J. Semicond. > Volume 38 > Issue 3 > Article Number: 033004

Manganese and chromium doping in atomically thin MoS2

Ce Huang 1, , Yibo Jin 1, , Weiyi Wang 1, , Lei Tang 1, , Chaoyu Song 1, and Faxian Xiu 1, 2, ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: Recently, two-dimensional materials have been attracting increasing attention because of their novel properties and promising applications. However, the impurity doping remains a significant challenge owing to the lack of the doping strategy in the atomically thin layers. Here we report on the chromium (Cr) and manganese (Mn) doping in atomically-thin MoS2 crystals grown by chemical vapor deposition. The Cr/Mn doped MoS2 samples are characterized by a peak at 1.76 and 1.79 eV in photoluminescence spectra, respectively, compared with the undoped one at 1.85 eV. The field-effect transistor (FET) devices based on the Mn doping show a higher threshold voltage than that of the pure MoS2 while the Cr doping exhibits the opposite behavior. Importantly, the carrier concentration in these samples displays a remarkable difference arising from the doping effect, consistent with the evolution of the FET performance. The temperature-dependent conductivity measurements further demonstrate a large variation in activation energy. The successful incorporation of the Mn and Cr impurities into the monolayer MoS2 paves the way towards the high Curie temperature two-dimensional dilute magnetic semiconductors.

Key words: MoS2field effect transistorsdilute magnetic semiconductorstwo-dimensional materials

Abstract: Recently, two-dimensional materials have been attracting increasing attention because of their novel properties and promising applications. However, the impurity doping remains a significant challenge owing to the lack of the doping strategy in the atomically thin layers. Here we report on the chromium (Cr) and manganese (Mn) doping in atomically-thin MoS2 crystals grown by chemical vapor deposition. The Cr/Mn doped MoS2 samples are characterized by a peak at 1.76 and 1.79 eV in photoluminescence spectra, respectively, compared with the undoped one at 1.85 eV. The field-effect transistor (FET) devices based on the Mn doping show a higher threshold voltage than that of the pure MoS2 while the Cr doping exhibits the opposite behavior. Importantly, the carrier concentration in these samples displays a remarkable difference arising from the doping effect, consistent with the evolution of the FET performance. The temperature-dependent conductivity measurements further demonstrate a large variation in activation energy. The successful incorporation of the Mn and Cr impurities into the monolayer MoS2 paves the way towards the high Curie temperature two-dimensional dilute magnetic semiconductors.

Key words: MoS2field effect transistorsdilute magnetic semiconductorstwo-dimensional materials



References:

[1]

Wang Q H, Kalantar-Zadeh K, Kis A. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat Nanotechnol, 2012, 7: 699. doi: 10.1038/nnano.2012.193

[2]

Radisavljevic B, Kis A. Mobility engineering and a metalinsulator transition in monolayer MoS2[J]. Nat Mater, 2013, 12: 815. doi: 10.1038/nmat3687

[3]

Roy K, Padmanabhan M, Goswami S. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices[J]. Nat Nanotechnol, 2013, 8: 826. doi: 10.1038/nnano.2013.206

[4]

Yu W J, Liu Y, Zhou H L. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials[J]. Nat Nanotechnol, 2013, 8: 952. doi: 10.1038/nnano.2013.219

[5]

Zhang Y, Oka T, Suzuki R. Electrically switchable chiral light-emitting transistor[J]. Science, 344: 725. doi: 10.1126/science.1251329

[6]

Woods C R, Britnell L, Eckmann A. Commensurateincommensurate transition in graphene on hexagonal boron nitride[J]. Nat Phys, 2014, 10: 451. doi: 10.1038/nphys2954

[7]

Wu S F, Ross J S, Liu G B. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2[J]. Nat Phys, 2013, 9: 149. doi: 10.1038/nphys2524

[8]

Xu X, Yao W, Xiao D. Spin and pseudospins in layered transition metal dichalcogenides[J]. Nat Phys, 2014, 10: 343. doi: 10.1038/nphys2942

[9]

Young A F, Dean C R, Wang L. Spin and valley quantum Hall ferromagnetism in graphene[J]. Nat Phys, 2012, 8: 550. doi: 10.1038/nphys2307

[10]

Peng L L, Peng X, Liu B R. Ultrathin two-dimensional TS2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors[J]. Nano Lett, 2013, 13: 2151. doi: 10.1021/nl400600x

[11]

Pu J, Yomogida Y, Liu K K. Highly flexible MoS2 thin-film transistors with ion gel dielectrics[J]. Nano Lett, 2012, 12: 4013. doi: 10.1021/nl301335q

[12]

Yoon J, Park W, Bae G. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes[J]. Small, 2013, 9: 3295.

