J. Semicond. > Volume 38 > Issue 3 > Article Number: 033004

Manganese and chromium doping in atomically thin MoS2

Ce Huang 1, , Yibo Jin 1, , Weiyi Wang 1, , Lei Tang 1, , Chaoyu Song 1, and Faxian Xiu 1, 2, ,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Recently, two-dimensional materials have been attracting increasing attention because of their novel properties and promising applications. However, the impurity doping remains a significant challenge owing to the lack of the doping strategy in the atomically thin layers. Here we report on the chromium (Cr) and manganese (Mn) doping in atomically-thin MoS2 crystals grown by chemical vapor deposition. The Cr/Mn doped MoS2 samples are characterized by a peak at 1.76 and 1.79 eV in photoluminescence spectra, respectively, compared with the undoped one at 1.85 eV. The field-effect transistor (FET) devices based on the Mn doping show a higher threshold voltage than that of the pure MoS2 while the Cr doping exhibits the opposite behavior. Importantly, the carrier concentration in these samples displays a remarkable difference arising from the doping effect, consistent with the evolution of the FET performance. The temperature-dependent conductivity measurements further demonstrate a large variation in activation energy. The successful incorporation of the Mn and Cr impurities into the monolayer MoS2 paves the way towards the high Curie temperature two-dimensional dilute magnetic semiconductors.

Key words: MoS2field effect transistorsdilute magnetic semiconductorstwo-dimensional materials

Abstract: Recently, two-dimensional materials have been attracting increasing attention because of their novel properties and promising applications. However, the impurity doping remains a significant challenge owing to the lack of the doping strategy in the atomically thin layers. Here we report on the chromium (Cr) and manganese (Mn) doping in atomically-thin MoS2 crystals grown by chemical vapor deposition. The Cr/Mn doped MoS2 samples are characterized by a peak at 1.76 and 1.79 eV in photoluminescence spectra, respectively, compared with the undoped one at 1.85 eV. The field-effect transistor (FET) devices based on the Mn doping show a higher threshold voltage than that of the pure MoS2 while the Cr doping exhibits the opposite behavior. Importantly, the carrier concentration in these samples displays a remarkable difference arising from the doping effect, consistent with the evolution of the FET performance. The temperature-dependent conductivity measurements further demonstrate a large variation in activation energy. The successful incorporation of the Mn and Cr impurities into the monolayer MoS2 paves the way towards the high Curie temperature two-dimensional dilute magnetic semiconductors.

Key words: MoS2field effect transistorsdilute magnetic semiconductorstwo-dimensional materials



References:

[1]

Wang Q H, Kalantar-Zadeh K, Kis A. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat Nanotechnol, 2012, 7: 699. doi: 10.1038/nnano.2012.193

[2]

Radisavljevic B, Kis A. Mobility engineering and a metalinsulator transition in monolayer MoS2[J]. Nat Mater, 2013, 12: 815. doi: 10.1038/nmat3687

[3]

Roy K, Padmanabhan M, Goswami S. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices[J]. Nat Nanotechnol, 2013, 8: 826. doi: 10.1038/nnano.2013.206

[4]

Yu W J, Liu Y, Zhou H L. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials[J]. Nat Nanotechnol, 2013, 8: 952. doi: 10.1038/nnano.2013.219

[5]

Zhang Y, Oka T, Suzuki R. Electrically switchable chiral light-emitting transistor[J]. Science, 344: 725. doi: 10.1126/science.1251329

[6]

Woods C R, Britnell L, Eckmann A. Commensurateincommensurate transition in graphene on hexagonal boron nitride[J]. Nat Phys, 2014, 10: 451. doi: 10.1038/nphys2954

[7]

Wu S F, Ross J S, Liu G B. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2[J]. Nat Phys, 2013, 9: 149. doi: 10.1038/nphys2524

[8]

Xu X, Yao W, Xiao D. Spin and pseudospins in layered transition metal dichalcogenides[J]. Nat Phys, 2014, 10: 343. doi: 10.1038/nphys2942

[9]

Young A F, Dean C R, Wang L. Spin and valley quantum Hall ferromagnetism in graphene[J]. Nat Phys, 2012, 8: 550. doi: 10.1038/nphys2307

[10]

Peng L L, Peng X, Liu B R. Ultrathin two-dimensional TS2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors[J]. Nano Lett, 2013, 13: 2151. doi: 10.1021/nl400600x

[11]

Pu J, Yomogida Y, Liu K K. Highly flexible MoS2 thin-film transistors with ion gel dielectrics[J]. Nano Lett, 2012, 12: 4013. doi: 10.1021/nl301335q

[12]

Yoon J, Park W, Bae G. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes[J]. Small, 2013, 9: 3295.

