SEMICONDUCTOR INTEGRATED CIRCUITS

Design of a 3D Wilkinson power divider using through glass via technology

Jifei Sang, Libo Qian, Yinshui Xia and Huakang Xia

+ Author Affiliations

 Corresponding author: Libo Qian, Email: qianlibo@nbu.edu.cn

PDF

Turn off MathJax

Abstract: Due to its low electrical loss and low process cost, a glass interposer has been developed to provide a compelling alternative to the silicon-based interposer for packaging of future 2-D and 3-D ICs. In this study, through glass vias (TGVs) are used to implement 3-D inductors for minimal footprint and large quality factor. Using the inductors and parallel plate capacitors, a compact 3-D Wilkinson power divider is designed and analyzed. Compared with some reported power dividers, the proposed TGV-based circuit has an ultra-compact size and excellent electrical performance.

Key words: 3D integrationglass interposerthrough glass viaspower divider



[1]
Zhang R, Jeffery C C, Lee W R. Design and fabrication of a silicon interposer with TSVs in cavities for three dimensional IC packaging. IEEE Trans Device Mater Reliab, 2012, 12(2): 189 doi: 10.1109/TDMR.2012.2190764
[2]
Yin X, Zhu Z, Yang Y, et al. Effectiveness of p+ layer in mitigating substrate noise induced by through silicon via for microwave applications. IEEE Microwave Wireless Compon Lett, 2016, 26(9): 687 doi: 10.1109/LMWC.2016.2597218
[3]
Wang F, Zhu Z, Yang Y, et al. An effective approach of reducing the keep out zone induced by coaxial through silicon via. IEEE Trans Electron Devices, 2014, 61(8): 2928 doi: 10.1109/TED.2014.2330838
[4]
Lu J Q. 3-D hyper integration and packaging technologies for mico-nanosystems. Proc IEEE, 2009, 97(1): 18 doi: 10.1109/JPROC.2008.2007458
[5]
Lee S, Chen K. Development of bump less stacking with bottom-up TSV fabrication. IEEE Trans Electron Devices, 2017, 64(4): 1660 doi: 10.1109/TED.2017.2657324
[6]
Sukumaran V, Bandyopadhyay T, Sundaram V, et al. Low cost thin glass interposers as a superior alternative to silicon and organic interposers for packaging of 3D ICs. IEEE Trans Compon, Pack Manuf Technol, 2012, 2(9): 1426 doi: 10.1109/TCPMT.2012.2204392
[7]
Sukumaran V, Kumar G, Ramachandran K, et al. Design, fabrication and characterization of ultrathin 3-D glass interposers with through package vias at same pitch as TSVs in silicon. IEEE Trans Compon, Pack Manuf Technol, 2014, 4(5): 786 doi: 10.1109/TCPMT.2014.2303427
[8]
Li J, Wei X C, Li E P. Accurate field circuit hybrid modeling of high density through glass via arrays using perfect magnetic conductors and cylindrical mode expansion. IEEE Trans Compon, Pack Manuf Technol, 2016, 6(1): 100 doi: 10.1109/TCPMT.2015.2503362
[9]
Cho S, Sundaram V, Tummala R R, et al. Impact of copper through package vias on thermal performance of glass interposers. IEEE Trans Compon, Pack Manuf Technol, 2015, 5(8): 1075 doi: 10.1109/TCPMT.2015.2450731
[10]
Hsieh Y C, Chang Y S, Lee T C, et al. Characterization of through glass via (TGV) RF inductors. International Microsystems, Packaging, Assembly and Circuits Technology Conference, 2016: 87
[11]
Kim J, Shenoy R, Lai K Y, et al. High-Q 3D RF solenoid inductors in glass. IEEE Radio Frequency Integrated Circuits Symposium, 2014: 199
[12]
Liu M, Wei X, Wang P, et al. Compact LTCC multilayer broadband power divider. International Conference on Computational Problem-Solving, 2011: 370
[13]
D M Pozar. Microwave engineering. 3rd ed. CA: John Wiley & Sons, 2005: 274
[14]
Yu T. A broadband Wilkinson power divider based on the segmented structure. IEEE Trans Microwave Theory Tech, 2018, 66(4): 1902 doi: 10.1109/TMTT.2018.2799579
[15]
Wang X, Takahashi K, Okamura S, et al. Generalized port separation dual-band Wilkinson power divider with series RLC components. Microwave Conference, 2011: 289
[16]
Manual of Advanced Design System v2016.01[Online]. Available: https://www.keysight.com/cn/zh/products/design-software.html
[17]
Krishnamurthy H K, Weng S, Mathew G E, et al. A 500 MHz, 68% efficient, fully on-die digitally controlled buck voltage regulator on 22 nm Tri-gate CMOS. VLSI Dig Tech Papers, 2014: 1
[18]
Manual of HFSS v15[Online]. Available: http://www.aonesoft.net/ansys/hfss.html
[19]
Yu T, Tsai J. Design of multi way power dividers including all connecting lines. IET Microwave, Antenna & Propagation, 2018, 12(8): 1367
[20]
Shao J, Huang S, Pang Y. Wilkinson power divider incorporating quasi-elliptic filters for improved out of band rejection. Electron Lett, 2011, 47(23): 1288 doi: 10.1049/el.2011.2766
[21]
Wu D, Li Y, Xue Q. Filtering power divider with harmonic suppression based on LTCC broadside coupling. Electron Lett, 2018, 54(11): 697 doi: 10.1049/el.2018.1025
[22]
Zhou B. Broadband and compact LTCC power divider. Electron Lett, 2015, 51(23): 1939 doi: 10.1049/el.2015.2265
Fig. 2.  Equivalent circuit of the power divider at (a) even-mode excitation, (b) odd-mode excitation, (c) port 1 loaded with an excitation.

