J. Semicond. > Volume 40 > Issue 10 > Article Number: 101302

Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate

Shujie Pan , Victoria Cao , Mengya Liao , Ying Lu , Zizhuo Liu , Mingchu Tang , Siming Chen , , Alwyn Seeds and Huiyun Liu

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: In the past few decades, numerous high-performance silicon (Si) photonic devices have been demonstrated. Si, as a photonic platform, has received renewed interest in recent years. Efficient Si-based III–V quantum-dot (QDs) lasers have long been a goal for semiconductor scientists because of the incomparable optical properties of III–V compounds. Although the material dissimilarity between III–V material and Si hindered the development of monolithic integrations for over 30 years, considerable breakthroughs happened in the 2000s. In this paper, we review recent progress in the epitaxial growth of various III–V QD lasers on both offcut Si substrate and on-axis Si (001) substrate. In addition, the fundamental challenges in monolithic growth will be explained together with the superior characteristics of QDs.

Key words: quantum dotssilicon photonicsepitaxial growthsemiconductor laser

Abstract: In the past few decades, numerous high-performance silicon (Si) photonic devices have been demonstrated. Si, as a photonic platform, has received renewed interest in recent years. Efficient Si-based III–V quantum-dot (QDs) lasers have long been a goal for semiconductor scientists because of the incomparable optical properties of III–V compounds. Although the material dissimilarity between III–V material and Si hindered the development of monolithic integrations for over 30 years, considerable breakthroughs happened in the 2000s. In this paper, we review recent progress in the epitaxial growth of various III–V QD lasers on both offcut Si substrate and on-axis Si (001) substrate. In addition, the fundamental challenges in monolithic growth will be explained together with the superior characteristics of QDs.

Key words: quantum dotssilicon photonicsepitaxial growthsemiconductor laser



References:

[1]

Reed G T, Mashanovich G, Gardes F Y, et al. Silicon optical modulators. Nat Photonics, 2010, 4, 518

[2]

Xiao X, Xu H, Li X Y, et al. High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization. Opt Express, 2013, 21, 4116

[3]

Streshinsky M, Ding R, Liu Y, et al. Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm. Opt Express, 2013, 21, 30350

[4]

Dosunmu O I, Can D D, Emsley M K, et al. High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation. IEEE Photonics Technol Lett, 2005, 17, 175

[5]

Yin T, Cohen R, Morse M M, et al. 31 GHz Ge n–i–p waveguide photodetectors on silicon-on-insulator substrate. Opt Express, 2007, 15, 13965

[6]

Vivien L, Polzer A, Marris-Morini D, et al. Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt Express, 2012, 20, 1096

[7]

Bauters J F, Davenport M L, Heck M J R,et al. Silicon on ultra-low-loss waveguide photonic integration platform. Opt Express, 2013, 21, 544

[8]

Heck M J R, Bauters J F, Davenport M L, et al. Ultra-low loss waveguide platform and its integration with silicon photonics. Laser Photon Rev, 2014, 8, 667

[9]

Liu H Y, Wang T, Jiang Q, et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photonics, 2011, 5, 416

[10]

Liang D, Bowers J E. Recent progress in lasers on silicon. Nat Photonics, 2010, 4, 511

[11]

Chen S, et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photonics, 2016, 10, 307

[12]

Tanabe K, Watanabe K, Arakawa Y. III–V/Si hybrid photonic devices by direct fusion bonding. Sci Rep, 2012, 2349

[13]

Tournié E, Cerutti L, Rodriguez J B, et al. Metamorphic III–V semiconductor lasers grown on silicon. MRS Bull, 2016, 41, 218

[14]

Fischer R, Masselink W T, Klem J, et al. Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy. J Appl Phys, 1985, 58, 374

[15]

Wang W I. Molecular beam epitaxial growth and material properties of GaAs and AlGaAs on Si (100). J Appl Phys, 1984, 44, 1149

[16]

Li Q, Lau M. Epitaxial growth of highly mismatched III–V materials on (001) silicon for electronics and optoelectronics. Prog Cryst Growth Charact Mater, 2017, 63, 105

[17]

Alcotte R, Martin M, Moeyaert J, et al. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility. APL Mater, 2016, 4, 46101

[18]