[13]

Lee G H, Yu Y J, Cui X. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures[J]. ACS Nano, 2013, 7: 7931. doi: 10.1021/nn402954e

[14]

Chang H Y, Yang S X, Lee J H. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems[J]. ACS Nano, 2013, 7: 5446. doi: 10.1021/nn401429w

[15]

Mak K F, Lee C, Hone J. Atomically thin MoS2:a new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105: 136805. doi: 10.1103/PhysRevLett.105.136805

[16]

Bromley R, Murray R, Yoffe A. The band structures of some transition metal dichalcogenides. Ⅲ. Group VIA:trigonal prism materials[J]. J Phys C, 1972, 5: 759. doi: 10.1088/0022-3719/5/7/007

[17]

Mattheiss L. Band structures of transition-metal-dichalcogenide layer compounds[J]. Phys Rev B, 1973, 8: 3719. doi: 10.1103/PhysRevB.8.3719

[18]

Coehoorn R, Haas C, Dijkstra J. Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy[J]. Phys Rev B, 1987, 35: 6195. doi: 10.1103/PhysRevB.35.6195

[19]

Böer T, Severin R, Müler A. Band structure of MoS2, MoSe2, and α-MoTe2:angle-resolved photoelectron spectroscopy and ab initio calculations[J]. Phys Rev B, 2001, 64: 235305. doi: 10.1103/PhysRevB.64.235305

[20]

Ganatra R, Zhang Q. Few-layer MoS2:a promising layered semiconductor[J]. ACS Nano, 2014, 8(5): 4074. doi: 10.1021/nn405938z

[21]

Lebegue S, Eriksson O. Electronic structure of two-dimensional crystals from ab initio theory[J]. Phys Rev B, 2009, 79: 115409. doi: 10.1103/PhysRevB.79.115409

[22]

Kuc A, Zibouche N, Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2[J]. Phys Rev B, 2011, 83: 245213. doi: 10.1103/PhysRevB.83.245213

[23]

Splendiani A, Sun L, Zhang Y B. Emerging photoluminescence in monolayer MoS2[J]. Nano Lett, 2010, 10: 1271. doi: 10.1021/nl903868w

[24]

Schmidt H, Wang S F, Chu L Q. Transport properties of monolayer MoS2 grown by chemical vapor deposition[J]. Nano Lett, 2014, 14: 1909. doi: 10.1021/nl4046922

[25]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nat Nanotechnol, 2011, 6: 147. doi: 10.1038/nnano.2010.279

[26]

Lee Y H, Zhang X Q, Zhang W J. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Adv Mater, 2012, 24: 2320. doi: 10.1002/adma.201104798

[27]

Ling X, Lee Y H, Lin Y X. Role of the seeding promoter in MoS2 growth by chemical vapor deposition[J]. Nano Lett, 2014, 14: 464. doi: 10.1021/nl4033704

[28]

Zhan Y, Liu Z, Najmaei S, Ajayan P M. Large-area vaporphase growth and characterization of MoS2 atomic layers on a SiO2 substrate[J]. Small, 2012, 8: 966. doi: 10.1002/smll.201102654

[29]

Wang S Y, Ko T S, Huang C C. Optical and electrical properties of MoS2 and Fe-doped MoS2[J]. Jpn J Appl Phys, 2014, 53: 04E.