[13]

Lee G H, Yu Y J, Cui X. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures[J]. ACS Nano, 2013, 7: 7931. doi: 10.1021/nn402954e

[14]

Chang H Y, Yang S X, Lee J H. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems[J]. ACS Nano, 2013, 7: 5446. doi: 10.1021/nn401429w

[15]

Mak K F, Lee C, Hone J. Atomically thin MoS2:a new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105: 136805. doi: 10.1103/PhysRevLett.105.136805

[16]

Bromley R, Murray R, Yoffe A. The band structures of some transition metal dichalcogenides. Ⅲ. Group VIA:trigonal prism materials[J]. J Phys C, 1972, 5: 759. doi: 10.1088/0022-3719/5/7/007

[17]

Mattheiss L. Band structures of transition-metal-dichalcogenide layer compounds[J]. Phys Rev B, 1973, 8: 3719. doi: 10.1103/PhysRevB.8.3719

[18]

Coehoorn R, Haas C, Dijkstra J. Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy[J]. Phys Rev B, 1987, 35: 6195. doi: 10.1103/PhysRevB.35.6195

[19]

Böer T, Severin R, Müler A. Band structure of MoS2, MoSe2, and α-MoTe2:angle-resolved photoelectron spectroscopy and ab initio calculations[J]. Phys Rev B, 2001, 64: 235305. doi: 10.1103/PhysRevB.64.235305

[20]

Ganatra R, Zhang Q. Few-layer MoS2:a promising layered semiconductor[J]. ACS Nano, 2014, 8(5): 4074. doi: 10.1021/nn405938z

[21]

Lebegue S, Eriksson O. Electronic structure of two-dimensional crystals from ab initio theory[J]. Phys Rev B, 2009, 79: 115409. doi: 10.1103/PhysRevB.79.115409

[22]

Kuc A, Zibouche N, Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2[J]. Phys Rev B, 2011, 83: 245213. doi: 10.1103/PhysRevB.83.245213

[23]

Splendiani A, Sun L, Zhang Y B. Emerging photoluminescence in monolayer MoS2[J]. Nano Lett, 2010, 10: 1271. doi: 10.1021/nl903868w

[24]

Schmidt H, Wang S F, Chu L Q. Transport properties of monolayer MoS2 grown by chemical vapor deposition[J]. Nano Lett, 2014, 14: 1909. doi: 10.1021/nl4046922

[25]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nat Nanotechnol, 2011, 6: 147. doi: 10.1038/nnano.2010.279

[26]

Lee Y H, Zhang X Q, Zhang W J. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Adv Mater, 2012, 24: 2320. doi: 10.1002/adma.201104798

[27]

Ling X, Lee Y H, Lin Y X. Role of the seeding promoter in MoS2 growth by chemical vapor deposition[J]. Nano Lett, 2014, 14: 464. doi: 10.1021/nl4033704

[28]

Zhan Y, Liu Z, Najmaei S, Ajayan P M. Large-area vaporphase growth and characterization of MoS2 atomic layers on a SiO2 substrate[J]. Small, 2012, 8: 966. doi: 10.1002/smll.201102654

[29]

Wang S Y, Ko T S, Huang C C. Optical and electrical properties of MoS2 and Fe-doped MoS2[J]. Jpn J Appl Phys, 2014, 53: 04E.

[30]

Li B, Huang L, Zhong M Z. Synthesis and transport properties of large-scale alloy Co0.16Mo0.84S2 bilayer nanosheets[J]. ACS Nano, 2015, 9: 1257. doi: 10.1021/nn505048y

[31]

Laskar M R, Nath D N, Ma L. p-type doping of MoS2 thin films using Nb[J]. Appl Phys Lett, 2014, 104: 092104. doi: 10.1063/1.4867197

[32]

Fang H, Tosun M, Seol G. Degenerate n-doping of fewlayer transition metal dichalcogenides by potassium[J]. Nano Lett, 2013, 13: 1991. doi: 10.1021/nl400044m

[33]

Priour D Jr, Hwang E, Sarma S D. Quasi-two-dimensional diluted magnetic semiconductor systems[J]. Phys Rev Lett, 2005, 95: 037201. doi: 10.1103/PhysRevLett.95.037201

[34]

Meilikhov E, Farzetdinova R. Quasi-two-dimensional diluted magnetic semiconductors with arbitrary carrier degeneracy[J]. Phys Rev B, 2006, 74: 125204. doi: 10.1103/PhysRevB.74.125204

[35]

Mishra R, Zhou W, Pennycook S J. Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides[J]. Phys Rev B, 2013, 88: 44409.

