J. Semicond. > Volume 38 > Issue 12 > Article Number: 122001

Direct evidence of traps controlling the carriers transport in SnO2 nanobelts

Olivia M. Berengue 1, , and Adenilson J. Chiquito 2,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: This work reports on direct evidence of localized states in undoped SnO2 nanobelts. Effects of disorder and electron localization were observed in Schottky barrier dependence on the temperature and in thermally stimulated currents. A transition from thermal activation to hopping transport mechanisms was also observed. The energy levels found by thermally stimulated current experiments were in close agreement with transport data confirming the role of localization in determining the properties of devices.

Key words: traptransportSnO2

Abstract: This work reports on direct evidence of localized states in undoped SnO2 nanobelts. Effects of disorder and electron localization were observed in Schottky barrier dependence on the temperature and in thermally stimulated currents. A transition from thermal activation to hopping transport mechanisms was also observed. The energy levels found by thermally stimulated current experiments were in close agreement with transport data confirming the role of localization in determining the properties of devices.

Key words: traptransportSnO2



References:

[1]

Sberveglieri G, Faglia G, Groppelli S. Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks[J]. Semicond Sci Technol, 1990, 5(12): 1231. doi: 10.1088/0268-1242/5/12/015

[2]

Göpel W. Ultimate limits in the miniaturization of chemical sensors[J]. Sens Actuators A, 1996, 56(1/2): 83.

[3]

Henrich V E, Cox P A. The surface science of metal oxides. Cambridge University Press, 1994

[4]

Barsan N, Schweizer-Berberich M, Gopel W. Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report[J]. Fresenius J Anal, 1999, 365(4): 287. doi: 10.1007/s002160051490

[5]

Kolmakov A, Klenov D O, Lilach Y. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles[J]. Nano Lett, 2005, 5(4): 667. doi: 10.1021/nl050082v

[6]

Dai Z R, Gole J R, Stout J D. Tin oxide nanowires, nanoribbons, and nanotubes[J]. J Phys Chem B, 2002, 106(6): 1274. doi: 10.1021/jp013214r

[7]

Grace Lu J, Chang P, Fan Z. Quasi-one-dimensional metal oxide materials-synthesis, properties and applications[J]. Mater Sci Eng R, 2006, 52(1–3): 49.

[8]

Lanfredi A J C, Geraldes R R, Berengue O M. Electron transport properties of undoped SnO2 monocrystals[J]. J Appl Phys, 2009, 105(2): 023708. doi: 10.1063/1.3068185

[9]

Berengue O M, Kanashiro M K, Chiquito A J. Detection of oxygen vacancy defect states in oxide nanobelts by using thermally stimulated current spectroscopy[J]. Semicond Sci Technol, 2012, 27(6): 065021. doi: 10.1088/0268-1242/27/6/065021

[10]

Berengue O M, Simon R A, Chiquito A J. Semiconducting Sn3O4 nanobelts: growth and electronic structure[J]. J Appl Phys, 2010, 107(3): 0337171.

[11]

Korber C, Harvey S P, Mason T O. Barrier heights at the SnO2/Pt interface: in situ photoemission and electrical properties[J]. Surf Sci, 2008, 602(21): 3246. doi: 10.1016/j.susc.2008.08.015

[12]

Wager J F. Transparent electronics: Schottky barrier and heterojunction considerations[J]. Thin Solid Films, 2008, 516(8): 1755. doi: 10.1016/j.tsf.2007.06.164

[13]

Werner J H, Guttler H H. Barrier inhomogeneities at Schottky contacts[J]. J Appl Phys, 1991, 69(3): 1522. doi: 10.1063/1.347243

[14]

Lai M, Lim J H, Mibeen S. Size-controlled electrochemical synthesis and properties of SnO2 nanotubes[J]. Nanotechnology, 2009, 20(18): 185602. doi: 10.1088/0957-4484/20/18/185602

[15]

Mott N F. Metal–insulator transitions. Taylor and Francis, 1990

[16]

Wrobel J M, Gubanski A, Placzek-Popko E. Thermally stimulated current in high resistivity Cd0.85Mn0.15Te doped with indium[J]. J Appl Phys, 2008, 103(6): 063720. doi: 10.1063/1.2894576

[17]

Wright H C, Allen G A. Thermally stimulated current analysis[J]. J Appl Phys, 1966, 17(9): 1181.