[30]

Li B, Huang L, Zhong M Z. Synthesis and transport properties of large-scale alloy Co0.16Mo0.84S2 bilayer nanosheets[J]. ACS Nano, 2015, 9: 1257. doi: 10.1021/nn505048y

[31]

Laskar M R, Nath D N, Ma L. p-type doping of MoS2 thin films using Nb[J]. Appl Phys Lett, 2014, 104: 092104. doi: 10.1063/1.4867197

[32]

Fang H, Tosun M, Seol G. Degenerate n-doping of fewlayer transition metal dichalcogenides by potassium[J]. Nano Lett, 2013, 13: 1991. doi: 10.1021/nl400044m

[33]

Priour D Jr, Hwang E, Sarma S D. Quasi-two-dimensional diluted magnetic semiconductor systems[J]. Phys Rev Lett, 2005, 95: 037201. doi: 10.1103/PhysRevLett.95.037201

[34]

Meilikhov E, Farzetdinova R. Quasi-two-dimensional diluted magnetic semiconductors with arbitrary carrier degeneracy[J]. Phys Rev B, 2006, 74: 125204. doi: 10.1103/PhysRevB.74.125204

[35]

Mishra R, Zhou W, Pennycook S J. Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides[J]. Phys Rev B, 2013, 88: 44409.

[36]

Ramasubramaniam A, Naveh D. Mn-doped monolayer MoS2:an atomically thin dilute magnetic semiconductor[J]. Phys Rev B, 2013, 87: 195201. doi: 10.1103/PhysRevB.87.195201

[37]

Huang Z Y, Peng X Y, Yang H. The structural, electronic and magnetic properties of bi-layered MoS2 with transition-metals doped in the interlayer[J]. RSC Adv, 2013, 3: 12939. doi: 10.1039/c3ra41490f

[38]

Qi J, Li X, Chen X. Strain tuning of magnetism in Mn doped MoS2 monolayer[J]. J Phys Condensed Matter, 2014, 26: 256003. doi: 10.1088/0953-8984/26/25/256003

[39]

Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides[J]. Nat Mater, 2010, 9: 965. doi: 10.1038/nmat2898

[40]

Ohno H, Shen A, Matsukura F. (Ga,Mn)As:a new diluted magnetic semiconductor based on GaAs[J]. Appl Phys Lett, 1996, 69: 363. doi: 10.1063/1.118061

[41]

Zhang K, Feng S M, Wang J J. Manganese doping of monolayer MoS2:the substrate is critical[J]. Nano Lett, 2015, 15: 6586. doi: 10.1021/acs.nanolett.5b02315

[42]

Mak K F, He K L, Lee C G. Tightly bound trions in monolayer MoS2[J]. Nat Mater, 2013, 12: 207.

[43]

Liu H, Neal A T, Ye P D. Channel length scaling of MoS2 MOSFETs[J]. ACS Nano, 2012, 6: 8563. doi: 10.1021/nn303513c

[44]

Mak K F, He K, Shan J. Control of valley polarization in monolayer MoS2 by optical helicity[J]. Nat Nanotechnol, 2012, 7: 494. doi: 10.1038/nnano.2012.96

[45]

Zeng H, Dai J, Yao W. Valley polarization in MoS2 monolayers by optical pumping[J]. Nat Nanotechnol, 2012, 7: 490. doi: 10.1038/nnano.2012.95

[46]

Wu S, Ross J S, Liu G B. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2[J]. Nat Phys, 2013, 9: 149. doi: 10.1038/nphys2524

[47]

Suzuki R, Sakano M, Zhang Y J. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry[J]. Nat Nanotechnol, 2014, 9: 611. doi: 10.1038/nnano.2014.148

[48]

Najmaei S, Liu Z, Zhou W. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers[J]. Nat Mater, 2014, 12: 754.

[49]

Mak K F, McGill K L, Park J. The valley Hall effect in MoS2 transistors[J]. Science, 2014, 344: 1489. doi: 10.1126/science.1250140

[50]

Coehoorn R, Haas C, De Groot R. Electronic structure of MoSe2, MoS2, and WSe2. Ⅱ. The nature of the optical band gaps[J]. Phys Rev B, 1987, 35: 6203. doi: 10.1103/PhysRevB.35.6203

[51]

Wu M S, Xu B, Liu G. First-principles study on the electronic structures of Cr-and W-doped single-layer MoS2[J]. Acta Physica Sinica, 2013, 3: 047.

