J. Semicond. > Volume 38 > Issue 12 > Article Number: 121001

High-speed photodetectors in optical communication system

Zeping Zhao 1, 2, , Jianguo Liu 1, 2, , , Yu Liu 1, 2, and Ninghua Zhu 1, 2,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: This paper presents a review and discussion for high-speed photodetectors and their applications on optical communications and microwave photonics. A detailed and comprehensive demonstration of high-speed photodetectors from development history, research hotspots to packaging technologies is provided to the best of our knowledge. A few typical applications based on photodetectors are also illustrated, such as free-space optical communications, radio over fiber and millimeter terahertz signal generation systems.

Key words: high-speed photodetectorsPIN photodetectorspackagingintegration

Abstract: This paper presents a review and discussion for high-speed photodetectors and their applications on optical communications and microwave photonics. A detailed and comprehensive demonstration of high-speed photodetectors from development history, research hotspots to packaging technologies is provided to the best of our knowledge. A few typical applications based on photodetectors are also illustrated, such as free-space optical communications, radio over fiber and millimeter terahertz signal generation systems.

Key words: high-speed photodetectorsPIN photodetectorspackagingintegration



References:

[1]

Kawanishi S. Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing[J]. IEEE J Quantum Electron, 1998, 34(11): 2064. doi: 10.1109/3.726595

[2]

Cai J X, Cai Y, Davidson C, et al. Transmission of 96 × 100 G pre-filtered PDM–RZ–QPSK channels with 300% spectral efficiency over 10 608 km and 400% spectral efficiency over 4,368 km. National Fiber Optic Engineers Conference, 2010: PDPB10

[3]

Qian D, Huang M F, Ip E. High capacity/spectral efficiency 101.7-Tb/s WDM transmission using PDM-128QAM-OFDM over 165-km SSMF within C-and L-bands[J]. J Lightw Technol, 2012, 30(10): 1540. doi: 10.1109/JLT.2012.2189096

[4]

Kaneda N, Pfau T, Zhang H. Field demonstration of 100-Gb/s real-time coherent optical OFDM detection[J]. The European Conference on Optical Communication, 2014: 1.

[5]

Zhou X, Zhong K, Huo J. 112-Gbit/s PDM-PAM4 transmission over 80-km SMF using digital coherent detection without optical amplifier[J]. International Symposium on Communication Systems, Networks and Digital Signal Processing, 2016: 1.

[6]

Campbell J C. Recent advances in telecommunications avalanche photodiodes[J]. J Lightw Technol, 2007, 25(1): 109. doi: 10.1109/JLT.2006.888481

[7]

You A H, Tan S L, Lim T L. Multiplication gain and excess noise factor in double heterojunction avalanche photodiodes[J]. IEEE International Conference on Semiconductor Electronics, 2008: 259.

[8]

Lei W, Guo F M, Lu W. Based simulation of high gain and low breakdown voltage InGaAs/InP avalanche photodiode[J]. International Conference on Numerical Simulation of Optoelectronic Devices, 2008: 37.

[9]

Kharraz O, Forsyth D. Performance comparisons between PIN and APD photodetectors for use in optical communication systems[J]. Optik - Int J Light Electron Opt, 2013, 124(13): 1493. doi: 10.1016/j.ijleo.2012.04.008

[10]

Mawatari H, Fukuda M, Kato K. Reliability of planar waveguide photodiodes for optical subscriber systems[J]. J Lightw Technol, 1998, 16(12): 2428. doi: 10.1109/50.736629

[11]

Shimizu N, Miyamoto Y, Hirano A. RF saturation mechanism of InP/InGaAs uni-travelling-carrier photodiode[J]. Electron Lett, 2000, 36: 750. doi: 10.1049/el:20000555

[12]

Giboney K, Nagarajan R, Reynolds T. Traveling-wave photodetectors with 172-GHz and 76-GHz bandwidth-efficiency product[J]. IEEE Photon Technol Lett, 1995, 7: 412. doi: 10.1109/68.376819

[13]

Giboney K S, Rodwell M J W, Bowers J E. Traveling-wave photodetector theory[J]. IEEE Trans Microwave Theory Tech, 1997, 45: 1310. doi: 10.1109/22.618429

[14]

Gimlett J L. Low-noise 8 GHz PIN/FET optical receiver[J]. Electron Lett, 1987, 23(6): 281. doi: 10.1049/el:19870205

[15]

Gimlett J L. A new low noise 16 GHz PIN/HEMT optical receiver[J]. Opt Commun, 1988, 12: 13.