Akiyama M, Kawarada Y, Kaminishi K. Growth of single domain gaas layer on (100)-oriented Si substrate by MOCVD. Jpn J Appl Phys, 1984, 23, L843

[19]

Norman J C, Jung D, Wan Y, et al. Perspective: The future of quantum dot photonic integrated circuits. APL Photonics, 2018, 3, 30901

[20]

Wu J, Chen S, Seeds A, et al. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells. J Phys D, 2015, 48, 363001

[21]

Ueda O, Pearton S J. Materials and reliability handbook for semiconductor optical and electron devices. Springer, 2013

[22]

Kroemer H. A proposed class of hetero-junction injection lasers. Proc IEEE, 1963, 51, 1782

[23]

Alferov Z I. AlAs–GaAs heterojunction injection lasers with a low room-temperature threshold. Sov Phys Semicond, 1970, 3, 1107

[24]

Dingle R, Wiegmann W, Henry C H. Quantum states of confined carriers in very thin AlxGa1xAs–GaAs–AlxGa1xAs heterostructures. Dordrecht: Springer, 1988, 173

[25]

Kapon E, Simhony S, Bhat R, et al. Single quantum wire semiconductor lasers. Appl Phys Lett, 1989, 55, 2715

[26]

Arakawa Y, Sakaki H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl Phys Lett, 1982, 40, 939

[27]

Kirstaedter N, Ledentsov N N, Grundmann M, et al. Low threshold, large To injection laser emission from (InGa)As quantum dots. Electron Lett, 1994, 30, 1416

[28]

Nishi K, Takemasa K, Sugawara M, et al. Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J Sel Top Quantum Electron, 2017, 23, 1

[29]

Nishi K, Kageyama T, Yamaguchi M, et al. Molecular beam epitaxial growths of high-optical-gain InAs quantum dots on GaAs for long-wavelength emission. J Cryst Growth, 2013, 378, 459

[30]

Ilahi B, Souaf M, Baira M, et al. Evolution of InAs/GaAs QDs size with the growth rate: a numerical investigation. J Nanomater, 2015, 2015, 1

[31]

Leonard D, Fafard S, Pond K, et al. Structural and optical properties of self-assembled InGaAs quantum dots. J Vac Sci Technol B, 1994, 12, 2516

[32]

Nishi K, Saito H, Sugou S, et al. A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates. Appl Phys Lett, 1999, 74, 1111

[33]

Otsubo K, Hatori N, Ishida M, et al. Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-μm P-doped quantum-dot lasers without current adjustments. Jpn J Appl Phys, 2004, 43, L1124

[34]

Takada K, Tanaka Y, Matsumoto T, et al. Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers. Electron Lett, 2011, 47, 206

[35]

CapuaA, et al. Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser. Opt Express, 2007, 15, 5388

[36]

Jung D, Zhang Z, Norman J, et al. Highly reliable low-threshold inas quantum dot lasers on on-axis (001) Si with 87% injection efficiency. ACS Photonics, 2018, 5, 1094

[37]

Ovid’ko I. Relaxation mechanisms in strained nanoislands. Phys Rev Lett, 2002, 88, 46103

[38]

Tillmann K, Förster A. Critical dimensions for the formation of interfacial misfit dislocations of In0.6Ga0.4As islands on GaAs(001). Thin Solid Films, 2000, 368, 93

[39]

Mi Z, Yang J, Bhattacharya P, et al. High-performance quantum dot lasers and integrated optoelectronics on Si. Proc IEEE, 2009, 97, 1239

[40]

Shi B, Li Q, Lau K M. Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si. J Cryst Growth, 2017, 464, 28

[41]

Linder K, Phillips J, Qasaimeh O, et al. Self-organized In0.4Ga0.6As quantum-dot lasers grown on Si substrates. Appl Phys Lett, 1999, 70(10), 1355

[42]

Wang T, Liu H, Lee A, et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt Express, 2011, 19, 11381

[43]

Lee A D, Jiang Q, Tang M C, et al. InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates. IEEE J Sel Top Quantum Electron, 2013, 19, 1901107

[44]

Chen S M, Tang M, Wu J, et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers. Opt Express, 2014, 22, 11528

[45]

Orchard J R, Shutts S, Sobiesierski A, et al. In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates. Opt Express, 2016, 24, 6196