[52]

Andriotis A N, Menon M. Tunable magnetic properties of transition metal doped MoS2[J]. Phys Rev B, 2014, 90: 125304. doi: 10.1103/PhysRevB.90.125304

[53]

Conley H J, Wang B, Ziegler J I. Bandgap engineering of strained monolayer and bilayer MoS2[J]. Nano Lett, 2013, 13: 3626. doi: 10.1021/nl4014748

[54]

Feng J, Qian X, Huang C W. Strain-engineered artificial atom as a broad-spectrum solar energy funnel[J]. Nat Photonics, 2012, 6: 866. doi: 10.1038/nphoton.2012.285

[55]

Shi H, Pan H, Zhang Y W. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2[J]. Phys Rev B, 2013, 87: 155304. doi: 10.1103/PhysRevB.87.155304

[56]

Pan H, Zhang Y W. Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering[J]. J Phys Chem C, 2012, 116: 11752. doi: 10.1021/jp3015782

[57]

Lu P, Wu X, Guo W. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes[J]. Phys Chem Chem Phys, 2012, 14: 13035. doi: 10.1039/c2cp42181j

[58]

Wang W Y, Liu Y W, Tang L. Controllable Schottky barriers between MoS2 and permalloy[J]. Sci Rep, 2014, 4: 6928. doi: 10.1038/srep06928

[59]

Allain A, Kang J, Banerjee K. Electrical contacts to twodimensional semiconductors[J]. Nat Mater, 2015, 14: 1195. doi: 10.1038/nmat4452

[60]

Fang F, Triebwasser S. Effect of surface scattering on electron mobility in an inversion layer on p-type silicon[J]. Appl Phys Lett, 1964, 4: 145. doi: 10.1063/1.1754005

[61]

Jariwala D, Sangwan V K, Late D J. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors[J]. Appl Phys Lett, 2013, 102: 173107. doi: 10.1063/1.4803920

[62]

Baugher B W, Churchill H O, Yang Y. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2[J]. Nano Lett, 2013, 13: 4212. doi: 10.1021/nl401916s

[63]

Komsa H P, Berseneva N, Krasheninnikov A V. Charged point defects in the flatland:accurate formation energy calculations in two-dimensional materials[J]. Phys Rev X, 2014, 4: 031044.

[64]

Lee H S, Min S W, Chang Y G. MoS2 Nanosheet phototransistors with thickness-modulated optical energy gap[J]. Nano Lett, 2012, 12: 3695. doi: 10.1021/nl301485q

[65]

Sze S M, Ng K K. Physics of semiconductor devices[J]. John Wiley & Sons, 2006.

[66]

Tian C, Chan S W. Electrical conductivities of (CeO2)1x-(Y2O3)x thin films[J]. J Ame Ceramic Soc, 2002, 85: 2222. doi: 10.1111/jace.2002.85.issue-9

[67]

Staebler D, Wronski C. Reversible conductivity changes in discharge-produced amorphous Si[J]. Appl Phys Lett, 1977, 31: 292. doi: 10.1063/1.89674

[68]

Ghatak S, Pal A N, Ghosh A. Nature of electronic states in atomically thin MoS2 field-effect transistors[J]. ACS Nano, 2011, 5: 7707. doi: 10.1021/nn202852j

[1]

Wang Q H, Kalantar-Zadeh K, Kis A. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat Nanotechnol, 2012, 7: 699. doi: 10.1038/nnano.2012.193

[2]

Radisavljevic B, Kis A. Mobility engineering and a metalinsulator transition in monolayer MoS2[J]. Nat Mater, 2013, 12: 815. doi: 10.1038/nmat3687

[3]

Roy K, Padmanabhan M, Goswami S. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices[J]. Nat Nanotechnol, 2013, 8: 826. doi: 10.1038/nnano.2013.206

[4]

Yu W J, Liu Y, Zhou H L. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials[J]. Nat Nanotechnol, 2013, 8: 952. doi: 10.1038/nnano.2013.219

[5]

Zhang Y, Oka T, Suzuki R. Electrically switchable chiral light-emitting transistor[J]. Science, 344: 725. doi: 10.1126/science.1251329

[6]

Woods C R, Britnell L, Eckmann A. Commensurateincommensurate transition in graphene on hexagonal boron nitride[J]. Nat Phys, 2014, 10: 451. doi: 10.1038/nphys2954

[7]

Wu S F, Ross J S, Liu G B. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2[J]. Nat Phys, 2013, 9: 149. doi: 10.1038/nphys2524

[8]

Xu X, Yao W, Xiao D. Spin and pseudospins in layered transition metal dichalcogenides[J]. Nat Phys, 2014, 10: 343. doi: 10.1038/nphys2942

[9]

Young A F, Dean C R, Wang L. Spin and valley quantum Hall ferromagnetism in graphene[J]. Nat Phys, 2012, 8: 550. doi: 10.1038/nphys2307

[10]

Peng L L, Peng X, Liu B R. Ultrathin two-dimensional TS2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors[J]. Nano Lett, 2013, 13: 2151. doi: 10.1021/nl400600x

[11]

Pu J, Yomogida Y, Liu K K. Highly flexible MoS2 thin-film transistors with ion gel dielectrics[J]. Nano Lett, 2012, 12: 4013. doi: 10.1021/nl301335q

[12]

Yoon J, Park W, Bae G. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes[J]. Small, 2013, 9: 3295.