[16]

Violas M A R. 10 GHz bandwidth low-noise optical receiver using discrete commercial devices[J]. Electron Lett, 1990, 26(1): 35. doi: 10.1049/el:19900023

[17]

Ohkawna . 20 GHz bandwidth low-noise HEMT preamplifier for optical receivers[J]. Electron Lett, 1988, 24: 1061. doi: 10.1049/el:19880719

[18]

Bowers J E, Burrus C A. High-speed zero-bias waveguide photodetectors[J]. Electron Lett, 1986, 22: 905. doi: 10.1049/el:19860617

[19]

Kato K, Hata S, Kozen A, et al. High-efficiency waveguide InGaAs p–i–n photodiode with bandwidth of greater than 40 GHz. OFC’91, 1991

[20]

Kato K, Hata S, Kozen A. Highly efficient 40 GHz waveguide InGaAs p–i–n photodiode employing multimode waveguide structure[J]. IEEE Photon Technol Lett, 1991, 3: 820. doi: 10.1109/68.84505

[21]

Kato K, Hata S, Kawano K. A highefficiency 50 GHz InGaAs multimode waveguide photodetector[J]. IEEE J Quantum Electron, 1992, 28: 2728. doi: 10.1109/3.166466

[22]

Kato K, Kozen A, Muramoto Y. 110-GHz, 50% efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-mm wavelength[J]. IEEE Photon Technol Lett, 1994, 6: 719. doi: 10.1109/68.300173

[23]

Nagatsuma T. Progress in instrumentation and measurement toward millimeter-wave photonics[J]. Tech Dig Int Topical Meeting Microwave Photonics, 1999: 91.

[24]

Fukuchi K, Kasamatsu T, Morie M. 10.92-Tb/s (273 × 40-Gb/s) triple-band/ ultra-dense WDM optical repeatered transmission experiment[J]. Tech Dig Optical Fiber Communication Conf, 2001: PD24.

[25]

Ishibashi T, Kodama S, Shimizu N. High-speed response of uni-traveling-carrier photodiodes[J]. Jpn J Appl Phys, 1997, 36(10): 6263.

[26]

Ito H, Furuta T, Kodama S. InP/InGaAs uni-travelling-carrier photodiode with 220 GHz bandwidth[J]. Electron Lett, 1999, 35(18): 1556. doi: 10.1049/el:19991043

[27]

Ito H, Furuta T, Kodama S. InP/InGaAs uni-travelling-carrier photodiode with a 310 GHz bandwidth[J]. Electron Lett, 2000, 36: 1809. doi: 10.1049/el:20001274

[28]

Muramoto Y, Hirota Y, Yoshino K. Uni-travelling-carrier photodiode module with bandwidth of 80 GHz[J]. Electron Lett, 2003, 39(39): 1851.

[29]

Ito H, Nagatsuma T, Hirata A. High-power photonic millimeter-wave generation at 100GHz using matching- circuit-integrated uni-travelling-carrier photodiodes[J]. Proc Inst Elect Eng Optoelectron, 2003, 150: 138. doi: 10.1049/ip-opt:20030384

[30]

Wu Y S, Shi J W, Chiu P H. High-performance dual-step evanescently coupled uni-traveling-carrier photodiodes[J]. IEEE Photonics Technol Lett, 2007, 19(20): 1682. doi: 10.1109/LPT.2007.905185

[31]

Shishikura M, Nakamura H, Hanatani S, et al. An InAlAs/InGaAs superlattice avalanche photodiode with a waveguide structure. OEC’94, 1994

[32]

Cohen-Jonathan C, Giraudet L, Bonzo A. Waveguide AlInAs avalanche photodiode with a gain-bandwidth product over 160 GHz[J]. Electron Lett, 1997, 33: 1492. doi: 10.1049/el:19970988

[33]

Nakata T, Takeuchi T, Makita K, et al. High-speed and highsensitivity waveguide InAlAs avalanche photodiode for 10–40 Gb/s receivers. Proc Laser Electro-Optical Soc, 2001: ThN3

[34]

