J. Semicond. > Volume 39 > Issue 1 > Article Number: 011003

Materials and applications of bioresorbable electronics

Xian Huang ,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: Bioresorbable electronics is a new type of electronics technology that can potentially lead to biodegradable and dissolvable electronic devices to replace current built-to-last circuits predominantly used in implantable devices and consumer electronics. Such devices dissolve in an aqueous environment in time periods from seconds to months, and generate biological safe products. This paper reviews materials, fabrication techniques, and applications of bioresorbable electronics, and aims to inspire more revolutionary bioresorbable systems that can generate broader social and economic impact. Existing challenges and potential solutions in developing bioresorbable electronics have also been presented to arouse more joint research efforts in this field to build systematic technology framework.

Key words: bioresorbable electronicsbioresorbable materialsflexible electronicsimplantable devices

Abstract: Bioresorbable electronics is a new type of electronics technology that can potentially lead to biodegradable and dissolvable electronic devices to replace current built-to-last circuits predominantly used in implantable devices and consumer electronics. Such devices dissolve in an aqueous environment in time periods from seconds to months, and generate biological safe products. This paper reviews materials, fabrication techniques, and applications of bioresorbable electronics, and aims to inspire more revolutionary bioresorbable systems that can generate broader social and economic impact. Existing challenges and potential solutions in developing bioresorbable electronics have also been presented to arouse more joint research efforts in this field to build systematic technology framework.

Key words: bioresorbable electronicsbioresorbable materialsflexible electronicsimplantable devices



References:

[1]

Hwang S W, Tao H, Kim D H, et al. A physically transient form of silicon electronics. Science, 2012, 337(6102): 1640

[2]

Kim D H, Viventi J, Amsden J J, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater, 2010, 9(6): 511

[3]

Mannoor M S, Tao H, Clayton J D, et al. Graphene-based wireless bacteria detection on tooth enamel. Nat Commun, 2012, 3: 763

[4]

Yin L, Cheng H Y, Mao S M, et al. Dissolvable metals for transient electronics. Adv Funct Mater, 2014, 24(5): 645

[5]

Makadia H K, Siegel S J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel), 2011, 3(3): 1377

[6]

Kang S K, Hwang S W, Cheng H Y, et al. Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics. Adv Funct Mater, 2014, 24(28): 4427

[7]

Hwang S W, Kang S K, Huang X, et al. Materials for programmed, functional transformation in transient electronic systems. Adv Mater, 2015, 27(1): 47

[8]

Hwang S W, Huang X, Seo J H, et al. Materials for bioresorbable radio frequency electronics. Adv Mater, 2013, 25(26): 3526

[9]

Hwang S W, Song J K, Huang X, et al. High-performance biodegradable/transient electronics on biodegradable polymers. Adv Mater, 2014, 26(23): 3905

[10]

Spalvins E, Dubey B, Townsend T. Impact of electronic waste disposal on lead concentrations in landfill leachate. Environ Sci Technol, 2008, 42(19): 7452

[11]

Babu B R, Parande A K, Basha S A. Electrical and electronic waste: a global environmental problem. Waste Manage Res, 2007, 25(4): 307

[12]

Morf L S, Tremp J, Gloor R, et al. Brominated flame retardants in waste electrical and electronic equipment: substance flows in a recycling plant. Environ Sci Technol, 2005, 39(22): 8691

[13]

Kirkland N T. Magnesium biomaterials: past, present and future. Corros Eng, Sci Technol, 2012, 47(5): 322

[14]

Song G L, Song S Z. A possible biodegradable magnesium implant material. Adv Eng Mater, 2007, 9(4): 298

[15]

Pierson D, Edick J, Tauscher A, et al. A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials. J Biomedl Mater Res B, 2012, 100B(1): 58

[16]

Wong H M, Yeung K W K, Lam K O, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials, 2010, 31(8): 2084

[17]

Li M, Cheng Y, Zheng Y F, et al. Surface characteristics and corrosion behaviour of WE43 magnesium alloy coated by SiC film. Appl Surf Sci, 2012, 258(7): 3074

[18]

Hu J Y, Li Q, Zhong X K, et al. Novel anti-corrosion silicon dioxide coating prepared by sol–gel method for AZ91D magnesium alloy. Prog Org Coat, 2008, 63(1): 13

[19]

Bowen P K, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater, 2013, 25(18): 2577

[20]

Liu X W, Sun J K, Yang Y H, et al. In vitro investigation of ultra-pure Zn and its mini-tube as potential bioabsorbable stent material. Mater Lett, 2015, 161: 53

[21]