[13]

Lee G H, Yu Y J, Cui X. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures[J]. ACS Nano, 2013, 7: 7931. doi: 10.1021/nn402954e

[14]

Chang H Y, Yang S X, Lee J H. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems[J]. ACS Nano, 2013, 7: 5446. doi: 10.1021/nn401429w

[15]

Mak K F, Lee C, Hone J. Atomically thin MoS2:a new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105: 136805. doi: 10.1103/PhysRevLett.105.136805

[16]

Bromley R, Murray R, Yoffe A. The band structures of some transition metal dichalcogenides. Ⅲ. Group VIA:trigonal prism materials[J]. J Phys C, 1972, 5: 759. doi: 10.1088/0022-3719/5/7/007

[17]

Mattheiss L. Band structures of transition-metal-dichalcogenide layer compounds[J]. Phys Rev B, 1973, 8: 3719. doi: 10.1103/PhysRevB.8.3719

[18]

Coehoorn R, Haas C, Dijkstra J. Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy[J]. Phys Rev B, 1987, 35: 6195. doi: 10.1103/PhysRevB.35.6195

[19]

Böer T, Severin R, Müler A. Band structure of MoS2, MoSe2, and α-MoTe2:angle-resolved photoelectron spectroscopy and ab initio calculations[J]. Phys Rev B, 2001, 64: 235305. doi: 10.1103/PhysRevB.64.235305

[20]

Ganatra R, Zhang Q. Few-layer MoS2:a promising layered semiconductor[J]. ACS Nano, 2014, 8(5): 4074. doi: 10.1021/nn405938z

[21]

Lebegue S, Eriksson O. Electronic structure of two-dimensional crystals from ab initio theory[J]. Phys Rev B, 2009, 79: 115409. doi: 10.1103/PhysRevB.79.115409

[22]

Kuc A, Zibouche N, Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2[J]. Phys Rev B, 2011, 83: 245213. doi: 10.1103/PhysRevB.83.245213

[23]

Splendiani A, Sun L, Zhang Y B. Emerging photoluminescence in monolayer MoS2[J]. Nano Lett, 2010, 10: 1271. doi: 10.1021/nl903868w

[24]

Schmidt H, Wang S F, Chu L Q. Transport properties of monolayer MoS2 grown by chemical vapor deposition[J]. Nano Lett, 2014, 14: 1909. doi: 10.1021/nl4046922

[25]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nat Nanotechnol, 2011, 6: 147. doi: 10.1038/nnano.2010.279

[26]

Lee Y H, Zhang X Q, Zhang W J. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Adv Mater, 2012, 24: 2320. doi: 10.1002/adma.201104798

[27]

Ling X, Lee Y H, Lin Y X. Role of the seeding promoter in MoS2 growth by chemical vapor deposition[J]. Nano Lett, 2014, 14: 464. doi: 10.1021/nl4033704

[28]

Zhan Y, Liu Z, Najmaei S, Ajayan P M. Large-area vaporphase growth and characterization of MoS2 atomic layers on a SiO2 substrate[J]. Small, 2012, 8: 966. doi: 10.1002/smll.201102654

[29]

Wang S Y, Ko T S, Huang C C. Optical and electrical properties of MoS2 and Fe-doped MoS2[J]. Jpn J Appl Phys, 2014, 53: 04E.