Kinsey G S, Campbell J C, Dentai A G. Waveguide avalanche photodiode operating at 1.55 _x0016_m with a gain-bandwidth product of 320 GHz[J]. IEEE Photonics Tech Lett, 2001, 13: 842. doi: 10.1109/68.935822

[35]

Demiguel S, Li N, Li X. Very high-responsivity evanescently-coupled photodiodes integrating a short planar multimode waveguide for high-speed applications[J]. IEEE Photon Technol Lett, 2003, 15: 1761. doi: 10.1109/LPT.2003.819724

[36]

Tabasky M J, Chirravuri J, Choudhury A N M M. Four-channel hybrid receiver using a silicon substrate for packaging[J]. Proc SPIE, 1992, 1582: 152. doi: 10.1117/12.135013

[37]

Fukashiro Y, Kaneko S, Oishi A. 800 Mbit/s/ch-10 channel fully-integrated low-skew optical modules for optical subsystem interconnections[J]. Lasers and Electro-Optics Society Meeting, 1996: 67.

[38]

Doi Y, Ishii M, Kamei S. Flat and high responsivity CWDM photoreceiver using silica-based AWG with multimode output waveguides[J]. Electron Lett, 2003, 39(22): 1603. doi: 10.1049/el:20031010

[39]

Rouvalis E, Müller P, Trommer D. A 1 × 4 MMI-integrated high-power waveguide photodetector[J]. International Conference on Indium Phosphide and Related Materials, 2013: 1.

[40]

Jiang C, Krozer V, Bach H G. Broadband packaging of photodetectors for 100 Gb/s ethernet applications[J]. IEEE Trans Compon Pack Manuf Technol, 2013, 3(3): 422. doi: 10.1109/TCPMT.2012.2236149

[41]

Runge P, Zhou G, Ganzer F. Waveguide integrated InP-based photodetector for 100 Gbaud applications operating at wavelengths of 1310 nm and 1550 nm[J]. European Conference on Optical Communication (ECOC), 2015: 1.

[42]

Beling A, Steffan A G, Rouvalis E. High-power and high-linearity photodetector modules for microwave photonic applications[J]. J Lightw Technol, 2014, 32(20): 3810. doi: 10.1109/JLT.2014.2310252

[43]

Zhou G, Runge P, Keyvaninia S. high-power inp-based waveguide integrated modified uni-traveling-carrier photodiodes[J]. J Lightw Technol, 2017, 4(35): 717.

[44]

Aruga H, Mochizuki K, Itamoto H, et al. Four-channel 25 Gbps optical receiver for 100 Gbps ethernet with built-in demultiplexer optics. 36th European Conference and Exhibition on Optical Communication (ECOC), 2010: 1

[45]

Baek Y, Han Y T, Lee C W. Optical components for 100G ethernet transceivers[J]. Opto-Electronics and Communications Conference, 2012: 218.

[46]

Doi Y, Oguma M, Yoshimatsu T. Compact high-responsivity receiver optical subassembly with a multimode-output-arrayed waveguide grating for 100-Gb/s ethernet[J]. J Lightw Technol, 2015, 33(15): 3286. doi: 10.1109/JLT.2015.2427367

[47]

Zhao Z, Liu Y, Zhang Z. 1.5 μm, 8 × 12.5 Gb/s of hybrid-integrated TOSA with isolators and ROSA for 100 GbE application[J]. Chin Opt Lett, 2016, 14: 120603. doi: 10.3788/COL

[48]

Nada M, Muramoto Y, Yokohama H. High-sensitivity 25 Gbit/s avalanche photodiode receiver sub-assembly for 40-km transmission[J]. Electron Lett, 2012, 48: 777. doi: 10.1049/el.2012.1081

[49]

Caillaud C, Chanclou P, Blache F. High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON[J]. European Conference on Optical Communication, 2014: 1.

[50]

Anagnosti M, Caillaud C, Glastre G. High performance monolithically integrated SOA-UTC photoreceiver for 100Gbit/s applications[J]. International Conference on Indium Phosphide and Related Materials, 2014: 1.

[51]

Caillaud C, Glastre G, Lelarge F. Monolithic integration of a semiconductor optical amplifier and a high speed photodiode with low polarization dependence loss[J]. IEEE Photon Tech Lett, 2012, 24: 897. doi: 10.1109/LPT.2012.2190275

[52]

Caillaud C, Chanclou P, Blache F. High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON[J]. Eur Conf Exhib Opt Commun, Cannes, France, 2014: Tu3.2.3.