Zhao L C, Zhang Z, Song Y T, et al. Mechanical properties and in vitro biodegradation of newly developed porous Zn scaffolds for biomedical applications. Mater Des, 2016, 108: 136

[22]

Huang X, Liu Y H, Hwang S W, et al. Biodegradable materials for multilayer transient printed circuit boards. Adv Mater, 2014, 26(43): 7371

[23]

Yu K J, Kuzum D, Hwang S W, et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat Mater, 2016, 15: 782

[24]

Lee C H, Kim H, Harburg D V, et al. Biological lipid membranes for on-demand, wireless drug delivery from thin, bioresorbable electronic implants. NPG Asia Mater, 2015, 7: e227

[25]

Slottow T L P, Pakala R, Okabe T, et al. Optical coherence tomography and intravascular ultrasound imaging of bioabsorbable magnesium stent degradation in porcine coronary arteries. Cardiovascular Revascularization Medicine, 2008, 9(4): 248

[26]

Rancan F, Papakostas D, Hadam S, et al. Investigation of polylactic acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy. Pharm Res, 2009, 26(8): 2027

[27]

Oksman K, Skrifvars M, Selin J F. Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol, 2003, 63(9): 1317

[28]

Cheng Y L, Deng S B, Chen P, et al. Polylactic acid (PLA) synthesis and modifications: a review. Front Chem Chin, 2009, 4(3): 259

[29]

Shawe S, Buchanan F, Harkin-Jones E, et al. A study on the rate of degradation of the bioabsorbable polymer polyglycolic acid (PGA). J Mater Sci, 2006, 41(15): 4832

[30]

Sarkar S, Lee G Y, Wong J Y, et al. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Biomaterials, 2006, 27(27): 4775

[31]

Lü J M, Wang X W, Marin-Muller C, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagns, 2009, 9(4): 325

[32]

de Valence S, Tille J C, Mugnai D, et al. Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials, 2012, 33(1): 38

[33]

Lee KK H, Kim H Y, Khil M S, et al. Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning. Polymer, 2003, 44(4): 1287

[34]

Tan L L, Yu X M, Wan P, et al. Biodegradable materials for bone repairs: a review. J Mater Sci Technol, 2013, 29(6): 503

[35]

Tang Z G, Black R A, Curran J M, et al. Surface properties and biocompatibility of solvent-cast poly[ε-caprolactone] films. Biomaterials, 2004, 25(19): 4741

[36]

Hu J, Prabhakaran M P, Tian L L, et al. Drug-loaded emulsion electrospun nanofibers: characterization, drug release and in vitro biocompatibility. RSC Adv, 2015, 5(121): 100256

[37]

Campana A, Cramer T, Simon D T, et al. Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold. Adv Mater, 2014, 26(23): 3874

[38]

Son D, Lee J, Jun Lee D J, et al. Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano, 2015, 9(6): 5937

[39]

Yin L, Huang X, Xu H X, et al. Materials, designs, and operational characteristics for fully biodegradable primary batteries. Adv Mater, 2014, 26(23): 3879

[40]

Kang S K, Murphy R K J, Hwang S W, et al. Bioresorbable silicon electronic sensors for the brain. Nature, 2016, 530(7588): 71

[41]

Yin G B, Zhang Y Z, Wang S D, et al. Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering. J Biomed Mater Res A, 2010, 93(1): 158

[42]

Li M Y, Mondrinos M J, Chen X S, et al. Co-electrospun poly (lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. J Biomed Mater Res A, 2006, 79(4): 963

[43]

Zhang Y Z, Ouyang H W, Lim C T, et al. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B, 2005, 72(1): 156

[44]

n Jeon D B, Bak J Y, Yoon S M. Oxide thin-film transistors fabricated using biodegradable gate dielectric layer of chicken albumen. Jpn J Appl Phys, 2013, 52(12R): 128002

[45]

Capelli R, Amsden J J, Generali G, et al. Integration of silk protein in organic and light-emitting transistors. Org Electron, 2011, 12(7): 1146

[46]

Mao L K, Hwang J C, Chang T H, et al. Pentacene organic thin-film transistors with solution-based gelatin dielectric. Org Electron, 2013, 14(4): 1170

[47]

Im H, Huang X J, Gu B, et al. A dielectric-modulated field-effect transistor for biosensing. Nature Nanotechnol, 2007, 2(7): 430

[48]

Cid C C, Riu J, Maroto A, et al. Carbon nanotube field effect transistors for the fast and selective detection of human immunoglobulin G. Analyst, 2008, 133(8): 1005

[49]

Park K Y, Sohn Y S, Kim C K, et al. Development of FET-type albumin sensor for diagnosing nephritis. Biosens Bioelectron, 2008, 23(12): 1904