[30]

Li B, Huang L, Zhong M Z. Synthesis and transport properties of large-scale alloy Co0.16Mo0.84S2 bilayer nanosheets[J]. ACS Nano, 2015, 9: 1257. doi: 10.1021/nn505048y

[31]

Laskar M R, Nath D N, Ma L. p-type doping of MoS2 thin films using Nb[J]. Appl Phys Lett, 2014, 104: 092104. doi: 10.1063/1.4867197

[32]

Fang H, Tosun M, Seol G. Degenerate n-doping of fewlayer transition metal dichalcogenides by potassium[J]. Nano Lett, 2013, 13: 1991. doi: 10.1021/nl400044m

[33]

Priour D Jr, Hwang E, Sarma S D. Quasi-two-dimensional diluted magnetic semiconductor systems[J]. Phys Rev Lett, 2005, 95: 037201. doi: 10.1103/PhysRevLett.95.037201

[34]

Meilikhov E, Farzetdinova R. Quasi-two-dimensional diluted magnetic semiconductors with arbitrary carrier degeneracy[J]. Phys Rev B, 2006, 74: 125204. doi: 10.1103/PhysRevB.74.125204

[35]

Mishra R, Zhou W, Pennycook S J. Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides[J]. Phys Rev B, 2013, 88: 44409.

[36]

Ramasubramaniam A, Naveh D. Mn-doped monolayer MoS2:an atomically thin dilute magnetic semiconductor[J]. Phys Rev B, 2013, 87: 195201. doi: 10.1103/PhysRevB.87.195201

[37]

Huang Z Y, Peng X Y, Yang H. The structural, electronic and magnetic properties of bi-layered MoS2 with transition-metals doped in the interlayer[J]. RSC Adv, 2013, 3: 12939. doi: 10.1039/c3ra41490f

[38]

Qi J, Li X, Chen X. Strain tuning of magnetism in Mn doped MoS2 monolayer[J]. J Phys Condensed Matter, 2014, 26: 256003. doi: 10.1088/0953-8984/26/25/256003

[39]

Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides[J]. Nat Mater, 2010, 9: 965. doi: 10.1038/nmat2898

[40]

Ohno H, Shen A, Matsukura F. (Ga,Mn)As:a new diluted magnetic semiconductor based on GaAs[J]. Appl Phys Lett, 1996, 69: 363. doi: 10.1063/1.118061

[41]

Zhang K, Feng S M, Wang J J. Manganese doping of monolayer MoS2:the substrate is critical[J]. Nano Lett, 2015, 15: 6586. doi: 10.1021/acs.nanolett.5b02315

[42]

Mak K F, He K L, Lee C G. Tightly bound trions in monolayer MoS2[J]. Nat Mater, 2013, 12: 207.

[43]

Liu H, Neal A T, Ye P D. Channel length scaling of MoS2 MOSFETs[J]. ACS Nano, 2012, 6: 8563. doi: 10.1021/nn303513c

[44]

Mak K F, He K, Shan J. Control of valley polarization in monolayer MoS2 by optical helicity[J]. Nat Nanotechnol, 2012, 7: 494. doi: 10.1038/nnano.2012.96

[45]

Zeng H, Dai J, Yao W. Valley polarization in MoS2 monolayers by optical pumping[J]. Nat Nanotechnol, 2012, 7: 490. doi: 10.1038/nnano.2012.95

[46]

Wu S, Ross J S, Liu G B. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2[J]. Nat Phys, 2013, 9: 149. doi: 10.1038/nphys2524

[47]

Suzuki R, Sakano M, Zhang Y J. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry[J]. Nat Nanotechnol, 2014, 9: 611. doi: 10.1038/nnano.2014.148

[48]

Najmaei S, Liu Z, Zhou W. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers[J]. Nat Mater, 2014, 12: 754.

[49]

Mak K F, McGill K L, Park J. The valley Hall effect in MoS2 transistors[J]. Science, 2014, 344: 1489. doi: 10.1126/science.1250140

[50]

Coehoorn R, Haas C, De Groot R. Electronic structure of MoSe2, MoS2, and WSe2. Ⅱ. The nature of the optical band gaps[J]. Phys Rev B, 1987, 35: 6203. doi: 10.1103/PhysRevB.35.6203

[51]

Wu M S, Xu B, Liu G. First-principles study on the electronic structures of Cr-and W-doped single-layer MoS2[J]. Acta Physica Sinica, 2013, 3: 047.