[36]

Ramasubramaniam A, Naveh D. Mn-doped monolayer MoS2:an atomically thin dilute magnetic semiconductor[J]. Phys Rev B, 2013, 87: 195201. doi: 10.1103/PhysRevB.87.195201

[37]

Huang Z Y, Peng X Y, Yang H. The structural, electronic and magnetic properties of bi-layered MoS2 with transition-metals doped in the interlayer[J]. RSC Adv, 2013, 3: 12939. doi: 10.1039/c3ra41490f

[38]

Qi J, Li X, Chen X. Strain tuning of magnetism in Mn doped MoS2 monolayer[J]. J Phys Condensed Matter, 2014, 26: 256003. doi: 10.1088/0953-8984/26/25/256003

[39]

Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides[J]. Nat Mater, 2010, 9: 965. doi: 10.1038/nmat2898

[40]

Ohno H, Shen A, Matsukura F. (Ga,Mn)As:a new diluted magnetic semiconductor based on GaAs[J]. Appl Phys Lett, 1996, 69: 363. doi: 10.1063/1.118061

[41]

Zhang K, Feng S M, Wang J J. Manganese doping of monolayer MoS2:the substrate is critical[J]. Nano Lett, 2015, 15: 6586. doi: 10.1021/acs.nanolett.5b02315

[42]

Mak K F, He K L, Lee C G. Tightly bound trions in monolayer MoS2[J]. Nat Mater, 2013, 12: 207.

[43]

Liu H, Neal A T, Ye P D. Channel length scaling of MoS2 MOSFETs[J]. ACS Nano, 2012, 6: 8563. doi: 10.1021/nn303513c

[44]

Mak K F, He K, Shan J. Control of valley polarization in monolayer MoS2 by optical helicity[J]. Nat Nanotechnol, 2012, 7: 494. doi: 10.1038/nnano.2012.96

[45]

Zeng H, Dai J, Yao W. Valley polarization in MoS2 monolayers by optical pumping[J]. Nat Nanotechnol, 2012, 7: 490. doi: 10.1038/nnano.2012.95

[46]

Wu S, Ross J S, Liu G B. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2[J]. Nat Phys, 2013, 9: 149. doi: 10.1038/nphys2524

[47]

Suzuki R, Sakano M, Zhang Y J. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry[J]. Nat Nanotechnol, 2014, 9: 611. doi: 10.1038/nnano.2014.148

[48]

Najmaei S, Liu Z, Zhou W. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers[J]. Nat Mater, 2014, 12: 754.

[49]

Mak K F, McGill K L, Park J. The valley Hall effect in MoS2 transistors[J]. Science, 2014, 344: 1489. doi: 10.1126/science.1250140

[50]

Coehoorn R, Haas C, De Groot R. Electronic structure of MoSe2, MoS2, and WSe2. Ⅱ. The nature of the optical band gaps[J]. Phys Rev B, 1987, 35: 6203. doi: 10.1103/PhysRevB.35.6203

[51]

Wu M S, Xu B, Liu G. First-principles study on the electronic structures of Cr-and W-doped single-layer MoS2[J]. Acta Physica Sinica, 2013, 3: 047.

[52]

Andriotis A N, Menon M. Tunable magnetic properties of transition metal doped MoS2[J]. Phys Rev B, 2014, 90: 125304. doi: 10.1103/PhysRevB.90.125304

[53]

Conley H J, Wang B, Ziegler J I. Bandgap engineering of strained monolayer and bilayer MoS2[J]. Nano Lett, 2013, 13: 3626. doi: 10.1021/nl4014748

[54]

Feng J, Qian X, Huang C W. Strain-engineered artificial atom as a broad-spectrum solar energy funnel[J]. Nat Photonics, 2012, 6: 866. doi: 10.1038/nphoton.2012.285

[55]

Shi H, Pan H, Zhang Y W. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2[J]. Phys Rev B, 2013, 87: 155304. doi: 10.1103/PhysRevB.87.155304

[56]

Pan H, Zhang Y W. Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering[J]. J Phys Chem C, 2012, 116: 11752. doi: 10.1021/jp3015782