[50]

Wang Y D, Ameer G A, Sheppard B J, et al. A tough biodegradable elastomer. Nat Biotech, 2002, 20(6): 602

[51]

Boutry C M, Nguyen A, Lawal Q Q, et al. Fully biodegradable pressure sensor, viscoelastic behavior of PGS dielectric elastomer upon degradation. 2015 IEEE Sensors, 2015: 1

[52]

Yang J, Webb A R, Ameer G A. Novel citric acid-based biodegradable elastomers for tissue engineering. Adv Mater, 2004, 16(6): 511

[53]

Hwang S W, Lee C H, Cheng H Y, et al. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano Lett, 2015, 15(5): 2801

[54]

Tao H, Hwang S W, Marelli B, et al. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc Natl Acad Sci, 2014, 111(49): 17385

[55]

Birchall J D, Chappell J S. The chemistry of aluminum and silicon in relation to Alzheimer's disease. Clin Chem, 1988, 34(2): 265

[56]

Finnie K S, Waller D J, Perret F L, et al. Biodegradability of sol–gel silica microparticles for drug delivery. J Sol-Gel Sci Technol, 2009, 49(1): 12

[57]

Kang S K, Hwang S W, Cheng H Y, et al. Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics. Adv Funct Mater, 2014, 24(28): 4427

[58]

Li F M, Nathan A, Wu Y L, et al. Organic thin-film transistor integration using silicon nitride gate dielectric. Appl Phys Lett, 2007, 90(13): 133514

[59]

She M, Takeuchi H, King T J. Silicon-nitride as a tunnel dielectric for improved SONOS-type flash memory. IEEE Electron Device Lett, 2003, 24(5): 309

[60]

Mejias J A, Berry A J, Refson K, et al. The kinetics and mechanism of MgO dissolution. Chem Phys Lett, 1999, 314(5/6): 558

[61]

Fedoročková A, Raschman P. Effects of pH and acid anions on the dissolution kinetics of MgO. Chem Eng J, 2008, 143(1-3): 265

[62]

Yan L, Lopez C M, Shrestha R P, et al. Magnesium oxide as a candidate high-κ gate dielectric. Appl Phys Lett, 2006, 88(14): 142901

[63]

Posadas A, Walker F J, Ahn C H, et al. Epitaxial MgO as an alternative gate dielectric for SiC transistor applications. Appl Phys Lett, 2008, 92(23): 233511

[64]

Jagannathan H, Narayanan V, Brown S. Engineering high dielectric constant materials for band-edge CMOS applications. ECS Trans, 2008, 16(5): 19

[65]

Kang S K, Park G, Kim K, et al. Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics. ACS Appl Mater Interf, 2015, 7(17): 9297

[66]

Hwang S W, Park G, Edwards C, et al. Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. ACS Nano, 2014, 8(6): 5843

[67]

Rosenberg B. The effect of oxygen adsorption on photo-and semiconduction of β-carotene. J Chem Phys, 1961, 34(3): 812

[68]

Chen S Y, Lu Y Y, Shih F Y, et al. Biologically inspired graphene-chlorophyll phototransistors with high gain. Carbon, 2013, 63: 23

[69]

Irimia-Vladu M, Troshin P A, Reisinger M, et al. Biocompatible and biodegradable materials for organic field-effect transistors. Adv Funct Mater, 2010, 20(23): 4069

[70]

Ling M M, Erk P, Gomez M, et al. Air-stable n-channel organic semiconductors based on perylene diimide derivatives without strong electron withdrawing groups. Adv Mater, 2007, 19(8): 1123

[71]

Irimia-Vladu M, Głowacki E D, Troshin P A, et al. Indigo - a natural pigment for high performance ambipolar organic field effect transistors and circuits. Adv Mater, 2012, 24(3): 375

[72]

Mühl S, Beyer B. Bio-organic electronics—overview and prospects for the future. Electronics, 2014, 3(3): 444

[73]

Pan X Y, Yao P, Jiang M. Simultaneous nanoparticle formation and encapsulation driven by hydrophobic interaction of casein-graft-dextran and β-carotene. J Colloid Interf Sci, 2007, 315(2): 456

[74]

Ferruzzi M G, Blakeslee J. Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutr Res, 2007, 27(1): 1

[75]

Irimia-Vladu M, Troshin P A. Environmentally sustainable organic field effect transistors. Org Electron, 2010, 11(12): 1974

[76]

Hwang S W, Kim D H, Tao H, et al. Materials and fabrication processes for transient and bioresorbable high-performance electronics. Adv Funct Mater, 2013, 23(33): 4087