Fig. 3.  (Color online) S parameters of the proposed power divider obtained with ADS simulator.

Fig. 1.  Equivalent circuit of a lumped type Wilkinson power divider.

Fig. 4.  (Color online) Layout of the proposed Wilkinson power divider.

Fig. 5.  (Color online) (a) S parameters of the proposed power divider obtained with HFSS simulator. (b) Phase difference between the output ports obtained with ADS and HFSS simulator.

Table 1.   Physical dimensions of each component.

Component Size (μm3)
C1 190 × 80 × 10.5
C2 95 × 80 × 10.5
Zc 300 × 200 × 80
L 230 × 550 × 165
DownLoad: CSV

Table 2.   Performance comparison with some reported power dividers.

Ref [19] [20] [21] [22] This work
Process Micro-strip LTCC TGV
FBW (%) 100 5 13 180 10.51
N 2 1 1 7 1
f0 (GHz) 1 2 3.7 2 – 38 2.95
S11 (dB) 38 30 15 16 42
S21 (dB) 6.45 6.4 4.45 4.3 3.1
S32 (dB) 32 15 33 17 58
Size
(mm2)
10.2 × 5.8 48 × 36.9 3.55 × 3.18 4 × 4 0.6 × 1.1
DownLoad: CSV
[1]
Zhang R, Jeffery C C, Lee W R. Design and fabrication of a silicon interposer with TSVs in cavities for three dimensional IC packaging. IEEE Trans Device Mater Reliab, 2012, 12(2): 189 doi: 10.1109/TDMR.2012.2190764
[2]
Yin X, Zhu Z, Yang Y, et al. Effectiveness of p+ layer in mitigating substrate noise induced by through silicon via for microwave applications. IEEE Microwave Wireless Compon Lett, 2016, 26(9): 687 doi: 10.1109/LMWC.2016.2597218
[3]
Wang F, Zhu Z, Yang Y, et al. An effective approach of reducing the keep out zone induced by coaxial through silicon via. IEEE Trans Electron Devices, 2014, 61(8): 2928 doi: 10.1109/TED.2014.2330838
[4]
Lu J Q. 3-D hyper integration and packaging technologies for mico-nanosystems. Proc IEEE, 2009, 97(1): 18 doi: 10.1109/JPROC.2008.2007458
[5]
Lee S, Chen K. Development of bump less stacking with bottom-up TSV fabrication. IEEE Trans Electron Devices, 2017, 64(4): 1660 doi: 10.1109/TED.2017.2657324
[6]
Sukumaran V, Bandyopadhyay T, Sundaram V, et al. Low cost thin glass interposers as a superior alternative to silicon and organic interposers for packaging of 3D ICs. IEEE Trans Compon, Pack Manuf Technol, 2012, 2(9): 1426 doi: 10.1109/TCPMT.2012.2204392
[7]
Sukumaran V, Kumar G, Ramachandran K, et al. Design, fabrication and characterization of ultrathin 3-D glass interposers with through package vias at same pitch as TSVs in silicon. IEEE Trans Compon, Pack Manuf Technol, 2014, 4(5): 786 doi: 10.1109/TCPMT.2014.2303427
[8]
Li J, Wei X C, Li E P. Accurate field circuit hybrid modeling of high density through glass via arrays using perfect magnetic conductors and cylindrical mode expansion. IEEE Trans Compon, Pack Manuf Technol, 2016, 6(1): 100 doi: 10.1109/TCPMT.2015.2503362
[9]
Cho S, Sundaram V, Tummala R R, et al. Impact of copper through package vias on thermal performance of glass interposers. IEEE Trans Compon, Pack Manuf Technol, 2015, 5(8): 1075 doi: 10.1109/TCPMT.2015.2450731
[10]
Hsieh Y C, Chang Y S, Lee T C, et al. Characterization of through glass via (TGV) RF inductors. International Microsystems, Packaging, Assembly and Circuits Technology Conference, 2016: 87
[11]
Kim J, Shenoy R, Lai K Y, et al. High-Q 3D RF solenoid inductors in glass. IEEE Radio Frequency Integrated Circuits Symposium, 2014: 199
[12]
Liu M, Wei X, Wang P, et al. Compact LTCC multilayer broadband power divider. International Conference on Computational Problem-Solving, 2011: 370