[52]

Andriotis A N, Menon M. Tunable magnetic properties of transition metal doped MoS2[J]. Phys Rev B, 2014, 90: 125304. doi: 10.1103/PhysRevB.90.125304

[53]

Conley H J, Wang B, Ziegler J I. Bandgap engineering of strained monolayer and bilayer MoS2[J]. Nano Lett, 2013, 13: 3626. doi: 10.1021/nl4014748

[54]

Feng J, Qian X, Huang C W. Strain-engineered artificial atom as a broad-spectrum solar energy funnel[J]. Nat Photonics, 2012, 6: 866. doi: 10.1038/nphoton.2012.285

[55]

Shi H, Pan H, Zhang Y W. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2[J]. Phys Rev B, 2013, 87: 155304. doi: 10.1103/PhysRevB.87.155304

[56]

Pan H, Zhang Y W. Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering[J]. J Phys Chem C, 2012, 116: 11752. doi: 10.1021/jp3015782

[57]

Lu P, Wu X, Guo W. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes[J]. Phys Chem Chem Phys, 2012, 14: 13035. doi: 10.1039/c2cp42181j

[58]

Wang W Y, Liu Y W, Tang L. Controllable Schottky barriers between MoS2 and permalloy[J]. Sci Rep, 2014, 4: 6928. doi: 10.1038/srep06928

[59]

Allain A, Kang J, Banerjee K. Electrical contacts to twodimensional semiconductors[J]. Nat Mater, 2015, 14: 1195. doi: 10.1038/nmat4452

[60]

Fang F, Triebwasser S. Effect of surface scattering on electron mobility in an inversion layer on p-type silicon[J]. Appl Phys Lett, 1964, 4: 145. doi: 10.1063/1.1754005

[61]

Jariwala D, Sangwan V K, Late D J. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors[J]. Appl Phys Lett, 2013, 102: 173107. doi: 10.1063/1.4803920

[62]

Baugher B W, Churchill H O, Yang Y. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2[J]. Nano Lett, 2013, 13: 4212. doi: 10.1021/nl401916s

[63]

Komsa H P, Berseneva N, Krasheninnikov A V. Charged point defects in the flatland:accurate formation energy calculations in two-dimensional materials[J]. Phys Rev X, 2014, 4: 031044.

[64]

Lee H S, Min S W, Chang Y G. MoS2 Nanosheet phototransistors with thickness-modulated optical energy gap[J]. Nano Lett, 2012, 12: 3695. doi: 10.1021/nl301485q

[65]

Sze S M, Ng K K. Physics of semiconductor devices[J]. John Wiley & Sons, 2006.

[66]

Tian C, Chan S W. Electrical conductivities of (CeO2)1x-(Y2O3)x thin films[J]. J Ame Ceramic Soc, 2002, 85: 2222. doi: 10.1111/jace.2002.85.issue-9

[67]

Staebler D, Wronski C. Reversible conductivity changes in discharge-produced amorphous Si[J]. Appl Phys Lett, 1977, 31: 292. doi: 10.1063/1.89674

[68]

Ghatak S, Pal A N, Ghosh A. Nature of electronic states in atomically thin MoS2 field-effect transistors[J]. ACS Nano, 2011, 5: 7707. doi: 10.1021/nn202852j

[1]

Yan Wang, Le Huang, Zhongming Wei. Photoresponsive field-effect transistors based on multilayer SnS2 nanosheets. J. Semicond., 2017, 38(3): 034001. doi: 10.1088/1674-4926/38/3/034001

[2]

Hongtao Ren, Yachao Liu, Lei Zhang, Kai Liu. Synthesis, properties, and applications of large-scale two-dimensional materials by polymer-assisted deposition. J. Semicond., 2019, 40(6): 061003. doi: 10.1088/1674-4926/40/6/061003

[3]

Shuliang Ren, Qinghai Tan, Jun Zhang. Review on the quantum emitters in two-dimensional materials. J. Semicond., 2019, 40(7): 071903. doi: 10.1088/1674-4926/40/7/071903

[4]

Xudong Qin, Yonghai Chen, Yu Liu, Laipan Zhu, Yuan Li, Qing Wu, Wei Huang. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials. J. Semicond., 2016, 37(1): 013002. doi: 10.1088/1674-4926/37/1/013002

[5]

Fengjing Liu, Jiawei Wang, Liang Wang, Xiaoyong Cai, Chao Jiang, Gongtang Wang. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor. J. Semicond., 2017, 38(3): 034002. doi: 10.1088/1674-4926/38/3/034002

[6]

