J. Semicond. > Volume 38 > Issue 4 > Article Number: 044007

Answer to comments on "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition"

Leifeng Chen 1, 2, , and Hong He 1,

+ Author Affilications + Find other works by these authors

PDF

Abstract: Here, we reply to comments by Valentic et al. on our paper published in Electrochimica Acta (2014, 130: 279). They commented that Au nanoparticles played the dominant role on the whole cell's performances in our improved graphene/Si solar cell. We argued that our devices are Au-doped graphene/n-Si Schottky barrier devices, not Au nanoparticles (film)/n-Si Schottky barrier devices. During the doping process, most of the Au nanopatricles covered the surfaces of the graphene. Schottky barriers between doped graphene and n-Si dominate the total cells properties. Through doping, by adjusting and tailoring the Fermi level of the graphene, the Fermi level of n-Si can be shifted down in the graphene/Si Schottky barrier cell. They also argued that the instability of our devices were related to variation in series resistance reduced at the beginning due to slightly lowered Fermi level and increased at the end by the self-compensation by deep in-diffusion of Au nanoparticles. But for our fabricated devices, we know that an oxide layer covered the Si surface, which makes it difficult for the Au ions to diffuse into the Si layer, due to the continuous growth of SiO2 layer on the Si surface which resulted in series resistance decreasing at first and increasing in the end.

Key words: solar cellgraphenesiliconchemical dopingAu nanoparticles

Abstract: Here, we reply to comments by Valentic et al. on our paper published in Electrochimica Acta (2014, 130: 279). They commented that Au nanoparticles played the dominant role on the whole cell's performances in our improved graphene/Si solar cell. We argued that our devices are Au-doped graphene/n-Si Schottky barrier devices, not Au nanoparticles (film)/n-Si Schottky barrier devices. During the doping process, most of the Au nanopatricles covered the surfaces of the graphene. Schottky barriers between doped graphene and n-Si dominate the total cells properties. Through doping, by adjusting and tailoring the Fermi level of the graphene, the Fermi level of n-Si can be shifted down in the graphene/Si Schottky barrier cell. They also argued that the instability of our devices were related to variation in series resistance reduced at the beginning due to slightly lowered Fermi level and increased at the end by the self-compensation by deep in-diffusion of Au nanoparticles. But for our fabricated devices, we know that an oxide layer covered the Si surface, which makes it difficult for the Au ions to diffuse into the Si layer, due to the continuous growth of SiO2 layer on the Si surface which resulted in series resistance decreasing at first and increasing in the end.

Key words: solar cellgraphenesiliconchemical dopingAu nanoparticles



References:

[1]

Li X M, Zhu H W, Wang K L. Graphene on-silicon Schottky junction solar cells[J]. Adv Mater, 2010, 22: 2743. doi: 10.1002/adma.200904383

[2]

Li X M, Lv Z, Zhu H W. Carbon/silicon heterojunction solar cells: state of the art and prospects[J]. Adv Mater, 2015, 27: 6549. doi: 10.1002/adma.201502999

[3]

Li X, Zang X B, Li X M. Hybrid heterojunction and solid-state photoelectrochemical solar cells[J]. Adv Energy Mater, 2014, 4: 1400224. doi: 10.1002/aenm.201400224

[4]

Li X M, Xie D, Park H. Anomalous behaviors of graphene transparent conductors in graphene-silicon heterojunction solar cells[J]. Adv Energy Mater, 2013, 3: 1029. doi: 10.1002/aenm.v3.8

[5]

Li X M, Xie D, Park H. Ion doping of graphene for high-efficiency heterojunction solar cells[J]. Nanoscale, 2013, 5: 1945. doi: 10.1039/c2nr33795a

[6]

Kang Z, Tan X Y, Li X. Self-deposition of Pt nanoparticles on graphene woven fabrics for enhanced hybrid Schottky junctions and photoelectrochemical solar cells[J]. Phys Chem Chem Phys, 2016, 18: 1992. doi: 10.1039/C5CP06893B

[7]

Li Z R, Kunets V P, Saini V. Light-harvesting using high density p-type single wall carbon nanotube/n type silicon heterojunctions[J]. ACS Nano, 2009, 3: 1407. doi: 10.1021/nn900197h

[8]

Miao X H, Tongay S, Petterson M K. High efficiency graphene solar cells by chemical doping[J]. Nano Lett, 2012, 12: 2745. doi: 10.1021/nl204414u

[9]

Li Y F, Kodama S, Kaneko T. Performance enhancement of solar cells based on single-walled carbon nanotubes by Au nanoparticles[J]. Appl Phys Lett, 2012, 101: 083901. doi: 10.1063/1.4739427