[53]

Caillaud C, Chanclou P, Blache F. Integrated SOA-PIN detector for high-speed short reach applications[J]. J Lightw Technol, 2015, 33(8): 1596. doi: 10.1109/JLT.2015.2389533

[54]

Krems T, Haydl W, Massler H. Millimeter-wave performance of chip interconnections using wire bonding and flip chip[J]. Proc IEEE MTT-S Int Microw Symp Dig, San Francisco, CA, 1996: 247.

[55]

Alimenti F, Mezzanotte P, Roselli L. Modeling and characterization of the bonding-wire interconnection[J]. IEEE Trans Microw Theory Tech, 2001, 49: 142. doi: 10.1109/22.899975

[56]

Lim L, Kwon D, Rieh J S. RF characterization and modeling of various wire bond transitions[J]. IEEE Trans Adv Packag, 2005, 28: 772. doi: 10.1109/TADVP.2005.853554

[57]

Jentzsch A, Heinrich W. Theory and measurements of flip-chip interconnects for frequencies up to 100 GHz[J]. IEEE Trans Microw Theory Tech, 2001, 49: 871. doi: 10.1109/22.920143

[58]

Tessmann A, Riessle M, Kudszus S. A flip-chip packaged coplanar 94 GHz amplifier module with efficient suppression of parasitic substrate effects[J]. IEEE Microw Wireless Compon Lett, 2004, 14: 145. doi: 10.1109/LMWC.2004.827115

[59]

Sakai K, Kawano M, Aruga H. Photodiode packaging technique using ball lens and offset parabolic mirror[J]. J Lightw Technol, 2009, 27(17): 3874. doi: 10.1109/JLT.2009.2020068

[60]

Doi Y, Oguma M, Ito M. Compact ROSA for 100-Gb/s (4 × 25 Gb/s) ethernet with a PLC-based AWG demultiplexer[J]. National Fiber Optic Engineers Conference, 2013: NW1J.5.

[61]

Lee J K, Kang S K, Huh J Y, et al. Highly alignment tolerant 4 × 25 Gb/s ROSA module for 100G ethernet optical transceiver. 39th European Conference and Exhibition on Optical Communication, 2013: 1

[62]

Isaac B, Song B, Xia X, et al. Hybrid integration of UTC-PDs on silicon photonics. CLEO: Science and Innovations, 2017: SM4O.1

[1]

Kawanishi S. Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing[J]. IEEE J Quantum Electron, 1998, 34(11): 2064. doi: 10.1109/3.726595

[2]

Cai J X, Cai Y, Davidson C, et al. Transmission of 96 × 100 G pre-filtered PDM–RZ–QPSK channels with 300% spectral efficiency over 10 608 km and 400% spectral efficiency over 4,368 km. National Fiber Optic Engineers Conference, 2010: PDPB10

[3]

Qian D, Huang M F, Ip E. High capacity/spectral efficiency 101.7-Tb/s WDM transmission using PDM-128QAM-OFDM over 165-km SSMF within C-and L-bands[J]. J Lightw Technol, 2012, 30(10): 1540. doi: 10.1109/JLT.2012.2189096

[4]

Kaneda N, Pfau T, Zhang H. Field demonstration of 100-Gb/s real-time coherent optical OFDM detection[J]. The European Conference on Optical Communication, 2014: 1.

[5]

Zhou X, Zhong K, Huo J. 112-Gbit/s PDM-PAM4 transmission over 80-km SMF using digital coherent detection without optical amplifier[J]. International Symposium on Communication Systems, Networks and Digital Signal Processing, 2016: 1.

[6]

Campbell J C. Recent advances in telecommunications avalanche photodiodes[J]. J Lightw Technol, 2007, 25(1): 109. doi: 10.1109/JLT.2006.888481

[7]

You A H, Tan S L, Lim T L. Multiplication gain and excess noise factor in double heterojunction avalanche photodiodes[J]. IEEE International Conference on Semiconductor Electronics, 2008: 259.

[8]

Lei W, Guo F M, Lu W. Based simulation of high gain and low breakdown voltage InGaAs/InP avalanche photodiode[J]. International Conference on Numerical Simulation of Optoelectronic Devices, 2008: 37.