[57]

Lu P, Wu X, Guo W. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes[J]. Phys Chem Chem Phys, 2012, 14: 13035. doi: 10.1039/c2cp42181j

[58]

Wang W Y, Liu Y W, Tang L. Controllable Schottky barriers between MoS2 and permalloy[J]. Sci Rep, 2014, 4: 6928. doi: 10.1038/srep06928

[59]

Allain A, Kang J, Banerjee K. Electrical contacts to twodimensional semiconductors[J]. Nat Mater, 2015, 14: 1195. doi: 10.1038/nmat4452

[60]

Fang F, Triebwasser S. Effect of surface scattering on electron mobility in an inversion layer on p-type silicon[J]. Appl Phys Lett, 1964, 4: 145. doi: 10.1063/1.1754005

[61]

Jariwala D, Sangwan V K, Late D J. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors[J]. Appl Phys Lett, 2013, 102: 173107. doi: 10.1063/1.4803920

[62]

Baugher B W, Churchill H O, Yang Y. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2[J]. Nano Lett, 2013, 13: 4212. doi: 10.1021/nl401916s

[63]

Komsa H P, Berseneva N, Krasheninnikov A V. Charged point defects in the flatland:accurate formation energy calculations in two-dimensional materials[J]. Phys Rev X, 2014, 4: 031044.

[64]

Lee H S, Min S W, Chang Y G. MoS2 Nanosheet phototransistors with thickness-modulated optical energy gap[J]. Nano Lett, 2012, 12: 3695. doi: 10.1021/nl301485q

[65]

Sze S M, Ng K K. Physics of semiconductor devices[J]. John Wiley & Sons, 2006.

[66]

Tian C, Chan S W. Electrical conductivities of (CeO2)1x-(Y2O3)x thin films[J]. J Ame Ceramic Soc, 2002, 85: 2222. doi: 10.1111/jace.2002.85.issue-9

[67]

Staebler D, Wronski C. Reversible conductivity changes in discharge-produced amorphous Si[J]. Appl Phys Lett, 1977, 31: 292. doi: 10.1063/1.89674

[68]

Ghatak S, Pal A N, Ghosh A. Nature of electronic states in atomically thin MoS2 field-effect transistors[J]. ACS Nano, 2011, 5: 7707. doi: 10.1021/nn202852j

[1]

Wang Q H, Kalantar-Zadeh K, Kis A. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nat Nanotechnol, 2012, 7: 699. doi: 10.1038/nnano.2012.193

[2]

Radisavljevic B, Kis A. Mobility engineering and a metalinsulator transition in monolayer MoS2[J]. Nat Mater, 2013, 12: 815. doi: 10.1038/nmat3687

[3]

Roy K, Padmanabhan M, Goswami S. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices[J]. Nat Nanotechnol, 2013, 8: 826. doi: 10.1038/nnano.2013.206

[4]

Yu W J, Liu Y, Zhou H L. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials[J]. Nat Nanotechnol, 2013, 8: 952. doi: 10.1038/nnano.2013.219

[5]

Zhang Y, Oka T, Suzuki R. Electrically switchable chiral light-emitting transistor[J]. Science, 344: 725. doi: 10.1126/science.1251329

[6]

Woods C R, Britnell L, Eckmann A. Commensurateincommensurate transition in graphene on hexagonal boron nitride[J]. Nat Phys, 2014, 10: 451. doi: 10.1038/nphys2954

[7]

Wu S F, Ross J S, Liu G B. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2[J]. Nat Phys, 2013, 9: 149. doi: 10.1038/nphys2524

[8]

Xu X, Yao W, Xiao D. Spin and pseudospins in layered transition metal dichalcogenides[J]. Nat Phys, 2014, 10: 343. doi: 10.1038/nphys2942

[9]

Young A F, Dean C R, Wang L. Spin and valley quantum Hall ferromagnetism in graphene[J]. Nat Phys, 2012, 8: 550. doi: 10.1038/nphys2307

[10]

Peng L L, Peng X, Liu B R. Ultrathin two-dimensional TS2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors[J]. Nano Lett, 2013, 13: 2151. doi: 10.1021/nl400600x

[11]

Pu J, Yomogida Y, Liu K K. Highly flexible MoS2 thin-film transistors with ion gel dielectrics[J]. Nano Lett, 2012, 12: 4013. doi: 10.1021/nl301335q

[12]

Yoon J, Park W, Bae G. Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes[J]. Small, 2013, 9: 3295.