Haolin Wang, Yajuan Zhao, Yong Xie, Xiaohua Ma, Xingwang Zhang. Recent progress in synthesis of two-dimensional hexagonal boron nitride. J. Semicond., 2017, 38(3): 031003. doi: 10.1088/1674-4926/38/3/031003

[7]

Fang Liang, Hejun Xu, Zuoyuan Dong, Yafeng Xie, Chen Luo, Yin Xia, Jian Zhang, Jun Wang, Xing Wu. Substrates and interlayer coupling effects on Mo1−xWxSe2 alloys. J. Semicond., 2019, 40(6): 062005. doi: 10.1088/1674-4926/40/6/062005

[8]

Yuanhui Sun, Xinjiang Wang, Xin-Gang Zhao, Zhiming Shi, Lijun Zhang. First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides. J. Semicond., 2018, 39(7): 072001. doi: 10.1088/1674-4926/39/7/072001

[9]

Xin Cong, Miaoling Lin, Ping-Heng Tan. Lattice vibration and Raman scattering of two-dimensional van der Waals heterostructure. J. Semicond., 2019, 40(9): 091001. doi: 10.1088/1674-4926/40/9/091001

[10]

N Divya Bharathi, K Sivasankaran. Research progress and challenges of two dimensional MoS2 field effect transistors. J. Semicond., 2018, 39(10): 104002. doi: 10.1088/1674-4926/39/10/104002

[11]

Huajun Chen, Changzhao Chen, Yang Li, Xianwen Fang. Monolayer-molybdenum-disulfide-based nano-optomechanical transistor andewline tunable nonlinear responses. J. Semicond., 2016, 37(11): 114004. doi: 10.1088/1674-4926/37/11/114004

[12]

Anna V. Krivosheeva, Victor L. Shaposhnikov, Victor E. Borisenko, Jean-Louis Lazzari, Chow Waileong, Julia Gusakova, Beng Kang Tay. Theoretical study of defect impact on two-dimensional MoS2. J. Semicond., 2015, 36(12): 122002. doi: 10.1088/1674-4926/36/12/122002

[13]

Jinbo Pan, Qimin Yan. Data-driven material discovery for photocatalysis: a short review. J. Semicond., 2018, 39(7): 071001. doi: 10.1088/1674-4926/39/7/071001

[14]

Yun Kang, Sheng Wang, Xianli Li. Electron energy states in a two-dimensional GaAs quantum ring with hydrogenic donor impurity in the presence of magnetic field. J. Semicond., 2015, 36(3): 032003. doi: 10.1088/1674-4926/36/3/032003

[15]

Bo Gu. High temperature magnetic semiconductors: narrow band gaps and two-dimensional systems. J. Semicond., 2019, 40(8): 081504. doi: 10.1088/1674-4926/40/8/081504

[16]

Fanlong Ning. Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. J. Semicond., 2019, 40(8): 080201. doi: 10.1088/1674-4926/40/8/080201

[17]

Chih-Tang Sah, Bin B. Jie. Bipolar Theory of MOS Field-Effect Transistors and Experiments. J. Semicond., 2007, 28(10): 1497.

[18]

Jie Jiang, Zhenhua Ni. Defect engineering in two-dimensional materials. J. Semicond., 2019, 40(7): 070403. doi: 10.1088/1674-4926/40/7/070403

[19]

Weisheng Li, Hongkai Ning, Zhihao Yu, Yi Shi, Xinran Wang. Reducing the power consumption of two-dimensional logic transistors. J. Semicond., 2019, 40(9): 091002. doi: 10.1088/1674-4926/40/9/091002

[20]

Bahniman Ghosh, Naval Kishor. An ab initio study of strained two-dimensional MoSe2. J. Semicond., 2015, 36(4): 043001. doi: 10.1088/1674-4926/36/4/043001

Search

Advanced Search >>

GET CITATION

C Huang, Y B Jin, W Y Wang, L Tang, C Y Song, F X Xiu. Manganese and chromium doping in atomically thin MoS2[J]. J. Semicond., 2017, 38(3): 033004. doi: 10.1088/1674-4926/38/3/033004.

Export: BibTex EndNote

Article Metrics

Article views: 986 Times PDF downloads: 25 Times Cited by: 0 Times

History

Manuscript received: 22 August 2016 Manuscript revised: 01 November 2016 Online: Published: 01 March 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误