[9]

Kharraz O, Forsyth D. Performance comparisons between PIN and APD photodetectors for use in optical communication systems[J]. Optik - Int J Light Electron Opt, 2013, 124(13): 1493. doi: 10.1016/j.ijleo.2012.04.008

[10]

Mawatari H, Fukuda M, Kato K. Reliability of planar waveguide photodiodes for optical subscriber systems[J]. J Lightw Technol, 1998, 16(12): 2428. doi: 10.1109/50.736629

[11]

Shimizu N, Miyamoto Y, Hirano A. RF saturation mechanism of InP/InGaAs uni-travelling-carrier photodiode[J]. Electron Lett, 2000, 36: 750. doi: 10.1049/el:20000555

[12]

Giboney K, Nagarajan R, Reynolds T. Traveling-wave photodetectors with 172-GHz and 76-GHz bandwidth-efficiency product[J]. IEEE Photon Technol Lett, 1995, 7: 412. doi: 10.1109/68.376819

[13]

Giboney K S, Rodwell M J W, Bowers J E. Traveling-wave photodetector theory[J]. IEEE Trans Microwave Theory Tech, 1997, 45: 1310. doi: 10.1109/22.618429

[14]

Gimlett J L. Low-noise 8 GHz PIN/FET optical receiver[J]. Electron Lett, 1987, 23(6): 281. doi: 10.1049/el:19870205

[15]

Gimlett J L. A new low noise 16 GHz PIN/HEMT optical receiver[J]. Opt Commun, 1988, 12: 13.

[16]

Violas M A R. 10 GHz bandwidth low-noise optical receiver using discrete commercial devices[J]. Electron Lett, 1990, 26(1): 35. doi: 10.1049/el:19900023

[17]

Ohkawna . 20 GHz bandwidth low-noise HEMT preamplifier for optical receivers[J]. Electron Lett, 1988, 24: 1061. doi: 10.1049/el:19880719

[18]

Bowers J E, Burrus C A. High-speed zero-bias waveguide photodetectors[J]. Electron Lett, 1986, 22: 905. doi: 10.1049/el:19860617

[19]

Kato K, Hata S, Kozen A, et al. High-efficiency waveguide InGaAs p–i–n photodiode with bandwidth of greater than 40 GHz. OFC’91, 1991

[20]

Kato K, Hata S, Kozen A. Highly efficient 40 GHz waveguide InGaAs p–i–n photodiode employing multimode waveguide structure[J]. IEEE Photon Technol Lett, 1991, 3: 820. doi: 10.1109/68.84505

[21]

Kato K, Hata S, Kawano K. A highefficiency 50 GHz InGaAs multimode waveguide photodetector[J]. IEEE J Quantum Electron, 1992, 28: 2728. doi: 10.1109/3.166466

[22]

Kato K, Kozen A, Muramoto Y. 110-GHz, 50% efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-mm wavelength[J]. IEEE Photon Technol Lett, 1994, 6: 719. doi: 10.1109/68.300173

[23]

Nagatsuma T. Progress in instrumentation and measurement toward millimeter-wave photonics[J]. Tech Dig Int Topical Meeting Microwave Photonics, 1999: 91.

[24]

Fukuchi K, Kasamatsu T, Morie M. 10.92-Tb/s (273 × 40-Gb/s) triple-band/ ultra-dense WDM optical repeatered transmission experiment[J]. Tech Dig Optical Fiber Communication Conf, 2001: PD24.

[25]

Ishibashi T, Kodama S, Shimizu N. High-speed response of uni-traveling-carrier photodiodes[J]. Jpn J Appl Phys, 1997, 36(10): 6263.

[26]

Ito H, Furuta T, Kodama S. InP/InGaAs uni-travelling-carrier photodiode with 220 GHz bandwidth[J]. Electron Lett, 1999, 35(18): 1556. doi: 10.1049/el:19991043

[27]

Ito H, Furuta T, Kodama S. InP/InGaAs uni-travelling-carrier photodiode with a 310 GHz bandwidth[J]. Electron Lett, 2000, 36: 1809. doi: 10.1049/el:20001274

[28]

Muramoto Y, Hirota Y, Yoshino K. Uni-travelling-carrier photodiode module with bandwidth of 80 GHz[J]. Electron Lett, 2003, 39(39): 1851.