[13]

Lee G H, Yu Y J, Cui X. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures[J]. ACS Nano, 2013, 7: 7931. doi: 10.1021/nn402954e

[14]

Chang H Y, Yang S X, Lee J H. High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems[J]. ACS Nano, 2013, 7: 5446. doi: 10.1021/nn401429w

[15]

Mak K F, Lee C, Hone J. Atomically thin MoS2:a new direct-gap semiconductor[J]. Phys Rev Lett, 2010, 105: 136805. doi: 10.1103/PhysRevLett.105.136805

[16]

Bromley R, Murray R, Yoffe A. The band structures of some transition metal dichalcogenides. Ⅲ. Group VIA:trigonal prism materials[J]. J Phys C, 1972, 5: 759. doi: 10.1088/0022-3719/5/7/007

[17]

Mattheiss L. Band structures of transition-metal-dichalcogenide layer compounds[J]. Phys Rev B, 1973, 8: 3719. doi: 10.1103/PhysRevB.8.3719

[18]

Coehoorn R, Haas C, Dijkstra J. Electronic structure of MoSe2, MoS2, and WSe2. I. Band-structure calculations and photoelectron spectroscopy[J]. Phys Rev B, 1987, 35: 6195. doi: 10.1103/PhysRevB.35.6195

[19]

Böer T, Severin R, Müler A. Band structure of MoS2, MoSe2, and α-MoTe2:angle-resolved photoelectron spectroscopy and ab initio calculations[J]. Phys Rev B, 2001, 64: 235305. doi: 10.1103/PhysRevB.64.235305

[20]

Ganatra R, Zhang Q. Few-layer MoS2:a promising layered semiconductor[J]. ACS Nano, 2014, 8(5): 4074. doi: 10.1021/nn405938z

[21]

Lebegue S, Eriksson O. Electronic structure of two-dimensional crystals from ab initio theory[J]. Phys Rev B, 2009, 79: 115409. doi: 10.1103/PhysRevB.79.115409

[22]

Kuc A, Zibouche N, Heine T. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2[J]. Phys Rev B, 2011, 83: 245213. doi: 10.1103/PhysRevB.83.245213

[23]

Splendiani A, Sun L, Zhang Y B. Emerging photoluminescence in monolayer MoS2[J]. Nano Lett, 2010, 10: 1271. doi: 10.1021/nl903868w

[24]

Schmidt H, Wang S F, Chu L Q. Transport properties of monolayer MoS2 grown by chemical vapor deposition[J]. Nano Lett, 2014, 14: 1909. doi: 10.1021/nl4046922

[25]

Radisavljevic B, Radenovic A, Brivio J. Single-layer MoS2 transistors[J]. Nat Nanotechnol, 2011, 6: 147. doi: 10.1038/nnano.2010.279

[26]

Lee Y H, Zhang X Q, Zhang W J. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition[J]. Adv Mater, 2012, 24: 2320. doi: 10.1002/adma.201104798

[27]

Ling X, Lee Y H, Lin Y X. Role of the seeding promoter in MoS2 growth by chemical vapor deposition[J]. Nano Lett, 2014, 14: 464. doi: 10.1021/nl4033704

[28]

Zhan Y, Liu Z, Najmaei S, Ajayan P M. Large-area vaporphase growth and characterization of MoS2 atomic layers on a SiO2 substrate[J]. Small, 2012, 8: 966. doi: 10.1002/smll.201102654

[29]

Wang S Y, Ko T S, Huang C C. Optical and electrical properties of MoS2 and Fe-doped MoS2[J]. Jpn J Appl Phys, 2014, 53: 04E.

[30]

Li B, Huang L, Zhong M Z. Synthesis and transport properties of large-scale alloy Co0.16Mo0.84S2 bilayer nanosheets[J]. ACS Nano, 2015, 9: 1257. doi: 10.1021/nn505048y

[31]

Laskar M R, Nath D N, Ma L. p-type doping of MoS2 thin films using Nb[J]. Appl Phys Lett, 2014, 104: 092104. doi: 10.1063/1.4867197

[32]

Fang H, Tosun M, Seol G. Degenerate n-doping of fewlayer transition metal dichalcogenides by potassium[J]. Nano Lett, 2013, 13: 1991. doi: 10.1021/nl400044m

[33]

Priour D Jr, Hwang E, Sarma S D. Quasi-two-dimensional diluted magnetic semiconductor systems[J]. Phys Rev Lett, 2005, 95: 037201. doi: 10.1103/PhysRevLett.95.037201

[34]

Meilikhov E, Farzetdinova R. Quasi-two-dimensional diluted magnetic semiconductors with arbitrary carrier degeneracy[J]. Phys Rev B, 2006, 74: 125204. doi: 10.1103/PhysRevB.74.125204

[35]

Mishra R, Zhou W, Pennycook S J. Long-range ferromagnetic ordering in manganese-doped two-dimensional dichalcogenides[J]. Phys Rev B, 2013, 88: 44409.