[46]

Jiang Q, Tang M C, Wu J, et al. 1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C. Electron Lett, 2014, 50, 1467

[47]

Liao M, Chen S, Park J S, et al. III–V quantum-dot lasers monolithically grown on silicon. Semicond Sci Technol, 2018, 33, 123002

[48]

Tang M, Chen S M, Wu J, et al. Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. IEEE J Sel Top Quantum Electron, 2016, 22, 50

[49]

Liao M, Chen S M, Liu Z X, et al. Low-noise 13 μm InAs/GaAs quantum dot laser monolithically grown on silicon. Photonics Res, 2018, 6, 1062

[50]

Hantschmann C, Vasil'ev P P, Chen S M, et al. Gain switching of monolithic 1.3 μm InAs/GaAs quantum dot lasers on silicon. J Light Technol, 2018, 36, 3837

[51]

Hantschmann C, Vasil’ev P P, Wonfor A, et al. Understanding the bandwidth limitations in monolithic 1.3 μm InAs/GaAs quantum dot lasers on silicon. J Light Technol, 2019, 37, 949

[52]

Agrawal G P. Fiber-optic communication systems. Wiley, 2013

[53]

Merckling C, Waldron N, Jiang S, et al. Heteroepitaxy of InP on Si(001) by selective-area metal organic vapor-phase epitaxy in sub-50 nm width trenches: The role of the nucleation layer and the recess engineering. J Appl Phys, 2014, 115, 23710

[54]

Wang Z, Tian B, Pantouvaki M, et al. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat Photonics, 2015, 9, 837

[55]

Tian B, Wang Z C, Pantouvaki M, et al. Room temperature O-band DFB laser array directly grown on (001) silicon. Nano Lett, 2017, 17, 559

[56]

Wang Y, Chen S M, Yu Y, et al. Monolithic quantum-dot distributed feedback laser array on silicon. Optica, 2018, 5, 528

[57]

Kim H C, Wiedmann J, Matsui K, et al. 1.5-μm-wavelength distributed feedback lasers with deeply etched first-order vertical grating. Jpn J Appl Phys, 2001, 40, L1107

[58]

Vahala K J. Optical microcavities. Nature, 2003, 424, 839

[59]

Maximov M V, Kryzhanovskaya N V, Nadtochiy A M, et al. Ultrasmall microdisk and microring lasers based on InAs/InGaAs/GaAs quantum dots. Nanoscale Res Lett, 2014, 9, 657

[60]

Kryzhanovskaya N V, Zhukov A Z, Maximov M V, et al. Room temperature lasing in 1-μm microdisk quantum dot lasers. IEEE J Sel Top Quantum Electron, 2015, 21, 709

[61]

Kryzhanovskaya N, Zhukov A E, Maximov M V, et al. Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 13 μm. Opt Lett, 2017, 42, 3319

[62]

Kryzhanovskaya N, Moiseev E, Polubavkina Y, et al. Elevated temperature lasing from injection microdisk lasers on silicon. Laser Phys Lett, 2018, 15, 15802

[63]

Volz K, Beyer A, Witte W, et al. GaP-nucleation on exact Si (001) substrates for III/V device integration. J Cryst Growth, 2011, 315, 37

[64]

Liu A Y, Peters J, Huang X, et al. Electrically pumped continuous-wave 13 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si. Opt Lett, 2017, 42, 338

[65]

Jung D, Song Y, Lee M, et al. InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001). Electron Lett, 2014, 50, 1226

[66]

Li Q, Ng K W, Lau K M. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon. Appl Phys Lett, 2015, 106, 72105

[67]

Li Q, Wan Y T, Liu A Y, et al. 13-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon. Opt Express, 2016, 24, 21038

[68]

Chen S M, Liao M Y, Tang M C, et al. Electrically pumped continuous-wave 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates. Opt Express, 2017, 25, 4632

[69]

Li K, Liu Z, Tang M, et al. O-band InAs/GaAs quantum dot laser monolithically integrated on exact (001) Si substrate. J Cryst Growth, 2019, 511, 56

[70]

Zhou T J, Tang M C, Xiang G H, et al. Ultra-low threshold InAs/GaAs quantum dot microdisk lasers on planar on-axis Si (001) substrates. Optica, 2019, 6, 430