[77]

Wang Q, Wang C Y, Zhang M C, et al. Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers. Nano Lett, 2016, 16(10): 6695

[78]

Bianco A, Kostarelos K, Prato M, Making carbon nanotubes biocompatible and biodegradable. Making carbon nanotubes biocompatible and biodegradable. Chem Commun, 2011, 47(37): 10182

[79]

Mahajan B K, Yu X W, Shou W, et al. Mechanically milled irregular zinc nanoparticles for printable bioresorbable electronics. Small, 2017, 13(17): 1700065

[80]

Shou W, Mahajan B K, Ludwig B, et al. Low-cost manufacturing of bioresorbable conductors by evaporation–condensation-mediated laser printing and sintering of zn nanoparticles. Adv Mater, 2017, 29(26): 1700172

[81]

Kim Y J, Chun S E, Whitacre J, et al. Self-deployable current sources fabricated from edible materials. J Mater Chem B, 2013, 1(31): 3781

[82]

Jia X T, Yang Y, Wang C Y, et al. Biocompatible ionic liquid–biopolymer electrolyte-enabled thin and compact magnesium–air batteries. ACS Appl Mater Interf, 2014, 6(23): 21110

[83]

Douglas A, Muralidharan N, Carter R, et al. Ultrafast triggered transient energy storage by atomic layer deposition into porous silicon for integrated transient electronics. Nanoscale, 2016, 8(14): 7384

[84]

Pal R K, Farghaly A A, Wang C Z, et al. Conducting polymer-silk biocomposites for flexible and biodegradable electrochemical sensors. Biosens Bioelectron, 2016, 81: 294

[85]

Luo M, Martinez A W, Song C, et al. A microfabricated wireless rf pressure sensor made completely of biodegradable materials. J Microelectromechan Syst, 2014, 23(1): 4

[86]

Capelli R, Amsden J J, Generali G, et al. Integration of silk protein in organic and light-emitting transistors. Org Electron, 2011, 12(7): 1146

[87]

Irimia-Vladu M, Sariciftci N S, Bauer S. Exotic materials for bio-organic electronics. J Mater Chem, 2011, 21(5): 1350

[1]

Hwang S W, Tao H, Kim D H, et al. A physically transient form of silicon electronics. Science, 2012, 337(6102): 1640

[2]

Kim D H, Viventi J, Amsden J J, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater, 2010, 9(6): 511

[3]

Mannoor M S, Tao H, Clayton J D, et al. Graphene-based wireless bacteria detection on tooth enamel. Nat Commun, 2012, 3: 763

[4]

Yin L, Cheng H Y, Mao S M, et al. Dissolvable metals for transient electronics. Adv Funct Mater, 2014, 24(5): 645

[5]

Makadia H K, Siegel S J. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers (Basel), 2011, 3(3): 1377

[6]

Kang S K, Hwang S W, Cheng H Y, et al. Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics. Adv Funct Mater, 2014, 24(28): 4427

[7]

Hwang S W, Kang S K, Huang X, et al. Materials for programmed, functional transformation in transient electronic systems. Adv Mater, 2015, 27(1): 47

[8]

Hwang S W, Huang X, Seo J H, et al. Materials for bioresorbable radio frequency electronics. Adv Mater, 2013, 25(26): 3526

[9]

Hwang S W, Song J K, Huang X, et al. High-performance biodegradable/transient electronics on biodegradable polymers. Adv Mater, 2014, 26(23): 3905

[10]

Spalvins E, Dubey B, Townsend T. Impact of electronic waste disposal on lead concentrations in landfill leachate. Environ Sci Technol, 2008, 42(19): 7452

[11]

Babu B R, Parande A K, Basha S A. Electrical and electronic waste: a global environmental problem. Waste Manage Res, 2007, 25(4): 307

[12]

Morf L S, Tremp J, Gloor R, et al. Brominated flame retardants in waste electrical and electronic equipment: substance flows in a recycling plant. Environ Sci Technol, 2005, 39(22): 8691

[13]

Kirkland N T. Magnesium biomaterials: past, present and future. Corros Eng, Sci Technol, 2012, 47(5): 322

[14]

Song G L, Song S Z. A possible biodegradable magnesium implant material. Adv Eng Mater, 2007, 9(4): 298

[15]

Pierson D, Edick J, Tauscher A, et al. A simplified in vivo approach for evaluating the bioabsorbable behavior of candidate stent materials. J Biomedl Mater Res B, 2012, 100B(1): 58

[16]

Wong H M, Yeung K W K, Lam K O, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials, 2010, 31(8): 2084

[17]