[36]

Ramasubramaniam A, Naveh D. Mn-doped monolayer MoS2:an atomically thin dilute magnetic semiconductor[J]. Phys Rev B, 2013, 87: 195201. doi: 10.1103/PhysRevB.87.195201

[37]

Huang Z Y, Peng X Y, Yang H. The structural, electronic and magnetic properties of bi-layered MoS2 with transition-metals doped in the interlayer[J]. RSC Adv, 2013, 3: 12939. doi: 10.1039/c3ra41490f

[38]

Qi J, Li X, Chen X. Strain tuning of magnetism in Mn doped MoS2 monolayer[J]. J Phys Condensed Matter, 2014, 26: 256003. doi: 10.1088/0953-8984/26/25/256003

[39]

Dietl T. A ten-year perspective on dilute magnetic semiconductors and oxides[J]. Nat Mater, 2010, 9: 965. doi: 10.1038/nmat2898

[40]

Ohno H, Shen A, Matsukura F. (Ga,Mn)As:a new diluted magnetic semiconductor based on GaAs[J]. Appl Phys Lett, 1996, 69: 363. doi: 10.1063/1.118061

[41]

Zhang K, Feng S M, Wang J J. Manganese doping of monolayer MoS2:the substrate is critical[J]. Nano Lett, 2015, 15: 6586. doi: 10.1021/acs.nanolett.5b02315

[42]

Mak K F, He K L, Lee C G. Tightly bound trions in monolayer MoS2[J]. Nat Mater, 2013, 12: 207.

[43]

Liu H, Neal A T, Ye P D. Channel length scaling of MoS2 MOSFETs[J]. ACS Nano, 2012, 6: 8563. doi: 10.1021/nn303513c

[44]

Mak K F, He K, Shan J. Control of valley polarization in monolayer MoS2 by optical helicity[J]. Nat Nanotechnol, 2012, 7: 494. doi: 10.1038/nnano.2012.96

[45]

Zeng H, Dai J, Yao W. Valley polarization in MoS2 monolayers by optical pumping[J]. Nat Nanotechnol, 2012, 7: 490. doi: 10.1038/nnano.2012.95

[46]

Wu S, Ross J S, Liu G B. Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2[J]. Nat Phys, 2013, 9: 149. doi: 10.1038/nphys2524

[47]

Suzuki R, Sakano M, Zhang Y J. Valley-dependent spin polarization in bulk MoS2 with broken inversion symmetry[J]. Nat Nanotechnol, 2014, 9: 611. doi: 10.1038/nnano.2014.148

[48]

Najmaei S, Liu Z, Zhou W. Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers[J]. Nat Mater, 2014, 12: 754.

[49]

Mak K F, McGill K L, Park J. The valley Hall effect in MoS2 transistors[J]. Science, 2014, 344: 1489. doi: 10.1126/science.1250140

[50]

Coehoorn R, Haas C, De Groot R. Electronic structure of MoSe2, MoS2, and WSe2. Ⅱ. The nature of the optical band gaps[J]. Phys Rev B, 1987, 35: 6203. doi: 10.1103/PhysRevB.35.6203

[51]

Wu M S, Xu B, Liu G. First-principles study on the electronic structures of Cr-and W-doped single-layer MoS2[J]. Acta Physica Sinica, 2013, 3: 047.

[52]

Andriotis A N, Menon M. Tunable magnetic properties of transition metal doped MoS2[J]. Phys Rev B, 2014, 90: 125304. doi: 10.1103/PhysRevB.90.125304

[53]

Conley H J, Wang B, Ziegler J I. Bandgap engineering of strained monolayer and bilayer MoS2[J]. Nano Lett, 2013, 13: 3626. doi: 10.1021/nl4014748

[54]

Feng J, Qian X, Huang C W. Strain-engineered artificial atom as a broad-spectrum solar energy funnel[J]. Nat Photonics, 2012, 6: 866. doi: 10.1038/nphoton.2012.285

[55]