[13]
D M Pozar. Microwave engineering. 3rd ed. CA: John Wiley & Sons, 2005: 274
[14]
Yu T. A broadband Wilkinson power divider based on the segmented structure. IEEE Trans Microwave Theory Tech, 2018, 66(4): 1902 doi: 10.1109/TMTT.2018.2799579
[15]
Wang X, Takahashi K, Okamura S, et al. Generalized port separation dual-band Wilkinson power divider with series RLC components. Microwave Conference, 2011: 289
[16]
Manual of Advanced Design System v2016.01[Online]. Available: https://www.keysight.com/cn/zh/products/design-software.html
[17]
Krishnamurthy H K, Weng S, Mathew G E, et al. A 500 MHz, 68% efficient, fully on-die digitally controlled buck voltage regulator on 22 nm Tri-gate CMOS. VLSI Dig Tech Papers, 2014: 1
[18]
Manual of HFSS v15[Online]. Available: http://www.aonesoft.net/ansys/hfss.html
[19]
Yu T, Tsai J. Design of multi way power dividers including all connecting lines. IET Microwave, Antenna & Propagation, 2018, 12(8): 1367
[20]
Shao J, Huang S, Pang Y. Wilkinson power divider incorporating quasi-elliptic filters for improved out of band rejection. Electron Lett, 2011, 47(23): 1288 doi: 10.1049/el.2011.2766
[21]
Wu D, Li Y, Xue Q. Filtering power divider with harmonic suppression based on LTCC broadside coupling. Electron Lett, 2018, 54(11): 697 doi: 10.1049/el.2018.1025
[22]
Zhou B. Broadband and compact LTCC power divider. Electron Lett, 2015, 51(23): 1939 doi: 10.1049/el.2015.2265
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 4057 Times PDF downloads: 75 Times Cited by: 0 Times

    History

    Received: 15 June 2018 Revised: 15 July 2018 Online: Uncorrected proof: 13 September 2018Published: 13 December 2018

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Jifei Sang, Libo Qian, Yinshui Xia, Huakang Xia. Design of a 3D Wilkinson power divider using through glass via technology[J]. Journal of Semiconductors, 2018, 39(12): 125007. doi: 10.1088/1674-4926/39/12/125007 J F Sang, L B Qian, Y S Xia, H K Xia, Design of a 3D Wilkinson power divider using through glass via technology[J]. J. Semicond., 2018, 39(12): 125007. doi: 10.1088/1674-4926/39/12/125007.Export: BibTex EndNote
      Citation:
      Jifei Sang, Libo Qian, Yinshui Xia, Huakang Xia. Design of a 3D Wilkinson power divider using through glass via technology[J]. Journal of Semiconductors, 2018, 39(12): 125007. doi: 10.1088/1674-4926/39/12/125007

      J F Sang, L B Qian, Y S Xia, H K Xia, Design of a 3D Wilkinson power divider using through glass via technology[J]. J. Semicond., 2018, 39(12): 125007. doi: 10.1088/1674-4926/39/12/125007.
      Export: BibTex EndNote

      Design of a 3D Wilkinson power divider using through glass via technology

      doi: 10.1088/1674-4926/39/12/125007
      Funds:

      Projected supported by the National Natural Science Foundation of China (Nos. 61771268, 61571248, U1709218), the Science and Technology Fund of Zhejiang Province (No. 2015C31090), the Natural Science Foundation of Zhejiang (No. LY17F040002), and the K. C. Wong Magna Fund in Ningbo University.

      More Information
      • Corresponding author: Email: qianlibo@nbu.edu.cn
      • Received Date: 2018-06-15
      • Revised Date: 2018-07-15
      • Published Date: 2018-12-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return