Li M, Cheng Y, Zheng Y F, et al. Surface characteristics and corrosion behaviour of WE43 magnesium alloy coated by SiC film. Appl Surf Sci, 2012, 258(7): 3074

[18]

Hu J Y, Li Q, Zhong X K, et al. Novel anti-corrosion silicon dioxide coating prepared by sol–gel method for AZ91D magnesium alloy. Prog Org Coat, 2008, 63(1): 13

[19]

Bowen P K, Drelich J, Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv Mater, 2013, 25(18): 2577

[20]

Liu X W, Sun J K, Yang Y H, et al. In vitro investigation of ultra-pure Zn and its mini-tube as potential bioabsorbable stent material. Mater Lett, 2015, 161: 53

[21]

Zhao L C, Zhang Z, Song Y T, et al. Mechanical properties and in vitro biodegradation of newly developed porous Zn scaffolds for biomedical applications. Mater Des, 2016, 108: 136

[22]

Huang X, Liu Y H, Hwang S W, et al. Biodegradable materials for multilayer transient printed circuit boards. Adv Mater, 2014, 26(43): 7371

[23]

Yu K J, Kuzum D, Hwang S W, et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat Mater, 2016, 15: 782

[24]

Lee C H, Kim H, Harburg D V, et al. Biological lipid membranes for on-demand, wireless drug delivery from thin, bioresorbable electronic implants. NPG Asia Mater, 2015, 7: e227

[25]

Slottow T L P, Pakala R, Okabe T, et al. Optical coherence tomography and intravascular ultrasound imaging of bioabsorbable magnesium stent degradation in porcine coronary arteries. Cardiovascular Revascularization Medicine, 2008, 9(4): 248

[26]

Rancan F, Papakostas D, Hadam S, et al. Investigation of polylactic acid (PLA) nanoparticles as drug delivery systems for local dermatotherapy. Pharm Res, 2009, 26(8): 2027

[27]

Oksman K, Skrifvars M, Selin J F. Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol, 2003, 63(9): 1317

[28]

Cheng Y L, Deng S B, Chen P, et al. Polylactic acid (PLA) synthesis and modifications: a review. Front Chem Chin, 2009, 4(3): 259

[29]

Shawe S, Buchanan F, Harkin-Jones E, et al. A study on the rate of degradation of the bioabsorbable polymer polyglycolic acid (PGA). J Mater Sci, 2006, 41(15): 4832

[30]

Sarkar S, Lee G Y, Wong J Y, et al. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Biomaterials, 2006, 27(27): 4775

[31]

Lü J M, Wang X W, Marin-Muller C, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagns, 2009, 9(4): 325

[32]

de Valence S, Tille J C, Mugnai D, et al. Long term performance of polycaprolactone vascular grafts in a rat abdominal aorta replacement model. Biomaterials, 2012, 33(1): 38

[33]

Lee KK H, Kim H Y, Khil M S, et al. Characterization of nano-structured poly(ε-caprolactone) nonwoven mats via electrospinning. Polymer, 2003, 44(4): 1287

[34]

Tan L L, Yu X M, Wan P, et al. Biodegradable materials for bone repairs: a review. J Mater Sci Technol, 2013, 29(6): 503

[35]

Tang Z G, Black R A, Curran J M, et al. Surface properties and biocompatibility of solvent-cast poly[ε-caprolactone] films. Biomaterials, 2004, 25(19): 4741

[36]

Hu J, Prabhakaran M P, Tian L L, et al. Drug-loaded emulsion electrospun nanofibers: characterization, drug release and in vitro biocompatibility. RSC Adv, 2015, 5(121): 100256

[37]

Campana A, Cramer T, Simon D T, et al. Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold. Adv Mater, 2014, 26(23): 3874

[38]

Son D, Lee J, Jun Lee D J, et al. Bioresorbable electronic stent integrated with therapeutic nanoparticles for endovascular diseases. ACS Nano, 2015, 9(6): 5937

[39]

Yin L, Huang X, Xu H X, et al. Materials, designs, and operational characteristics for fully biodegradable primary batteries. Adv Mater, 2014, 26(23): 3879

[40]

Kang S K, Murphy R K J, Hwang S W, et al. Bioresorbable silicon electronic sensors for the brain. Nature, 2016, 530(7588): 71

[41]

Yin G B, Zhang Y Z, Wang S D, et al. Study of the electrospun PLA/silk fibroin-gelatin composite nanofibrous scaffold for tissue engineering. J Biomed Mater Res A, 2010, 93(1): 158

[42]

Li M Y, Mondrinos M J, Chen X S, et al. Co-electrospun poly (lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. J Biomed Mater Res A, 2006, 79(4): 963