[29]

Ito H, Nagatsuma T, Hirata A. High-power photonic millimeter-wave generation at 100GHz using matching- circuit-integrated uni-travelling-carrier photodiodes[J]. Proc Inst Elect Eng Optoelectron, 2003, 150: 138. doi: 10.1049/ip-opt:20030384

[30]

Wu Y S, Shi J W, Chiu P H. High-performance dual-step evanescently coupled uni-traveling-carrier photodiodes[J]. IEEE Photonics Technol Lett, 2007, 19(20): 1682. doi: 10.1109/LPT.2007.905185

[31]

Shishikura M, Nakamura H, Hanatani S, et al. An InAlAs/InGaAs superlattice avalanche photodiode with a waveguide structure. OEC’94, 1994

[32]

Cohen-Jonathan C, Giraudet L, Bonzo A. Waveguide AlInAs avalanche photodiode with a gain-bandwidth product over 160 GHz[J]. Electron Lett, 1997, 33: 1492. doi: 10.1049/el:19970988

[33]

Nakata T, Takeuchi T, Makita K, et al. High-speed and highsensitivity waveguide InAlAs avalanche photodiode for 10–40 Gb/s receivers. Proc Laser Electro-Optical Soc, 2001: ThN3

[34]

Kinsey G S, Campbell J C, Dentai A G. Waveguide avalanche photodiode operating at 1.55 _x0016_m with a gain-bandwidth product of 320 GHz[J]. IEEE Photonics Tech Lett, 2001, 13: 842. doi: 10.1109/68.935822

[35]

Demiguel S, Li N, Li X. Very high-responsivity evanescently-coupled photodiodes integrating a short planar multimode waveguide for high-speed applications[J]. IEEE Photon Technol Lett, 2003, 15: 1761. doi: 10.1109/LPT.2003.819724

[36]

Tabasky M J, Chirravuri J, Choudhury A N M M. Four-channel hybrid receiver using a silicon substrate for packaging[J]. Proc SPIE, 1992, 1582: 152. doi: 10.1117/12.135013

[37]

Fukashiro Y, Kaneko S, Oishi A. 800 Mbit/s/ch-10 channel fully-integrated low-skew optical modules for optical subsystem interconnections[J]. Lasers and Electro-Optics Society Meeting, 1996: 67.

[38]

Doi Y, Ishii M, Kamei S. Flat and high responsivity CWDM photoreceiver using silica-based AWG with multimode output waveguides[J]. Electron Lett, 2003, 39(22): 1603. doi: 10.1049/el:20031010

[39]

Rouvalis E, Müller P, Trommer D. A 1 × 4 MMI-integrated high-power waveguide photodetector[J]. International Conference on Indium Phosphide and Related Materials, 2013: 1.

[40]

Jiang C, Krozer V, Bach H G. Broadband packaging of photodetectors for 100 Gb/s ethernet applications[J]. IEEE Trans Compon Pack Manuf Technol, 2013, 3(3): 422. doi: 10.1109/TCPMT.2012.2236149

[41]

Runge P, Zhou G, Ganzer F. Waveguide integrated InP-based photodetector for 100 Gbaud applications operating at wavelengths of 1310 nm and 1550 nm[J]. European Conference on Optical Communication (ECOC), 2015: 1.

[42]

Beling A, Steffan A G, Rouvalis E. High-power and high-linearity photodetector modules for microwave photonic applications[J]. J Lightw Technol, 2014, 32(20): 3810. doi: 10.1109/JLT.2014.2310252

[43]

Zhou G, Runge P, Keyvaninia S. high-power inp-based waveguide integrated modified uni-traveling-carrier photodiodes[J]. J Lightw Technol, 2017, 4(35): 717.

[44]

Aruga H, Mochizuki K, Itamoto H, et al. Four-channel 25 Gbps optical receiver for 100 Gbps ethernet with built-in demultiplexer optics. 36th European Conference and Exhibition on Optical Communication (ECOC), 2010: 1

[45]

Baek Y, Han Y T, Lee C W. Optical components for 100G ethernet transceivers[J]. Opto-Electronics and Communications Conference, 2012: 218.