[10]

Ma M, Xue Q Z, Chen H J. Photovoltaic characteristics of Pd doped amorphous carbon film/SiO2/Si[J]. Appl Phys Lett, 2010, 97: 061902. doi: 10.1063/1.3478230

[11]

Choe M, Cho C Y, Shim J P. Au nanoparticle-decorated graphene electrodes for GaN-based optoelectronic devices[J]. Appl Phys Lett, 2012, 101: 031115. doi: 10.1063/1.4737637

[12]

Liu X, Zhang X W, Meng J H. High efficiency Schottky junction solar cells by co-doping of graphene with gold nanoparticles and nitric acid[J]. Appl Phys Lett, 2015, 106: 233901. doi: 10.1063/1.4922373

[13]

Lin Y X, Li X M, Xie D. Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function[J]. Energy Environ Sci, 2013, 6: 108. doi: 10.1039/C2EE23538B

[14]

Arefinia Z, Asgari A. An analytical model for optimizing the performance of graphene based silicon Schottky barrier solar cells[J]. Mater Sci Semicond Process, 2015, 35: 181. doi: 10.1016/j.mssp.2015.02.030

[15]

Liu X, Zhang X W, Yin Z G. Enhanced efficiency of graphene-silicon Schottky junction solar cells by doping with Au nanoparticles[J]. Appl Phys Lett, 2014, 105: 183901. doi: 10.1063/1.4901106

[16]

Song Y, Li X M, Mackin C. Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells[J]. Nano Lett, 2015, 15: 2104. doi: 10.1021/nl505011f

[17]

Chen L F, He H, Yu H. Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition[J]. Electrochim Acta, 2014, 130: 279. doi: 10.1016/j.electacta.2014.03.020

[18]

Valentic L, Gorji N E. Comment on "Chen et al., Fabrication and photovoltaic conversion enhancement...". Electrochimica Acta, 2014[J]. J Semicond, 2015, 36: 094012. doi: 10.1088/1674-4926/36/9/094012

[19]

Gorji N E. Degradation of ultrathin CdTe films with SWCNT or graphene back contact[J]. Physica E, 2015, 70: 84. doi: 10.1016/j.physe.2015.01.015

[20]

Dharmadasa I M, Samantilleke A P, Chaureg N B. New ways of developing glass/conducting glass/CdS/CdTe/metal thin-film solar cells based on a new model[J]. Semicond Sci Technol, 2002, 17(12): 1238. doi: 10.1088/0268-1242/17/12/306

[21]

Kim K K, Reina A S, Shi Y M. Enhancing the conductivity of transparent graphene films via doping[J]. Nanotechnology, 2010, 21: 285205. doi: 10.1088/0957-4484/21/28/285205

[22]

Cho C Y, Choe M, Lee S J. Near ultraviolet light-emitting diodes with transparent conducting layer of gold doped multi-layer graphene[J]. J Appl Phys, 2013, 113: 113102. doi: 10.1063/1.4795502

[23]

Chen L F, He H, Lei D. Field emission performance enhancement of Au nanoparticles doped graphene emitters[J]. Appl Phys Lett, 2013, 103: 233105. doi: 10.1063/1.4837895

[24]

Gunes F, Shin H J, Biswas C. Layer-by-layer doping of few-layer graphene film[J]. ACS Nano, 2010, 4: 4595. doi: 10.1021/nn1008808

[25]

Kwon K C Choi K S, Kim S Y. Increased work function in few-layer graphene sheets via metal chloride doping[J]. Adv Funct Mater, 2012, 22: 4724. doi: 10.1002/adfm.v22.22

[26]

Liu Z K, Li J H, Sun Z H. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells[J]. ACS Nano, 2012, 6: 810. doi: 10.1021/nn204675r

[27]

Chen L F, Yu H, Zhong J S. Harnessing light energy with a planar transparent hybrid of graphene/single wall carbon nanotube/n-type silicon heterojunction solar cell[J]. Electrochim Acta, 2015, 178: 732. doi: 10.1016/j.electacta.2015.08.082

[28]

Chen L F, He H, Zhang S J. Enhanced solar energy conversion in Au-doped, single-wall carbon nanotube-Si heterojunction cells[J]. Nanoscale Res Lett, 2013, 8: 225. doi: 10.1186/1556-276X-8-225

[29]

Akimov Y A, Koh W S, Ostrikov K. Enhancement of optical absorption in thin film solar cells through the excitation of higher-order nanoparticle plasmon modes[J]. Opt Express, 2009, 17: 10195. doi: 10.1364/OE.17.010195