[43]

Zhang Y Z, Ouyang H W, Lim C T, et al. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B, 2005, 72(1): 156

[44]

n Jeon D B, Bak J Y, Yoon S M. Oxide thin-film transistors fabricated using biodegradable gate dielectric layer of chicken albumen. Jpn J Appl Phys, 2013, 52(12R): 128002

[45]

Capelli R, Amsden J J, Generali G, et al. Integration of silk protein in organic and light-emitting transistors. Org Electron, 2011, 12(7): 1146

[46]

Mao L K, Hwang J C, Chang T H, et al. Pentacene organic thin-film transistors with solution-based gelatin dielectric. Org Electron, 2013, 14(4): 1170

[47]

Im H, Huang X J, Gu B, et al. A dielectric-modulated field-effect transistor for biosensing. Nature Nanotechnol, 2007, 2(7): 430

[48]

Cid C C, Riu J, Maroto A, et al. Carbon nanotube field effect transistors for the fast and selective detection of human immunoglobulin G. Analyst, 2008, 133(8): 1005

[49]

Park K Y, Sohn Y S, Kim C K, et al. Development of FET-type albumin sensor for diagnosing nephritis. Biosens Bioelectron, 2008, 23(12): 1904

[50]

Wang Y D, Ameer G A, Sheppard B J, et al. A tough biodegradable elastomer. Nat Biotech, 2002, 20(6): 602

[51]

Boutry C M, Nguyen A, Lawal Q Q, et al. Fully biodegradable pressure sensor, viscoelastic behavior of PGS dielectric elastomer upon degradation. 2015 IEEE Sensors, 2015: 1

[52]

Yang J, Webb A R, Ameer G A. Novel citric acid-based biodegradable elastomers for tissue engineering. Adv Mater, 2004, 16(6): 511

[53]

Hwang S W, Lee C H, Cheng H Y, et al. Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano Lett, 2015, 15(5): 2801

[54]

Tao H, Hwang S W, Marelli B, et al. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc Natl Acad Sci, 2014, 111(49): 17385

[55]

Birchall J D, Chappell J S. The chemistry of aluminum and silicon in relation to Alzheimer's disease. Clin Chem, 1988, 34(2): 265

[56]

Finnie K S, Waller D J, Perret F L, et al. Biodegradability of sol–gel silica microparticles for drug delivery. J Sol-Gel Sci Technol, 2009, 49(1): 12

[57]

Kang S K, Hwang S W, Cheng H Y, et al. Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics. Adv Funct Mater, 2014, 24(28): 4427

[58]

Li F M, Nathan A, Wu Y L, et al. Organic thin-film transistor integration using silicon nitride gate dielectric. Appl Phys Lett, 2007, 90(13): 133514

[59]

She M, Takeuchi H, King T J. Silicon-nitride as a tunnel dielectric for improved SONOS-type flash memory. IEEE Electron Device Lett, 2003, 24(5): 309

[60]

Mejias J A, Berry A J, Refson K, et al. The kinetics and mechanism of MgO dissolution. Chem Phys Lett, 1999, 314(5/6): 558

[61]

Fedoročková A, Raschman P. Effects of pH and acid anions on the dissolution kinetics of MgO. Chem Eng J, 2008, 143(1-3): 265

[62]

Yan L, Lopez C M, Shrestha R P, et al. Magnesium oxide as a candidate high-κ gate dielectric. Appl Phys Lett, 2006, 88(14): 142901

[63]

Posadas A, Walker F J, Ahn C H, et al. Epitaxial MgO as an alternative gate dielectric for SiC transistor applications. Appl Phys Lett, 2008, 92(23): 233511

[64]

Jagannathan H, Narayanan V, Brown S. Engineering high dielectric constant materials for band-edge CMOS applications. ECS Trans, 2008, 16(5): 19

[65]

Kang S K, Park G, Kim K, et al. Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics. ACS Appl Mater Interf, 2015, 7(17): 9297

[66]

Hwang S W, Park G, Edwards C, et al. Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. ACS Nano, 2014, 8(6): 5843

[67]

Rosenberg B. The effect of oxygen adsorption on photo-and semiconduction of β-carotene. J Chem Phys, 1961, 34(3): 812

[68]

Chen S Y, Lu Y Y, Shih F Y, et al. Biologically inspired graphene-chlorophyll phototransistors with high gain. Carbon, 2013, 63: 23

[69]

Irimia-Vladu M, Troshin P A, Reisinger M, et al. Biocompatible and biodegradable materials for organic field-effect transistors. Adv Funct Mater, 2010, 20(23): 4069

[70]