[1]

Reed G T, Mashanovich G, Gardes F Y, et al. Silicon optical modulators. Nat Photonics, 2010, 4, 518

[2]

Xiao X, Xu H, Li X Y, et al. High-speed, low-loss silicon Mach–Zehnder modulators with doping optimization. Opt Express, 2013, 21, 4116

[3]

Streshinsky M, Ding R, Liu Y, et al. Low power 50 Gb/s silicon traveling wave Mach-Zehnder modulator near 1300 nm. Opt Express, 2013, 21, 30350

[4]

Dosunmu O I, Can D D, Emsley M K, et al. High-speed resonant cavity enhanced Ge photodetectors on reflecting Si substrates for 1550-nm operation. IEEE Photonics Technol Lett, 2005, 17, 175

[5]

Yin T, Cohen R, Morse M M, et al. 31 GHz Ge n–i–p waveguide photodetectors on silicon-on-insulator substrate. Opt Express, 2007, 15, 13965

[6]

Vivien L, Polzer A, Marris-Morini D, et al. Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt Express, 2012, 20, 1096

[7]

Bauters J F, Davenport M L, Heck M J R,et al. Silicon on ultra-low-loss waveguide photonic integration platform. Opt Express, 2013, 21, 544

[8]

Heck M J R, Bauters J F, Davenport M L, et al. Ultra-low loss waveguide platform and its integration with silicon photonics. Laser Photon Rev, 2014, 8, 667

[9]

Liu H Y, Wang T, Jiang Q, et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photonics, 2011, 5, 416

[10]

Liang D, Bowers J E. Recent progress in lasers on silicon. Nat Photonics, 2010, 4, 511

[11]

Chen S, et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photonics, 2016, 10, 307

[12]

Tanabe K, Watanabe K, Arakawa Y. III–V/Si hybrid photonic devices by direct fusion bonding. Sci Rep, 2012, 2349

[13]

Tournié E, Cerutti L, Rodriguez J B, et al. Metamorphic III–V semiconductor lasers grown on silicon. MRS Bull, 2016, 41, 218

[14]

Fischer R, Masselink W T, Klem J, et al. Growth and properties of GaAs/AlGaAs on nonpolar substrates using molecular beam epitaxy. J Appl Phys, 1985, 58, 374

[15]

Wang W I. Molecular beam epitaxial growth and material properties of GaAs and AlGaAs on Si (100). J Appl Phys, 1984, 44, 1149

[16]

Li Q, Lau M. Epitaxial growth of highly mismatched III–V materials on (001) silicon for electronics and optoelectronics. Prog Cryst Growth Charact Mater, 2017, 63, 105

[17]

Alcotte R, Martin M, Moeyaert J, et al. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility. APL Mater, 2016, 4, 46101

[18]

Akiyama M, Kawarada Y, Kaminishi K. Growth of single domain gaas layer on (100)-oriented Si substrate by MOCVD. Jpn J Appl Phys, 1984, 23, L843

[19]

Norman J C, Jung D, Wan Y, et al. Perspective: The future of quantum dot photonic integrated circuits. APL Photonics, 2018, 3, 30901

[20]

Wu J, Chen S, Seeds A, et al. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells. J Phys D, 2015, 48, 363001

[21]

Ueda O, Pearton S J. Materials and reliability handbook for semiconductor optical and electron devices. Springer, 2013

[22]

Kroemer H. A proposed class of hetero-junction injection lasers. Proc IEEE, 1963, 51, 1782

[23]

Alferov Z I. AlAs–GaAs heterojunction injection lasers with a low room-temperature threshold. Sov Phys Semicond, 1970, 3, 1107

[24]

Dingle R, Wiegmann W, Henry C H. Quantum states of confined carriers in very thin AlxGa1xAs–GaAs–AlxGa1xAs heterostructures. Dordrecht: Springer, 1988, 173

[25]

Kapon E, Simhony S, Bhat R, et al. Single quantum wire semiconductor lasers. Appl Phys Lett, 1989, 55, 2715

[26]

Arakawa Y, Sakaki H. Multidimensional quantum well laser and temperature dependence of its threshold current. Appl Phys Lett, 1982, 40, 939