Shi H, Pan H, Zhang Y W. Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2[J]. Phys Rev B, 2013, 87: 155304. doi: 10.1103/PhysRevB.87.155304

[56]

Pan H, Zhang Y W. Tuning the electronic and magnetic properties of MoS2 nanoribbons by strain engineering[J]. J Phys Chem C, 2012, 116: 11752. doi: 10.1021/jp3015782

[57]

Lu P, Wu X, Guo W. Strain-dependent electronic and magnetic properties of MoS2 monolayer, bilayer, nanoribbons and nanotubes[J]. Phys Chem Chem Phys, 2012, 14: 13035. doi: 10.1039/c2cp42181j

[58]

Wang W Y, Liu Y W, Tang L. Controllable Schottky barriers between MoS2 and permalloy[J]. Sci Rep, 2014, 4: 6928. doi: 10.1038/srep06928

[59]

Allain A, Kang J, Banerjee K. Electrical contacts to twodimensional semiconductors[J]. Nat Mater, 2015, 14: 1195. doi: 10.1038/nmat4452

[60]

Fang F, Triebwasser S. Effect of surface scattering on electron mobility in an inversion layer on p-type silicon[J]. Appl Phys Lett, 1964, 4: 145. doi: 10.1063/1.1754005

[61]

Jariwala D, Sangwan V K, Late D J. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors[J]. Appl Phys Lett, 2013, 102: 173107. doi: 10.1063/1.4803920

[62]

Baugher B W, Churchill H O, Yang Y. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2[J]. Nano Lett, 2013, 13: 4212. doi: 10.1021/nl401916s

[63]

Komsa H P, Berseneva N, Krasheninnikov A V. Charged point defects in the flatland:accurate formation energy calculations in two-dimensional materials[J]. Phys Rev X, 2014, 4: 031044.

[64]

Lee H S, Min S W, Chang Y G. MoS2 Nanosheet phototransistors with thickness-modulated optical energy gap[J]. Nano Lett, 2012, 12: 3695. doi: 10.1021/nl301485q

[65]

Sze S M, Ng K K. Physics of semiconductor devices[J]. John Wiley & Sons, 2006.

[66]

Tian C, Chan S W. Electrical conductivities of (CeO2)1x-(Y2O3)x thin films[J]. J Ame Ceramic Soc, 2002, 85: 2222. doi: 10.1111/jace.2002.85.issue-9

[67]

Staebler D, Wronski C. Reversible conductivity changes in discharge-produced amorphous Si[J]. Appl Phys Lett, 1977, 31: 292. doi: 10.1063/1.89674

[68]

Ghatak S, Pal A N, Ghosh A. Nature of electronic states in atomically thin MoS2 field-effect transistors[J]. ACS Nano, 2011, 5: 7707. doi: 10.1021/nn202852j

[1]

Fuyou Liao, Hongjuan Wang, Xiaojiao Guo, Zhongxun Guo, Ling Tong, Antoine Riaud, Yaochen Sheng, Lin Chen, Qingqing Sun, Peng Zhou, David Wei Zhang, Yang Chai, Xiangwei Jiang, Yan Liu, Wenzhong Bao. Charge transport and quantum confinement in MoS2 dual-gated transistors. J. Semicond., 2020, 41(7): 072904. doi: 10.1088/1674-4926/41/7/072904

[2]

Peng Zhang, Yiwei Zhang, Yi Wei, Huaning Jiang, Xingguo Wang, Yongji Gong. Contact engineering for two-dimensional semiconductors. J. Semicond., 2020, 41(7): 071901. doi: 10.1088/1674-4926/41/7/071901

[3]

Yuanyuan Jin, Huimin Li, Song Liu. Growth of large-scale two-dimensional insulator Na2Ta4O11 through chemical vapor deposition. J. Semicond., 2020, 41(7): 072901. doi: 10.1088/1674-4926/41/7/072901

[4]

Yan Wang, Le Huang, Zhongming Wei. Photoresponsive field-effect transistors based on multilayer SnS2 nanosheets. J. Semicond., 2017, 38(3): 034001. doi: 10.1088/1674-4926/38/3/034001

[5]

Hongtao Ren, Yachao Liu, Lei Zhang, Kai Liu. Synthesis, properties, and applications of large-scale two-dimensional materials by polymer-assisted deposition. J. Semicond., 2019, 40(6): 061003. doi: 10.1088/1674-4926/40/6/061003

[6]