[30]

Pillai S, Green M A. Plasmonics for photovoltaic applications[J]. Sol Energy Mater Sol Cells, 2010, 94: 1481. doi: 10.1016/j.solmat.2010.02.046

[1]

Li X M, Zhu H W, Wang K L. Graphene on-silicon Schottky junction solar cells[J]. Adv Mater, 2010, 22: 2743. doi: 10.1002/adma.200904383

[2]

Li X M, Lv Z, Zhu H W. Carbon/silicon heterojunction solar cells: state of the art and prospects[J]. Adv Mater, 2015, 27: 6549. doi: 10.1002/adma.201502999

[3]

Li X, Zang X B, Li X M. Hybrid heterojunction and solid-state photoelectrochemical solar cells[J]. Adv Energy Mater, 2014, 4: 1400224. doi: 10.1002/aenm.201400224

[4]

Li X M, Xie D, Park H. Anomalous behaviors of graphene transparent conductors in graphene-silicon heterojunction solar cells[J]. Adv Energy Mater, 2013, 3: 1029. doi: 10.1002/aenm.v3.8

[5]

Li X M, Xie D, Park H. Ion doping of graphene for high-efficiency heterojunction solar cells[J]. Nanoscale, 2013, 5: 1945. doi: 10.1039/c2nr33795a

[6]

Kang Z, Tan X Y, Li X. Self-deposition of Pt nanoparticles on graphene woven fabrics for enhanced hybrid Schottky junctions and photoelectrochemical solar cells[J]. Phys Chem Chem Phys, 2016, 18: 1992. doi: 10.1039/C5CP06893B

[7]

Li Z R, Kunets V P, Saini V. Light-harvesting using high density p-type single wall carbon nanotube/n type silicon heterojunctions[J]. ACS Nano, 2009, 3: 1407. doi: 10.1021/nn900197h

[8]

Miao X H, Tongay S, Petterson M K. High efficiency graphene solar cells by chemical doping[J]. Nano Lett, 2012, 12: 2745. doi: 10.1021/nl204414u

[9]

Li Y F, Kodama S, Kaneko T. Performance enhancement of solar cells based on single-walled carbon nanotubes by Au nanoparticles[J]. Appl Phys Lett, 2012, 101: 083901. doi: 10.1063/1.4739427

[10]

Ma M, Xue Q Z, Chen H J. Photovoltaic characteristics of Pd doped amorphous carbon film/SiO2/Si[J]. Appl Phys Lett, 2010, 97: 061902. doi: 10.1063/1.3478230

[11]

Choe M, Cho C Y, Shim J P. Au nanoparticle-decorated graphene electrodes for GaN-based optoelectronic devices[J]. Appl Phys Lett, 2012, 101: 031115. doi: 10.1063/1.4737637

[12]

Liu X, Zhang X W, Meng J H. High efficiency Schottky junction solar cells by co-doping of graphene with gold nanoparticles and nitric acid[J]. Appl Phys Lett, 2015, 106: 233901. doi: 10.1063/1.4922373

[13]

Lin Y X, Li X M, Xie D. Graphene/semiconductor heterojunction solar cells with modulated antireflection and graphene work function[J]. Energy Environ Sci, 2013, 6: 108. doi: 10.1039/C2EE23538B

[14]

Arefinia Z, Asgari A. An analytical model for optimizing the performance of graphene based silicon Schottky barrier solar cells[J]. Mater Sci Semicond Process, 2015, 35: 181. doi: 10.1016/j.mssp.2015.02.030

[15]

Liu X, Zhang X W, Yin Z G. Enhanced efficiency of graphene-silicon Schottky junction solar cells by doping with Au nanoparticles[J]. Appl Phys Lett, 2014, 105: 183901. doi: 10.1063/1.4901106

[16]

Song Y, Li X M, Mackin C. Role of interfacial oxide in high-efficiency graphene-silicon Schottky barrier solar cells[J]. Nano Lett, 2015, 15: 2104. doi: 10.1021/nl505011f

[17]

Chen L F, He H, Yu H. Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition[J]. Electrochim Acta, 2014, 130: 279. doi: 10.1016/j.electacta.2014.03.020

[18]

Valentic L, Gorji N E. Comment on "Chen et al., Fabrication and photovoltaic conversion enhancement...". Electrochimica Acta, 2014[J]. J Semicond, 2015, 36: 094012. doi: 10.1088/1674-4926/36/9/094012

[19]

Gorji N E. Degradation of ultrathin CdTe films with SWCNT or graphene back contact[J]. Physica E, 2015, 70: 84. doi: 10.1016/j.physe.2015.01.015