[27]

Kirstaedter N, Ledentsov N N, Grundmann M, et al. Low threshold, large To injection laser emission from (InGa)As quantum dots. Electron Lett, 1994, 30, 1416

[28]

Nishi K, Takemasa K, Sugawara M, et al. Development of quantum dot lasers for data-com and silicon photonics applications. IEEE J Sel Top Quantum Electron, 2017, 23, 1

[29]

Nishi K, Kageyama T, Yamaguchi M, et al. Molecular beam epitaxial growths of high-optical-gain InAs quantum dots on GaAs for long-wavelength emission. J Cryst Growth, 2013, 378, 459

[30]

Ilahi B, Souaf M, Baira M, et al. Evolution of InAs/GaAs QDs size with the growth rate: a numerical investigation. J Nanomater, 2015, 2015, 1

[31]

Leonard D, Fafard S, Pond K, et al. Structural and optical properties of self-assembled InGaAs quantum dots. J Vac Sci Technol B, 1994, 12, 2516

[32]

Nishi K, Saito H, Sugou S, et al. A narrow photoluminescence linewidth of 21 meV at 1.35 μm from strain-reduced InAs quantum dots covered by In0.2Ga0.8As grown on GaAs substrates. Appl Phys Lett, 1999, 74, 1111

[33]

Otsubo K, Hatori N, Ishida M, et al. Temperature-insensitive eye-opening under 10-Gb/s modulation of 1.3-μm P-doped quantum-dot lasers without current adjustments. Jpn J Appl Phys, 2004, 43, L1124

[34]

Takada K, Tanaka Y, Matsumoto T, et al. Wide-temperature-range 10.3 Gbit/s operations of 1.3 μm high-density quantum-dot DFB lasers. Electron Lett, 2011, 47, 206

[35]

CapuaA, et al. Direct correlation between a highly damped modulation response and ultra low relative intensity noise in an InAs/GaAs quantum dot laser. Opt Express, 2007, 15, 5388

[36]

Jung D, Zhang Z, Norman J, et al. Highly reliable low-threshold inas quantum dot lasers on on-axis (001) Si with 87% injection efficiency. ACS Photonics, 2018, 5, 1094

[37]

Ovid’ko I. Relaxation mechanisms in strained nanoislands. Phys Rev Lett, 2002, 88, 46103

[38]

Tillmann K, Förster A. Critical dimensions for the formation of interfacial misfit dislocations of In0.6Ga0.4As islands on GaAs(001). Thin Solid Films, 2000, 368, 93

[39]

Mi Z, Yang J, Bhattacharya P, et al. High-performance quantum dot lasers and integrated optoelectronics on Si. Proc IEEE, 2009, 97, 1239

[40]

Shi B, Li Q, Lau K M. Self-organized InAs/InAlGaAs quantum dots as dislocation filters for InP films on (001) Si. J Cryst Growth, 2017, 464, 28

[41]

Linder K, Phillips J, Qasaimeh O, et al. Self-organized In0.4Ga0.6As quantum-dot lasers grown on Si substrates. Appl Phys Lett, 1999, 70(10), 1355

[42]

Wang T, Liu H, Lee A, et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt Express, 2011, 19, 11381

[43]

Lee A D, Jiang Q, Tang M C, et al. InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates. IEEE J Sel Top Quantum Electron, 2013, 19, 1901107

[44]

Chen S M, Tang M, Wu J, et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers. Opt Express, 2014, 22, 11528

[45]

Orchard J R, Shutts S, Sobiesierski A, et al. In situ annealing enhancement of the optical properties and laser device performance of InAs quantum dots grown on Si substrates. Opt Express, 2016, 24, 6196

[46]

Jiang Q, Tang M C, Wu J, et al. 1.3 μm InAs/GaAs quantum-dot laser monolithically grown on Si substrates operating over 100 °C. Electron Lett, 2014, 50, 1467

[47]

Liao M, Chen S, Park J S, et al. III–V quantum-dot lasers monolithically grown on silicon. Semicond Sci Technol, 2018, 33, 123002

[48]

Tang M, Chen S M, Wu J, et al. Optimizations of defect filter layers for 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. IEEE J Sel Top Quantum Electron, 2016, 22, 50

[49]