Shuliang Ren, Qinghai Tan, Jun Zhang. Review on the quantum emitters in two-dimensional materials. J. Semicond., 2019, 40(7): 071903. doi: 10.1088/1674-4926/40/7/071903

[7]

Xudong Qin, Yonghai Chen, Yu Liu, Laipan Zhu, Yuan Li, Qing Wu, Wei Huang. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials. J. Semicond., 2016, 37(1): 013002. doi: 10.1088/1674-4926/37/1/013002

[8]

Fengjing Liu, Jiawei Wang, Liang Wang, Xiaoyong Cai, Chao Jiang, Gongtang Wang. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor. J. Semicond., 2017, 38(3): 034002. doi: 10.1088/1674-4926/38/3/034002

[9]

Haolin Wang, Yajuan Zhao, Yong Xie, Xiaohua Ma, Xingwang Zhang. Recent progress in synthesis of two-dimensional hexagonal boron nitride. J. Semicond., 2017, 38(3): 031003. doi: 10.1088/1674-4926/38/3/031003

[10]

Xiuxin Xia, Xiaoxi Li, Hanwen Wang. Metal–insulator transition in few-layered GaTe transistors. J. Semicond., 2020, 41(7): 072902. doi: 10.1088/1674-4926/41/7/072902

[11]

Fang Liang, Hejun Xu, Zuoyuan Dong, Yafeng Xie, Chen Luo, Yin Xia, Jian Zhang, Jun Wang, Xing Wu. Substrates and interlayer coupling effects on Mo1−xWxSe2 alloys. J. Semicond., 2019, 40(6): 062005. doi: 10.1088/1674-4926/40/6/062005

[12]

Yuanhui Sun, Xinjiang Wang, Xin-Gang Zhao, Zhiming Shi, Lijun Zhang. First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides. J. Semicond., 2018, 39(7): 072001. doi: 10.1088/1674-4926/39/7/072001

[13]

Xin Cong, Miaoling Lin, Ping-Heng Tan. Lattice vibration and Raman scattering of two-dimensional van der Waals heterostructure. J. Semicond., 2019, 40(9): 091001. doi: 10.1088/1674-4926/40/9/091001

[14]

N Divya Bharathi, K Sivasankaran. Research progress and challenges of two dimensional MoS2 field effect transistors. J. Semicond., 2018, 39(10): 104002. doi: 10.1088/1674-4926/39/10/104002

[15]

Huajun Chen, Changzhao Chen, Yang Li, Xianwen Fang. Monolayer-molybdenum-disulfide-based nano-optomechanical transistor andewline tunable nonlinear responses. J. Semicond., 2016, 37(11): 114004. doi: 10.1088/1674-4926/37/11/114004

[16]

Anna V. Krivosheeva, Victor L. Shaposhnikov, Victor E. Borisenko, Jean-Louis Lazzari, Chow Waileong, Julia Gusakova, Beng Kang Tay. Theoretical study of defect impact on two-dimensional MoS2. J. Semicond., 2015, 36(12): 122002. doi: 10.1088/1674-4926/36/12/122002

[17]

Jinbo Pan, Qimin Yan. Data-driven material discovery for photocatalysis: a short review. J. Semicond., 2018, 39(7): 071001. doi: 10.1088/1674-4926/39/7/071001

[18]

Yun Kang, Sheng Wang, Xianli Li. Electron energy states in a two-dimensional GaAs quantum ring with hydrogenic donor impurity in the presence of magnetic field. J. Semicond., 2015, 36(3): 032003. doi: 10.1088/1674-4926/36/3/032003

[19]

Bo Gu. High temperature magnetic semiconductors: narrow band gaps and two-dimensional systems. J. Semicond., 2019, 40(8): 081504. doi: 10.1088/1674-4926/40/8/081504

[20]

Fanlong Ning. Toward intrinsic room-temperature ferromagnetism in two-dimensional semiconductors. J. Semicond., 2019, 40(8): 080201. doi: 10.1088/1674-4926/40/8/080201

Search

Advanced Search >>

GET CITATION

C Huang, Y B Jin, W Y Wang, L Tang, C Y Song, F X Xiu. Manganese and chromium doping in atomically thin MoS2[J]. J. Semicond., 2017, 38(3): 033004. doi: 10.1088/1674-4926/38/3/033004.

Export: BibTex EndNote

Article Metrics

Article views: 1587 Times PDF downloads: 29 Times Cited by: 0 Times

History

Manuscript received: 22 August 2016 Manuscript revised: 01 November 2016 Online: Published: 01 March 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误