[20]

Dharmadasa I M, Samantilleke A P, Chaureg N B. New ways of developing glass/conducting glass/CdS/CdTe/metal thin-film solar cells based on a new model[J]. Semicond Sci Technol, 2002, 17(12): 1238. doi: 10.1088/0268-1242/17/12/306

[21]

Kim K K, Reina A S, Shi Y M. Enhancing the conductivity of transparent graphene films via doping[J]. Nanotechnology, 2010, 21: 285205. doi: 10.1088/0957-4484/21/28/285205

[22]

Cho C Y, Choe M, Lee S J. Near ultraviolet light-emitting diodes with transparent conducting layer of gold doped multi-layer graphene[J]. J Appl Phys, 2013, 113: 113102. doi: 10.1063/1.4795502

[23]

Chen L F, He H, Lei D. Field emission performance enhancement of Au nanoparticles doped graphene emitters[J]. Appl Phys Lett, 2013, 103: 233105. doi: 10.1063/1.4837895

[24]

Gunes F, Shin H J, Biswas C. Layer-by-layer doping of few-layer graphene film[J]. ACS Nano, 2010, 4: 4595. doi: 10.1021/nn1008808

[25]

Kwon K C Choi K S, Kim S Y. Increased work function in few-layer graphene sheets via metal chloride doping[J]. Adv Funct Mater, 2012, 22: 4724. doi: 10.1002/adfm.v22.22

[26]

Liu Z K, Li J H, Sun Z H. The application of highly doped single-layer graphene as the top electrodes of semitransparent organic solar cells[J]. ACS Nano, 2012, 6: 810. doi: 10.1021/nn204675r

[27]

Chen L F, Yu H, Zhong J S. Harnessing light energy with a planar transparent hybrid of graphene/single wall carbon nanotube/n-type silicon heterojunction solar cell[J]. Electrochim Acta, 2015, 178: 732. doi: 10.1016/j.electacta.2015.08.082

[28]

Chen L F, He H, Zhang S J. Enhanced solar energy conversion in Au-doped, single-wall carbon nanotube-Si heterojunction cells[J]. Nanoscale Res Lett, 2013, 8: 225. doi: 10.1186/1556-276X-8-225

[29]

Akimov Y A, Koh W S, Ostrikov K. Enhancement of optical absorption in thin film solar cells through the excitation of higher-order nanoparticle plasmon modes[J]. Opt Express, 2009, 17: 10195. doi: 10.1364/OE.17.010195

[30]

Pillai S, Green M A. Plasmonics for photovoltaic applications[J]. Sol Energy Mater Sol Cells, 2010, 94: 1481. doi: 10.1016/j.solmat.2010.02.046

[1]

Yanlong Yin, Jiang Li, Yang Xu, Hon Ki Tsang, Daoxin Dai. Silicon-graphene photonic devices. J. Semicond., 2018, 39(6): 061009. doi: 10.1088/1674-4926/39/6/061009

[2]

Ou Weiying, Zhao Lei, Diao Hongwei, Zhang Jun, Wang Wenjing. Optical and electrical properties of porous silicon layer formed on the textured surface by electrochemical etching. J. Semicond., 2011, 32(5): 056002. doi: 10.1088/1674-4926/32/5/056002

[3]

Zhang Lucheng, Xu Xinxiang, Yang Zhuojian, Sun Xiaopu, Xu Hongyun, Liu Haobin, Shen Hui. An efficient method for monitoring the shunts in silicon solar cells during fabrication processes with infrared imaging. J. Semicond., 2009, 30(7): 076001. doi: 10.1088/1674-4926/30/7/076001

[4]

K. Fobelets, C. Panteli, O. Sydoruk, Chuanbo Li. Ammonia sensing using arrays of silicon nanowires and graphene. J. Semicond., 2018, 39(6): 063001. doi: 10.1088/1674-4926/39/6/063001

[5]

N. Nouri, G. Rashedi. Band structure of monolayer of graphene, silicene and silicon-carbide including a lattice of empty or filled holes. J. Semicond., 2018, 39(8): 083001. doi: 10.1088/1674-4926/39/8/083001

[6]

Lara Valentic, Nima E. Gorji. Comment on Chen et al. "Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition", Electrochimica Acta, 2014. J. Semicond., 2015, 36(9): 094012. doi: 10.1088/1674-4926/36/9/094012

[7]

Wenchao Min, Hao Sun, Qilian Zhang, Zhiying Chen, Yanhui Zhang, Guanghui Yu, Xiaowei Sun. A comparative study of Ge/Au/Ni/Au-based ohmic contact on graphene. J. Semicond., 2014, 35(5): 056001. doi: 10.1088/1674-4926/35/5/056001

[8]

Xiang Zhang, Chunlai Huang, Lei Wang, Min Zhou. Collaborative R&D between multicrystalline silicon ingots and battery efficiency improvement—effect of shadow area in multicrystalline silicon ingots on cell efficiency. J. Semicond., 2018, 39(8): 083004. doi: 10.1088/1674-4926/39/8/083004

[9]

Xiaorang Tian, Peide Han, Guanchao Zhao, Rong Yang, Liwei Li, Yuan Meng, Ted Guo. Pyramid size control and morphology treatment for high-efficiency silicon heterojunction solar cells. J. Semicond., 2019, 40(3): 032703. doi: 10.1088/1674-4926/40/3/032703

[10]

Chen Xinliang, Xu Buheng, Xue Junming, Zhao Ying, Zhang Xiaodan, Geng Xinhua. ZnO Thin Film Growth by Metal Organic Chemical Vapor Deposition and Its Back Contact Application in Solar Cells. J. Semicond., 2005, 26(12): 2363.

[11]

Naili Yue, Joshua Myers, Liqin Su, Wentao Wang, Fude Liu, Raphael Tsu, Yan Zhuang, Yong Zhang. Growth of oxidation-resistive silicene-like thin flakes and Si nanostructures on graphene. J. Semicond., 2019, 40(6): 062001. doi: 10.1088/1674-4926/40/6/062001

[12]

Tanmoy Das, Bhupendra K. Sharma, Ajit K. Katiyar, Jong-Hyun Ahn. Graphene-based flexible and wearable electronics. J. Semicond., 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007

[13]

Li Wuqun, Cao Juncheng. Anisotropic polarization due to electron–phonon interactions in graphene. J. Semicond., 2009, 30(11): 112002. doi: 10.1088/1674-4926/30/11/112002

[14]

Yu Cao, Jianjun Zhang, Tianwei Li, Zhenhua Huang, Jun Ma, Xu Yang, Jian Ni, Xinhua Geng, Ying Zhao. Effects of seed layer on the performance of microcrystalline silicon germaniumsolar cells. J. Semicond., 2013, 34(3): 034008. doi: 10.1088/1674-4926/34/3/034008

[15]

S. Hariech, M. S. Aida, J. Bougdira, M. Belmahi, G. Medjahdi, D. Genève, N. Attaf, H. Rinnert. Cadmium sulfide thin films growth by chemical bath deposition. J. Semicond., 2018, 39(3): 034004. doi: 10.1088/1674-4926/39/3/034004

[16]

Yang Zhang, Wei Dou, Wei Luo, Weier Lu, Jing Xie, Chaobo Li, Yang Xia. Large area graphene produced via the assistance of surface modification. J. Semicond., 2013, 34(7): 073006. doi: 10.1088/1674-4926/34/7/073006

[17]

Xiaowei Jiang. Broadband absorption of graphene from magnetic dipole resonances in hybrid nanostructure. J. Semicond., 2019, 40(6): 062006. doi: 10.1088/1674-4926/40/6/062006

[18]

Pulkit Sharma, Pratap Singh, Kamlesh Patel. Attenuation characteristics of monolayer graphene by Pi-and T-networks modeling of multilayer microstrip line. J. Semicond., 2017, 38(9): 093003. doi: 10.1088/1674-4926/38/9/093003

[19]

Xudong Qin, Yonghai Chen, Yu Liu, Laipan Zhu, Yuan Li, Qing Wu, Wei Huang. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials. J. Semicond., 2016, 37(1): 013002. doi: 10.1088/1674-4926/37/1/013002

[20]

Haixiao Wang, Xinhe Zheng, Xinyuan Gan, Naiming Wang, Hui Yang. Designing of 1 eV GaNAs/GaInAs superlattice subcell in current-matched four-junction solar cell. J. Semicond., 2016, 37(1): 014004. doi: 10.1088/1674-4926/37/1/014004

Search

Advanced Search >>

GET CITATION

L F Chen, H He. Answer to comments on \'Fabrication and photovoltaic conversion enhancement of graphene/n-Si Schottky barrier solar cells by electrophoretic deposition\'[J]. J. Semicond., 2017, 38(4): 044007. doi: 10.1088/1674-4926/38/4/044007.

Export: BibTex EndNote

Article Metrics

Article views: 999 Times PDF downloads: 12 Times Cited by: 0 Times

History

Manuscript received: 20 July 2016 Manuscript revised: 13 October 2016 Online: Published: 01 April 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误