Liao M, Chen S M, Liu Z X, et al. Low-noise 13 μm InAs/GaAs quantum dot laser monolithically grown on silicon. Photonics Res, 2018, 6, 1062

[50]

Hantschmann C, Vasil'ev P P, Chen S M, et al. Gain switching of monolithic 1.3 μm InAs/GaAs quantum dot lasers on silicon. J Light Technol, 2018, 36, 3837

[51]

Hantschmann C, Vasil’ev P P, Wonfor A, et al. Understanding the bandwidth limitations in monolithic 1.3 μm InAs/GaAs quantum dot lasers on silicon. J Light Technol, 2019, 37, 949

[52]

Agrawal G P. Fiber-optic communication systems. Wiley, 2013

[53]

Merckling C, Waldron N, Jiang S, et al. Heteroepitaxy of InP on Si(001) by selective-area metal organic vapor-phase epitaxy in sub-50 nm width trenches: The role of the nucleation layer and the recess engineering. J Appl Phys, 2014, 115, 23710

[54]

Wang Z, Tian B, Pantouvaki M, et al. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat Photonics, 2015, 9, 837

[55]

Tian B, Wang Z C, Pantouvaki M, et al. Room temperature O-band DFB laser array directly grown on (001) silicon. Nano Lett, 2017, 17, 559

[56]

Wang Y, Chen S M, Yu Y, et al. Monolithic quantum-dot distributed feedback laser array on silicon. Optica, 2018, 5, 528

[57]

Kim H C, Wiedmann J, Matsui K, et al. 1.5-μm-wavelength distributed feedback lasers with deeply etched first-order vertical grating. Jpn J Appl Phys, 2001, 40, L1107

[58]

Vahala K J. Optical microcavities. Nature, 2003, 424, 839

[59]

Maximov M V, Kryzhanovskaya N V, Nadtochiy A M, et al. Ultrasmall microdisk and microring lasers based on InAs/InGaAs/GaAs quantum dots. Nanoscale Res Lett, 2014, 9, 657

[60]

Kryzhanovskaya N V, Zhukov A Z, Maximov M V, et al. Room temperature lasing in 1-μm microdisk quantum dot lasers. IEEE J Sel Top Quantum Electron, 2015, 21, 709

[61]

Kryzhanovskaya N, Zhukov A E, Maximov M V, et al. Heat-sink free CW operation of injection microdisk lasers grown on Si substrate with emission wavelength beyond 13 μm. Opt Lett, 2017, 42, 3319

[62]

Kryzhanovskaya N, Moiseev E, Polubavkina Y, et al. Elevated temperature lasing from injection microdisk lasers on silicon. Laser Phys Lett, 2018, 15, 15802

[63]

Volz K, Beyer A, Witte W, et al. GaP-nucleation on exact Si (001) substrates for III/V device integration. J Cryst Growth, 2011, 315, 37

[64]

Liu A Y, Peters J, Huang X, et al. Electrically pumped continuous-wave 13 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si. Opt Lett, 2017, 42, 338

[65]

Jung D, Song Y, Lee M, et al. InGaAs/GaAs quantum well lasers grown on exact GaP/Si (001). Electron Lett, 2014, 50, 1226

[66]

Li Q, Ng K W, Lau K M. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon. Appl Phys Lett, 2015, 106, 72105

[67]

Li Q, Wan Y T, Liu A Y, et al. 13-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon. Opt Express, 2016, 24, 21038

[68]

Chen S M, Liao M Y, Tang M C, et al. Electrically pumped continuous-wave 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates. Opt Express, 2017, 25, 4632

[69]

Li K, Liu Z, Tang M, et al. O-band InAs/GaAs quantum dot laser monolithically integrated on exact (001) Si substrate. J Cryst Growth, 2019, 511, 56

[70]

Zhou T J, Tang M C, Xiang G H, et al. Ultra-low threshold InAs/GaAs quantum dot microdisk lasers on planar on-axis Si (001) substrates. Optica, 2019, 6, 430

[1]

Wenqi Wei, Qi Feng, Zihao Wang, Ting Wang, Jianjun Zhang. Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates. J. Semicond., 2019, 40(10): 101303. doi: 10.1088/1674-4926/40/10/101303

[2]

Hao Yongqin, Zhong Jingchang, Xie Haorui, Jiang Xiaoguang, Zhao Yingjie, Wang Lijun. A New Process for Improving Performance of VCSELs. J. Semicond., 2005, 26(12): 2290.