[46]

Doi Y, Oguma M, Yoshimatsu T. Compact high-responsivity receiver optical subassembly with a multimode-output-arrayed waveguide grating for 100-Gb/s ethernet[J]. J Lightw Technol, 2015, 33(15): 3286. doi: 10.1109/JLT.2015.2427367

[47]

Zhao Z, Liu Y, Zhang Z. 1.5 μm, 8 × 12.5 Gb/s of hybrid-integrated TOSA with isolators and ROSA for 100 GbE application[J]. Chin Opt Lett, 2016, 14: 120603. doi: 10.3788/COL

[48]

Nada M, Muramoto Y, Yokohama H. High-sensitivity 25 Gbit/s avalanche photodiode receiver sub-assembly for 40-km transmission[J]. Electron Lett, 2012, 48: 777. doi: 10.1049/el.2012.1081

[49]

Caillaud C, Chanclou P, Blache F. High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON[J]. European Conference on Optical Communication, 2014: 1.

[50]

Anagnosti M, Caillaud C, Glastre G. High performance monolithically integrated SOA-UTC photoreceiver for 100Gbit/s applications[J]. International Conference on Indium Phosphide and Related Materials, 2014: 1.

[51]

Caillaud C, Glastre G, Lelarge F. Monolithic integration of a semiconductor optical amplifier and a high speed photodiode with low polarization dependence loss[J]. IEEE Photon Tech Lett, 2012, 24: 897. doi: 10.1109/LPT.2012.2190275

[52]

Caillaud C, Chanclou P, Blache F. High sensitivity 40 Gbit/s preamplified SOA-PIN/TIA receiver module for high speed PON[J]. Eur Conf Exhib Opt Commun, Cannes, France, 2014: Tu3.2.3.

[53]

Caillaud C, Chanclou P, Blache F. Integrated SOA-PIN detector for high-speed short reach applications[J]. J Lightw Technol, 2015, 33(8): 1596. doi: 10.1109/JLT.2015.2389533

[54]

Krems T, Haydl W, Massler H. Millimeter-wave performance of chip interconnections using wire bonding and flip chip[J]. Proc IEEE MTT-S Int Microw Symp Dig, San Francisco, CA, 1996: 247.

[55]

Alimenti F, Mezzanotte P, Roselli L. Modeling and characterization of the bonding-wire interconnection[J]. IEEE Trans Microw Theory Tech, 2001, 49: 142. doi: 10.1109/22.899975

[56]

Lim L, Kwon D, Rieh J S. RF characterization and modeling of various wire bond transitions[J]. IEEE Trans Adv Packag, 2005, 28: 772. doi: 10.1109/TADVP.2005.853554

[57]

Jentzsch A, Heinrich W. Theory and measurements of flip-chip interconnects for frequencies up to 100 GHz[J]. IEEE Trans Microw Theory Tech, 2001, 49: 871. doi: 10.1109/22.920143

[58]

Tessmann A, Riessle M, Kudszus S. A flip-chip packaged coplanar 94 GHz amplifier module with efficient suppression of parasitic substrate effects[J]. IEEE Microw Wireless Compon Lett, 2004, 14: 145. doi: 10.1109/LMWC.2004.827115

[59]

Sakai K, Kawano M, Aruga H. Photodiode packaging technique using ball lens and offset parabolic mirror[J]. J Lightw Technol, 2009, 27(17): 3874. doi: 10.1109/JLT.2009.2020068

[60]

Doi Y, Oguma M, Ito M. Compact ROSA for 100-Gb/s (4 × 25 Gb/s) ethernet with a PLC-based AWG demultiplexer[J]. National Fiber Optic Engineers Conference, 2013: NW1J.5.

[61]

Lee J K, Kang S K, Huh J Y, et al. Highly alignment tolerant 4 × 25 Gb/s ROSA module for 100G ethernet optical transceiver. 39th European Conference and Exhibition on Optical Communication, 2013: 1

[62]

Isaac B, Song B, Xia X, et al. Hybrid integration of UTC-PDs on silicon photonics. CLEO: Science and Innovations, 2017: SM4O.1

Search

Advanced Search >>

GET CITATION

Z P Zhao, J G Liu, Y Liu, N H Zhu. High-speed photodetectors in optical communication system[J]. J. Semicond., 2017, 38(12): 121001. doi: 10.1088/1674-4926/38/12/121001.

Export: BibTex EndNote

Article Metrics

Article views: 10445 Times PDF downloads: 374 Times Cited by: 0 Times

History

Manuscript received: 17 August 2017 Manuscript revised: 22 September 2017 Online: Accepted Manuscript: 11 November 2017 Corrected proof: 15 November 2017 Published: 01 December 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误