Ling M M, Erk P, Gomez M, et al. Air-stable n-channel organic semiconductors based on perylene diimide derivatives without strong electron withdrawing groups. Adv Mater, 2007, 19(8): 1123

[71]

Irimia-Vladu M, Głowacki E D, Troshin P A, et al. Indigo - a natural pigment for high performance ambipolar organic field effect transistors and circuits. Adv Mater, 2012, 24(3): 375

[72]

Mühl S, Beyer B. Bio-organic electronics—overview and prospects for the future. Electronics, 2014, 3(3): 444

[73]

Pan X Y, Yao P, Jiang M. Simultaneous nanoparticle formation and encapsulation driven by hydrophobic interaction of casein-graft-dextran and β-carotene. J Colloid Interf Sci, 2007, 315(2): 456

[74]

Ferruzzi M G, Blakeslee J. Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutr Res, 2007, 27(1): 1

[75]

Irimia-Vladu M, Troshin P A. Environmentally sustainable organic field effect transistors. Org Electron, 2010, 11(12): 1974

[76]

Hwang S W, Kim D H, Tao H, et al. Materials and fabrication processes for transient and bioresorbable high-performance electronics. Adv Funct Mater, 2013, 23(33): 4087

[77]

Wang Q, Wang C Y, Zhang M C, et al. Feeding single-walled carbon nanotubes or graphene to silkworms for reinforced silk fibers. Nano Lett, 2016, 16(10): 6695

[78]

Bianco A, Kostarelos K, Prato M, Making carbon nanotubes biocompatible and biodegradable. Making carbon nanotubes biocompatible and biodegradable. Chem Commun, 2011, 47(37): 10182

[79]

Mahajan B K, Yu X W, Shou W, et al. Mechanically milled irregular zinc nanoparticles for printable bioresorbable electronics. Small, 2017, 13(17): 1700065

[80]

Shou W, Mahajan B K, Ludwig B, et al. Low-cost manufacturing of bioresorbable conductors by evaporation–condensation-mediated laser printing and sintering of zn nanoparticles. Adv Mater, 2017, 29(26): 1700172

[81]

Kim Y J, Chun S E, Whitacre J, et al. Self-deployable current sources fabricated from edible materials. J Mater Chem B, 2013, 1(31): 3781

[82]

Jia X T, Yang Y, Wang C Y, et al. Biocompatible ionic liquid–biopolymer electrolyte-enabled thin and compact magnesium–air batteries. ACS Appl Mater Interf, 2014, 6(23): 21110

[83]

Douglas A, Muralidharan N, Carter R, et al. Ultrafast triggered transient energy storage by atomic layer deposition into porous silicon for integrated transient electronics. Nanoscale, 2016, 8(14): 7384

[84]

Pal R K, Farghaly A A, Wang C Z, et al. Conducting polymer-silk biocomposites for flexible and biodegradable electrochemical sensors. Biosens Bioelectron, 2016, 81: 294

[85]

Luo M, Martinez A W, Song C, et al. A microfabricated wireless rf pressure sensor made completely of biodegradable materials. J Microelectromechan Syst, 2014, 23(1): 4

[86]

Capelli R, Amsden J J, Generali G, et al. Integration of silk protein in organic and light-emitting transistors. Org Electron, 2011, 12(7): 1146

[87]

Irimia-Vladu M, Sariciftci N S, Bauer S. Exotic materials for bio-organic electronics. J Mater Chem, 2011, 21(5): 1350

[1]

Tanmoy Das, Bhupendra K. Sharma, Ajit K. Katiyar, Jong-Hyun Ahn. Graphene-based flexible and wearable electronics. J. Semicond., 2018, 39(1): 011007. doi: 10.1088/1674-4926/39/1/011007

[2]

Yongli He, Xiangyu Wang, Ya Gao, Yahui Hou, Qing Wan. Oxide-based thin film transistors for flexible electronics. J. Semicond., 2018, 39(1): 011005. doi: 10.1088/1674-4926/39/1/011005

[3]

Hong Zhu, Yang Shen, Yanqing Li, Jianxin Tang. Recent advances in flexible and wearable organic optoelectronic devices. J. Semicond., 2018, 39(1): 011011. doi: 10.1088/1674-4926/39/1/011011

[4]

Tao Cheng, Youwei Wu, Xiaoqin Shen, Wenyong Lai, Wei Huang. Inkjet printed large-area flexible circuits: a simple methodology for optimizing the printing quality. J. Semicond., 2018, 39(1): 015001. doi: 10.1088/1674-4926/39/1/015001

[5]

Fu Lei, Liu Yunqi, Zhu Daoben. Molecular Electronics. J. Semicond., 2003, 24(S1): 22.

[6]

Mingzhi Zou, Yue Ma, Xin Yuan, Yi Hu, Jie Liu, Zhong Jin. Flexible devices: from materials, architectures to applications. J. Semicond., 2018, 39(1): 011010. doi: 10.1088/1674-4926/39/1/011010

[7]

Bichitra Nanda Sahoo, Byungwoo Choi, Jungmok Seo, Taeyoon Lee. Hybrid functional microfibers for textile electronics and biosensors. J. Semicond., 2018, 39(1): 011009. doi: 10.1088/1674-4926/39/1/011009

[8]

Zhaoguo Xue, Taige Dong, Zhimin Zhu, Yaolong Zhao, Ying Sun, Linwei Yu. Engineering in-plane silicon nanowire springs for highly stretchable electronics. J. Semicond., 2018, 39(1): 011001. doi: 10.1088/1674-4926/39/1/011001

[9]

Ping Sheng, Baomin Wang, Runwei Li. Flexible magnetic thin films and devices. J. Semicond., 2018, 39(1): 011006. doi: 10.1088/1674-4926/39/1/011006

[10]

Bijie Yang, Ning Zhou, Quanhua Sun. Numerical analysis of the non-equilibrium plasma flow in the gaseous electronics conference reference reactor. J. Semicond., 2016, 37(1): 016001. doi: 10.1088/1674-4926/37/1/016001

[11]

Jie Zhang, Hong Zhang, Ruizhi Zhang. A high-efficiency charge pump in BCD process for implantable medical devices. J. Semicond., 2018, 39(10): 105003. doi: 10.1088/1674-4926/39/10/105003

[12]

Wang Tianxing, Wei Hongxiang, Ren Cong, Han Xiufeng, Clifford E, Langford R M, Bari M A, Coey J M D. Status and Trends in Advanced SOI Devices and Materials. J. Semicond., 2006, 27(4): 591.

[13]

Balestra Francis. Status and Trends in Advanced SOI Devices and Materials. J. Semicond., 2006, 27(4): 573.

[14]

Luqi Tao, Danyang Wang, Song Jiang, Ying Liu, Qianyi Xie, He Tian, Ningqin Deng, Xuefeng Wang, Yi Yang, Tianling Ren. Fabrication techniques and applications of flexible graphene-based electronic devices. J. Semicond., 2016, 37(4): 041001. doi: 10.1088/1674-4926/37/4/041001

[15]

Jingbo Li, Xinran Wang. Preface to the Special Topic on 2D Materials and Devices. J. Semicond., 2017, 38(3): 031001. doi: 10.1088/1674-4926/38/3/031001

[16]

Buwen Cheng, Cheng Li, Zhi Liu, Chunlai Xue. Research progress of Si-based germanium materials and devices. J. Semicond., 2016, 37(8): 081001. doi: 10.1088/1674-4926/37/8/081001

[17]

Yu Jinzhong, Wang Qiming. Recent Advancements in Si-Based Photonic Materials and Devices. J. Semicond., 2007, 28(S1): 1.

[18]

Xutang Tao, Jiandong Ye, Shibing Long, Zhitai Jia. Preface to the Special Issue on Ultra-Wide Bandgap Semiconductor Gallium Oxide: from Materials to Devices. J. Semicond., 2019, 40(1): 010101. doi: 10.1088/1674-4926/40/1/010101

[19]

Ping-Heng Tan, Lijun Zhang, Lun Dai, Shuyun Zhou. Preface to the Special Issue on 2D-Materials-Related Physical Properties and Optoelectronic Devices. J. Semicond., 2019, 40(6): 060101. doi: 10.1088/1674-4926/40/6/060101

[20]

Nasir Alfaraj, Jung-Wook Min, Chun Hong Kang, Abdullah A. Alatawi, Davide Priante, Ram Chandra Subedi, Malleswararao Tangi, Tien Khee Ng, Boon S. Ooi. Deep-ultraviolet integrated photonic and optoelectronic devices: A prospect of the hybridization of group III–nitrides, III–oxides, and two-dimensional materials. J. Semicond., 2019, 40(0): 000000.

Search

Advanced Search >>

GET CITATION

X Huang, Materials and applications of bioresorbable electronics[J]. J. Semicond., 2018, 39(1): 011003. doi: 10.1088/1674-4926/39/1/011003.

Export: BibTex EndNote

Article Metrics

Article views: 1519 Times PDF downloads: 67 Times Cited by: 0 Times

History

Manuscript received: 28 July 2017 Manuscript revised: 25 September 2017 Online: Accepted Manuscript: 27 December 2017 Published: 01 January 2018

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误