[3]

Hongda Chen, Zan Zhang, Beiju Huang, Luhong Mao, Zanyun Zhang. Progress in complementary metal-oxide-semiconductor silicon photonics and optoelectronic integrated circuits. J. Semicond., 2015, 36(12): 121001. doi: 10.1088/1674-4926/36/12/121001

[4]

Xiaowu He, Yifeng Song, Ying Yu, Ben Ma, Zesheng Chen, Xiangjun Shang, Haiqiao Ni, Baoquan Sun, Xiuming Dou, Hao Chen, Hongyue Hao, Tongtong Qi, Shushan Huang, Hanqing Liu, Xiangbin Su, Xinliang Su, Yujun Shi, Zhichuan Niu. Quantum light source devices of In(Ga)As semiconductor self-assembled quantum dots. J. Semicond., 2019, 40(7): 071902. doi: 10.1088/1674-4926/40/7/071902

[5]

Shuangyi Zhao, Xiangkai Liu, Xiaodong Pi, Deren Yang. Light-emitting diodes based on colloidal silicon quantum dots. J. Semicond., 2018, 39(6): 061008. doi: 10.1088/1674-4926/39/6/061008

[6]

Hao Chen, Xiuming Dou, Kun Ding, Baoquan Sun. Electrically driven uniaxial stress device for tuning in situ semiconductor quantum dot symmetry and exciton emission in cryostat. J. Semicond., 2019, 40(7): 072901. doi: 10.1088/1674-4926/40/7/072901

[7]

Haili Wang, Li Zhong, Jida Hou, Suping Liu, Xiaoyu Ma. 1.06 μm high-power InGaAs/GaAsP quantum well lasers. J. Semicond., 2017, 38(11): 114005. doi: 10.1088/1674-4926/38/11/114005

[8]

Zhen Dong, Cuiluan Wang, Hongqi Jing, Suping Liu, Xiaoyu Ma. High power single mode 980 nm AlGaInAs/AlGaAs quantum well lasers with a very low threshold current. J. Semicond., 2013, 34(11): 114011. doi: 10.1088/1674-4926/34/11/114011

[9]

Li Zehong, Ren Min, Zhang Bo, Ma Jun, Hu Tao, Zhang Shuai, Wang Fei, Chen Jian. Above 700 V superjunction MOSFETs fabricated by deep trench etching and epitaxial growth. J. Semicond., 2010, 31(8): 084002. doi: 10.1088/1674-4926/31/8/084002

[10]

Xuhan Guo, An He, Yikai Su. Recent advances of heterogeneously integrated III–V laser on Si. J. Semicond., 2019, 40(10): 101304. doi: 10.1088/1674-4926/40/10/101304

[11]

Liang Song, Zhu Hongliang, Pan Jiaoqing, Wang Wei. . J. Semicond., 2005, 26(11): 2074.

[12]

Yijun Yao, Canwen Zou, Haiyang Yu, Jinjin Guo, Yaming Li, Jianguo Liu. The developing condition analysis of semiconductor laser frequency stabilization technology. J. Semicond., 2018, 39(11): 114004. doi: 10.1088/1674-4926/39/11/114004

[13]

Xin Wang, Cuiluan Wang, Xia Wu, Lingni Zhu, Hongqi Jing, Xiaoyu Ma, Suping Liu. Researching the 915 nm high-power and high-brightness semiconductor laser single chip coupling module. J. Semicond., 2017, 38(2): 024006. doi: 10.1088/1674-4926/38/2/024006

[14]

Rao Lan, Song Guofeng, Chen Lianghui. Thermal analysis of the cavity facet for an 808 nm semiconductor laser by using near-field scanning optical microscopy. J. Semicond., 2010, 31(10): 104007. doi: 10.1088/1674-4926/31/10/104007

[15]

Xiaoxin Wang, Jifeng Liu. Emerging technologies in Si active photonics. J. Semicond., 2018, 39(6): 061001. doi: 10.1088/1674-4926/39/6/061001

[16]

Ji Gang, Sun Guosheng, