J. Semicond. > Volume 38 > Issue 4 > Article Number: 044008

Simulation approach for optimization of ZnO/c-WSe2 heterojunction solar cells

Shihua Huang , , Qiannan Li , Dan Chi , Xiuqing Meng and Lü He

+ Author Affilications + Find other works by these authors

PDF

Abstract: Taking into account defect density in WSe2, interface recombination between ZnO and WSe2, we presented a simulation study of ZnO/crystalline WSe2 heterojunction (HJ) solar cell using wxAMPS simulation software. The optimal conversion efficiency 39.07% for n-ZnO/p-c-WSe2 HJ solar cell can be realized without considering the impact of defects. High defect density (> 1.0 × 1011 cm-2) in c-WSe2 and large trap cross-section (> 1.0 × 10-10 cm2) have serious impact on solar cell efficiency. A thin p-WSe2 layer is intentionally inserted between ZnO layer and c-WSe2 to investigate the effect of the interface recombination. The interface properties are very crucial to the performance of ZnO/c-WSe2HJ solar cell. The affinity of ZnO value range between 3.7-4.5 eV gives the best conversion efficiency.

Key words: simulationheterojunction solar cellstransport properties

Abstract: Taking into account defect density in WSe2, interface recombination between ZnO and WSe2, we presented a simulation study of ZnO/crystalline WSe2 heterojunction (HJ) solar cell using wxAMPS simulation software. The optimal conversion efficiency 39.07% for n-ZnO/p-c-WSe2 HJ solar cell can be realized without considering the impact of defects. High defect density (> 1.0 × 1011 cm-2) in c-WSe2 and large trap cross-section (> 1.0 × 10-10 cm2) have serious impact on solar cell efficiency. A thin p-WSe2 layer is intentionally inserted between ZnO layer and c-WSe2 to investigate the effect of the interface recombination. The interface properties are very crucial to the performance of ZnO/c-WSe2HJ solar cell. The affinity of ZnO value range between 3.7-4.5 eV gives the best conversion efficiency.

Key words: simulationheterojunction solar cellstransport properties



References:

[1]

Hossain M I, Alharbi F H. Recent advances in alternative material photovoltaics[J]. Mater Technol, 2013, 28: 88. doi: 10.1179/1753555712Y.0000000039

[2]

Jaegermann W, Tributsch H. Interfacial properties of semiconducting transition metal chalcogenides[J]. Progr Surf Sci, 1988, 29: 1. doi: 10.1016/0079-6816(88)90015-9

[3]

Tsirlina T, Cohen S, Cohen H. Growth of crystalline WSe2 and WS2 films on amorphous substrate by reactive (Van der Waals) rheotaxy[J]. Sol Energ Mat Sol C, 1996, 44: 457. doi: 10.1016/S0927-0248(96)00048-7

[4]

Davey B, Evans B L. The optical properties of MoTe2 and WSe2[J]. Phys Status Solidi A, 1972, 483: 491.

[5]

Bernede J C, Pouzet J, Gourmelon E. Recent studies on photoconductive thin films of binary compounds[J]. Synthetic Met, 1999, 99: 45. doi: 10.1016/S0379-6779(98)00199-4

[6]

Vogt M. Solid-state photovoltaic cells based on selenium-grown p-WSe2. PhD Thesis, University of Konstanz, 1992

[7]

Tenne R, Wold A. Passivation of recombination centers in n-WSe2 yields high efficiency ( > 14%) photo-electrochemical cell[J]. Appl Phys Lett, 1985, 47: 707. doi: 10.1063/1.96066

[8]

Prasad G, Srivastava O N. The high-efficiency (17.1%) WSe2 photo-electrochemical solar cell[J]. J Phys D, 1988, 21: 1028. doi: 10.1088/0022-3727/21/6/029

[9]

Joseph B, Manoj P K, Vajdyan V K. Studies on preparation and characterization of indium doped zinc oxide films by chemical spray deposition[J]. Bull Mater Science, 2005, 28: 487. doi: 10.1007/BF02711242

[10]

Yusta F J, Hitchman M L, Shamlian S H. CVD preparation and characterization of tin dioxide films for electrochemical applications[J]. J Mater Chem, 1997, 7: 1421. doi: 10.1039/a608525c

[11]

Vogt M, Lux-Steiner M, Dolatzoglou P, et al. Improvement of WSe2 solar cells by doping. Photovoltaic Specialists Conference, 1990

[12]

Zhu H, Kalkan A K, Hou J. Applications of AMPS-1D for solar cell simulation. Proceedings of the National Center for Photovoltaics (NCPV) 15th Program Review Meeting, 1999

[13]

Liu Y, Sun Y, Rockett A. A new simulation software of solar cells-wxAMPS[J]. Sol Energ Mat Sol C, 2012, 98: 124. doi: 10.1016/j.solmat.2011.10.010

[14]

https://wiki.cites.illinois.edu/wiki/display/solarcellsim/Simulation+Software?src=search

[15]

Ma Q, Kyureghian H, Banninga J D, et al. Thin film WSe2 for use as a photovoltaic absorber material. MRS Proceedings, 2014

[16]

Gadallah A S, Nahass M M E. Structural, optical constants and photoluminescence of ZnO thin films grown by sol-gel spin coating[J]. Adv Cond Matter Phys, 2013, 2013: 1.

[17]

Lang Q, Tomm Y, Schlaf R. Single crystalline GaSe/WSe2 heterointerfaces grown by van der waals epitaxy. â…¡. junction characterization.[J]. J Appl Phys, 1994, 75: 7814. doi: 10.1063/1.356563

[18]

Kim M S, Yim K G, Son J S. Effects of Al concentration on structural and optical properties of Al-doped ZnO thin films[J]. Chem Soc, 2012, 33: 1235.

[19]

Kim W H, Maen W J, Kim M K. Low pressure chemical vapor deposition of aluminum-doped zinc oxide for transparent conducting electrodes[J]. J Electrochem Soc, 2011, 158: D495. doi: 10.1149/1.3599055

[20]

Madelung O. Semiconductors: data handbook. 3rd ed. Springer, 2014

[21]

Huang B, Yoon M, Sumpter B G. Alloy engineering of defect properties in semiconductors: suppression of deep levels in transition-metal dichalcogenides[J]. Phys Rev Lett, 2015, 115: 126806. doi: 10.1103/PhysRevLett.115.126806

[22]

Aruchamy A. Photo-electrochemistry and photovoltaics of layered semiconductors. Kluwer Academic Publishers, Dordrecht, 1992

[23]

Klein A. Energy band alignment at interfaces of semiconducting oxides: a review of experimental determination using photoelectron spectroscopy and comparison with theoretical predictions by the electron affinity rule, charge neutrality levels, and the common anion[J]. Thin Solid Films, 2012, 520: 3721. doi: 10.1016/j.tsf.2011.10.055

[1]

Hossain M I, Alharbi F H. Recent advances in alternative material photovoltaics[J]. Mater Technol, 2013, 28: 88. doi: 10.1179/1753555712Y.0000000039

[2]

Jaegermann W, Tributsch H. Interfacial properties of semiconducting transition metal chalcogenides[J]. Progr Surf Sci, 1988, 29: 1. doi: 10.1016/0079-6816(88)90015-9

[3]

Tsirlina T, Cohen S, Cohen H. Growth of crystalline WSe2 and WS2 films on amorphous substrate by reactive (Van der Waals) rheotaxy[J]. Sol Energ Mat Sol C, 1996, 44: 457. doi: 10.1016/S0927-0248(96)00048-7

[4]

Davey B, Evans B L. The optical properties of MoTe2 and WSe2[J]. Phys Status Solidi A, 1972, 483: 491.

[5]

Bernede J C, Pouzet J, Gourmelon E. Recent studies on photoconductive thin films of binary compounds[J]. Synthetic Met, 1999, 99: 45. doi: 10.1016/S0379-6779(98)00199-4

[6]

Vogt M. Solid-state photovoltaic cells based on selenium-grown p-WSe2. PhD Thesis, University of Konstanz, 1992

[7]

Tenne R, Wold A. Passivation of recombination centers in n-WSe2 yields high efficiency ( > 14%) photo-electrochemical cell[J]. Appl Phys Lett, 1985, 47: 707. doi: 10.1063/1.96066

[8]

Prasad G, Srivastava O N. The high-efficiency (17.1%) WSe2 photo-electrochemical solar cell[J]. J Phys D, 1988, 21: 1028. doi: 10.1088/0022-3727/21/6/029

[9]

Joseph B, Manoj P K, Vajdyan V K. Studies on preparation and characterization of indium doped zinc oxide films by chemical spray deposition[J]. Bull Mater Science, 2005, 28: 487. doi: 10.1007/BF02711242

[10]

Yusta F J, Hitchman M L, Shamlian S H. CVD preparation and characterization of tin dioxide films for electrochemical applications[J]. J Mater Chem, 1997, 7: 1421. doi: 10.1039/a608525c

[11]

Vogt M, Lux-Steiner M, Dolatzoglou P, et al. Improvement of WSe2 solar cells by doping. Photovoltaic Specialists Conference, 1990

[12]

Zhu H, Kalkan A K, Hou J. Applications of AMPS-1D for solar cell simulation. Proceedings of the National Center for Photovoltaics (NCPV) 15th Program Review Meeting, 1999

[13]

Liu Y, Sun Y, Rockett A. A new simulation software of solar cells-wxAMPS[J]. Sol Energ Mat Sol C, 2012, 98: 124. doi: 10.1016/j.solmat.2011.10.010

[14]

https://wiki.cites.illinois.edu/wiki/display/solarcellsim/Simulation+Software?src=search

[15]

Ma Q, Kyureghian H, Banninga J D, et al. Thin film WSe2 for use as a photovoltaic absorber material. MRS Proceedings, 2014

[16]

Gadallah A S, Nahass M M E. Structural, optical constants and photoluminescence of ZnO thin films grown by sol-gel spin coating[J]. Adv Cond Matter Phys, 2013, 2013: 1.

[17]

Lang Q, Tomm Y, Schlaf R. Single crystalline GaSe/WSe2 heterointerfaces grown by van der waals epitaxy. â…¡. junction characterization.[J]. J Appl Phys, 1994, 75: 7814. doi: 10.1063/1.356563

[18]

Kim M S, Yim K G, Son J S. Effects of Al concentration on structural and optical properties of Al-doped ZnO thin films[J]. Chem Soc, 2012, 33: 1235.

[19]

Kim W H, Maen W J, Kim M K. Low pressure chemical vapor deposition of aluminum-doped zinc oxide for transparent conducting electrodes[J]. J Electrochem Soc, 2011, 158: D495. doi: 10.1149/1.3599055

[20]

Madelung O. Semiconductors: data handbook. 3rd ed. Springer, 2014

[21]

Huang B, Yoon M, Sumpter B G. Alloy engineering of defect properties in semiconductors: suppression of deep levels in transition-metal dichalcogenides[J]. Phys Rev Lett, 2015, 115: 126806. doi: 10.1103/PhysRevLett.115.126806

[22]

Aruchamy A. Photo-electrochemistry and photovoltaics of layered semiconductors. Kluwer Academic Publishers, Dordrecht, 1992

[23]

Klein A. Energy band alignment at interfaces of semiconducting oxides: a review of experimental determination using photoelectron spectroscopy and comparison with theoretical predictions by the electron affinity rule, charge neutrality levels, and the common anion[J]. Thin Solid Films, 2012, 520: 3721. doi: 10.1016/j.tsf.2011.10.055

[1]

Jian Liu, Shihua Huang, Lü He. Simulation of a high-efficiency silicon-based heterojunction solar cell. J. Semicond., 2015, 36(4): 044010. doi: 10.1088/1674-4926/36/4/044010

[2]

M. Benaicha, L. Dehimi, Nouredine Sengouga. Simulation of double junction In0.46Ga0.54N/Si tandem solar cell. J. Semicond., 2017, 38(4): 044002. doi: 10.1088/1674-4926/38/4/044002

[3]

Tadatsugu Minami, Yuki Nishi, Toshihiro Miyata. Cu2O-based solar cells using oxide semiconductors. J. Semicond., 2016, 37(1): 014002. doi: 10.1088/1674-4926/37/1/014002

[4]

M Errai, A El Kaaouachi, H El Idrissi. Electrical properties of Ge:Ga near the metal-insulator transition. J. Semicond., 2015, 36(6): 062001. doi: 10.1088/1674-4926/36/6/062001

[5]

Tianyue Wang, Jiewei Chen, Gaoxiang Wu, Dandan Song, Meicheng Li. Designing novel thin film polycrystalline solar cells for high efficiency: sandwich CIGS and heterojunction perovskite. J. Semicond., 2017, 38(1): 014005. doi: 10.1088/1674-4926/38/1/014005

[6]

Shihua Huang, Zhe Rui, Dan Chi, Daxin Bao. Influence of defect states on the performances of planar tin halide perovskite solar cells. J. Semicond., 2019, 40(3): 032201. doi: 10.1088/1674-4926/40/3/032201

[7]

Liu Hongxia, Zhang Heming, Zhang Zhiyong. Electronic transport properties of an (8, 0) carbon/silicon-carbide nanotube heterojunction. J. Semicond., 2009, 30(5): 052002. doi: 10.1088/1674-4926/30/5/052002

[8]

Deng Qingwen, Wang Xiaoliang, Xiao Hongling, Ma Zeyu, Zhang Xiaobin, Hou Qifeng, Li Jinmin, Wang Zhanguo. Theoretical investigation of efficiency of a p-a-SiC:H/i-a-Si:H/n-μc-Si solar cell. J. Semicond., 2010, 31(10): 103003. doi: 10.1088/1674-4926/31/10/103003

[9]

Liu Liang, Zhang Haiying, Yin Junjian, Li Xiao, Xu Jingbo, Song Yuzhu, Liu Xunchun. A New Method for InGaAs/InP Composite ChannelHEMTs Simulation. J. Semicond., 2007, 28(11): 1706.

[10]

Yunfang Jia, Cheng Ju. Sentaurus® based modeling and simulation for GFET's characteristic for ssDNA immobilization and hybridization. J. Semicond., 2016, 37(1): 014005. doi: 10.1088/1674-4926/37/1/014005

[11]

Sidi Ould Saad Hamady. A simulation of doping and trap effects on the spectral response of AlGaN ultraviolet detectors. J. Semicond., 2012, 33(3): 034002. doi: 10.1088/1674-4926/33/3/034002

[12]

Yiluan Guo, Guilei Wang, Chao Zhao, Jun Luo. Simulation and characterization of stress in FinFETs using novel LKMC and nanobeam diffraction methods. J. Semicond., 2015, 36(8): 086001. doi: 10.1088/1674-4926/36/8/086001

[13]

Xiaohui Yi, Zhiwei Huang, Guangyang Lin, Cheng Li, Songyan Chen, Wei Huang, Jun Li, Jianyuan Wang. Simulation of the effects of defects in low temperature Ge buffer layer on dark current of Si-based Ge photodiodes. J. Semicond., 2017, 38(4): 042001. doi: 10.1088/1674-4926/38/4/042001

[14]

Chen Yiren, Song Hang, Li Dabing, Sun Xiaojuan, Li Zhiming, Jiang Hong, Miao Guoqing. GaN-based MSM photovoltaic ultraviolet detector structure modeling and its simulation. J. Semicond., 2011, 32(3): 034005. doi: 10.1088/1674-4926/32/3/034005

[15]

Evangelos I. Dimitriadis, Nikolaos Georgoulas. Study of the effect of switching speed of the a-SiC/c-Si (p)-based, thyristor-like, ultra-high-speed switches, using two-dimensional simulation techniques. J. Semicond., 2017, 38(5): 054001. doi: 10.1088/1674-4926/38/5/054001

[16]

Jia Cheng, Linhong Ji, Kesheng Wang, Chuankun Han, Yixiang Shi. Two-dimensional simulation of inductively coupled plasma based on COMSOL and comparison with experimental data. J. Semicond., 2013, 34(6): 066004. doi: 10.1088/1674-4926/34/6/066004

[17]

Yongai Zhang, Tihang Lin, Xiangyao Zeng, Xiongtu Zhou, Tailiang Guo. Fabrication and field emission characteristics of a novel planar-gate electron source with patterned carbon nanotubes for backlight units. J. Semicond., 2013, 34(6): 064005. doi: 10.1088/1674-4926/34/6/064005

[18]

Changyong Zheng, Wei Zhang, Tailong Xu, Yuehua Dai, Junning Chen. A compact model for single material double work function gate MOSFET. J. Semicond., 2013, 34(9): 094006. doi: 10.1088/1674-4926/34/9/094006

[19]

Jiang Shouzhen, Xu Xian'gang, Li Juan, Chen Xiufang, Wang Yingmin, Ning Li'na, Hu Xiaobo, Wang Jiyang, Jiang Minhua. Recent Progress in SiC Monocrystal Growth and Wafer Machining. J. Semicond., 2007, 28(5): 810.

[20]

Liu Xueqiang, Zhang Tong, Wang Lijie, Xia Zhiqiang, Li Mingyou, Liu Shiyong. A Testing Method on a Thin Film Transistor Array for Active Matrix Organic Emitting Diode. J. Semicond., 2007, 28(7): 1161.

Search

Advanced Search >>

GET CITATION

S H Huang, Q N Li, D Chi, X Q Meng, L He. Simulation approach for optimization of ZnO/c-WSe2 heterojunction solar cells[J]. J. Semicond., 2017, 38(4): 044008. doi: 10.1088/1674-4926/38/4/044008.

Export: BibTex EndNote

Article Metrics

Article views: 741 Times PDF downloads: 13 Times Cited by: 0 Times

History

Manuscript received: 10 September 2016 Manuscript revised: 28 October 2016 Online: Published: 01 April 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误