/j.mattod.2013.12.002

[4]

Stranks S D, Eperon G E, Grancini G. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342(6156): 341. doi: 10.1126/science.1243982

[5]

Green M A, Emery K, Hishikawa Y. Solar cell efficiency tables (Version 45)[J]. Prog Photovoltaics:Res Appl, 2015, 23(1): 1. doi: 10.1002/pip.v23.1

[6]

Lungenschmied C, Dennler G, Neugebauer H. Flexible, long-lived, large-area, organic solar cells[J]. Sol Energy Mater Sol Cells, 2007, 91(5): 379. doi: 10.1016/j.solmat.2006.10.013

[7]

Krebs F C, Tromholt T, Jorgensen M. Upscaling of polymer solar cell fabrication using full roll-to-roll processing[J]. Nanoscale, 2010, 2(6): 873. doi: 10.1039/b9nr00430k

[8]

Im J H, Lee C R, Lee J W. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3(10): 4088. doi: 10.1039/c1nr10867k

[9]

Kim H S, Lee C R, Im J H. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci Rep, 2012, 2: 591.

[10]

Baikie T, Fang Y N, Kadro J M. Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications[J]. J Mater Chem A, 2013, 1(18): 5628. doi: 10.1039/c3ta10518k

[11]

Dualeh A, Tétreault N, Moehl T. Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells[J]. Adv Funct Mater, 2014, 24: 3250. doi: 10.1002/adfm.201304022

[12]

Eperon G E, Burlakov V M, Docampo P. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells[J]. Adv Funct Mater, 2014, 24(1): 151. doi: 10.1002/adfm.v24.1

[13]

Aberle A, Dubey S, Sarvaiya J N. Temperature dependent photovoltaic (pv) efficiency and its effect on pv production in the world-a review[J]. Energy Procedia, 2013, 33: 311. doi: 10.1016/j.egypro.2013.05.072

[14]

Wang Y, Sumpter B G, Huang J S. density functional studies of stoichiometric surfaces of orthorhombic hybrid perovskite CH3NH3PbI3[J]. J Phys Chem C, 2015, 119(2): 1136. doi: 10.1021/jp511123s

[15]

Persson I, Lyczko K, Lundberg D. Coordination chemistry study of hydrated and solvated lead (II) ions in solution and solid state[J]. Inorg Chem, 2011, 50(3): 1058. doi: 10.1021/ic1017714

[16]

Zhou H P, Chen Q, Li G. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196): 542. doi: 10.1126/science.1254050

[17]

Zhao Y X, Zhu K. CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3:structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells[J]. J Phys Chem C, 2014, 118(18): 9412. doi: 10.1021/jp502696w

[18]

Wang D, Liu Z H, Zhou Z M. Reproducible one-step fabrication of compact MAPbI3-xClx thin films derived from mixedlead-halide precursors[J]. Chem Mater, 2014, 26(24): 7145. doi: 10.1021/cm5037869

[19]

Xiao Z G, Wang D, Dong Q F. Unraveling the hidden function of a stabilizer in a precursor in improving hybrid perovskite film morphology for high efficiency solar cells[J]. Energy Environ Sci, 2016, 9(3): 867. doi: 10.1039/C6EE00183A

[20]

Dong Q, Fang Y, Shao Y. Electron-hole diffusion lengths > 175μm in solution-grown CH3NH3PbI3 single crystals[J]. Science, 2015, 347(6225): 967. doi: 10.1126/science.aaa5760

[21]

Tress W, Marinova N, Inganäs O. Predicting the opencircuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra:the role of radiative and non-radiative recombination[J]. Adv Energy Mater, 2015, 5(3): 1400812. doi: 10.1002/aenm.201400812

[22]

Chen B, Yang M J, Priya S. Origin of J-V hysteresis in perovskite solar cells[J]. J Am Chem Soc, 2016, 7(5): 905.

Search

Advanced Search >>

GET CITATION

D Wang, Y Chang, S P Pang, G L Cui. The effect of grain orientation on the morphological stability of the organic-inorganic perovskite films under elevated temperature[J]. J. Semicond., 2017, 38(1): 014002. doi: 10.1088/1674-4926/38/1/014002.

Export: BibTex EndNote

Article Metrics

Article views: 2030 Times PDF downloads: 27 Times Cited by: 0 Times

History

Manuscript received: 23 August 2016 Manuscript revised: 11 October 2016 Online: Published: 01 January 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误