[1]

Sberveglieri G, Faglia G, Groppelli S. Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks[J]. Semicond Sci Technol, 1990, 5(12): 1231. doi: 10.1088/0268-1242/5/12/015

[2]

Göpel W. Ultimate limits in the miniaturization of chemical sensors[J]. Sens Actuators A, 1996, 56(1/2): 83.

[3]

Henrich V E, Cox P A. The surface science of metal oxides. Cambridge University Press, 1994

[4]

Barsan N, Schweizer-Berberich M, Gopel W. Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensors: a status report[J]. Fresenius J Anal, 1999, 365(4): 287. doi: 10.1007/s002160051490

[5]

Kolmakov A, Klenov D O, Lilach Y. Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles[J]. Nano Lett, 2005, 5(4): 667. doi: 10.1021/nl050082v

[6]

Dai Z R, Gole J R, Stout J D. Tin oxide nanowires, nanoribbons, and nanotubes[J]. J Phys Chem B, 2002, 106(6): 1274. doi: 10.1021/jp013214r

[7]

Grace Lu J, Chang P, Fan Z. Quasi-one-dimensional metal oxide materials-synthesis, properties and applications[J]. Mater Sci Eng R, 2006, 52(1–3): 49.

[8]

Lanfredi A J C, Geraldes R R, Berengue O M. Electron transport properties of undoped SnO2 monocrystals[J]. J Appl Phys, 2009, 105(2): 023708. doi: 10.1063/1.3068185

[9]

Berengue O M, Kanashiro M K, Chiquito A J. Detection of oxygen vacancy defect states in oxide nanobelts by using thermally stimulated current spectroscopy[J]. Semicond Sci Technol, 2012, 27(6): 065021. doi: 10.1088/0268-1242/27/6/065021

[10]

Berengue O M, Simon R A, Chiquito A J. Semiconducting Sn3O4 nanobelts: growth and electronic structure[J]. J Appl Phys, 2010, 107(3): 0337171.

[11]

Korber C, Harvey S P, Mason T O. Barrier heights at the SnO2/Pt interface: in situ photoemission and electrical properties[J]. Surf Sci, 2008, 602(21): 3246. doi: 10.1016/j.susc.2008.08.015

[12]

Wager J F. Transparent electronics: Schottky barrier and heterojunction considerations[J]. Thin Solid Films, 2008, 516(8): 1755. doi: 10.1016/j.tsf.2007.06.164

[13]

Werner J H, Guttler H H. Barrier inhomogeneities at Schottky contacts[J]. J Appl Phys, 1991, 69(3): 1522. doi: 10.1063/1.347243

[14]

Lai M, Lim J H, Mibeen S. Size-controlled electrochemical synthesis and properties of SnO2 nanotubes[J]. Nanotechnology, 2009, 20(18): 185602. doi: 10.1088/0957-4484/20/18/185602

[15]

Mott N F. Metal–insulator transitions. Taylor and Francis, 1990

[16]

Wrobel J M, Gubanski A, Placzek-Popko E. Thermally stimulated current in high resistivity Cd0.85Mn0.15Te doped with indium[J]. J Appl Phys, 2008, 103(6): 063720. doi: 10.1063/1.2894576

[17]

Wright H C, Allen G A. Thermally stimulated current analysis[J]. J Appl Phys, 1966, 17(9): 1181.

Search

Advanced Search >>

GET CITATION

O M Berengue, A J Chiquito. Direct evidence of traps controlling the carriers transport in SnO2 nanobelts[J]. J. Semicond., 2017, 38(12): 122001. doi: 10.1088/1674-4926/38/12/122001.

Export: BibTex EndNote

Article Metrics

Article views: 2032 Times PDF downloads: 17 Times Cited by: 0 Times

History

Manuscript received: 02 January 2017 Manuscript revised: 16 June 2017 Online: Corrected proof: 15 November 2017 Published: 01 December 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误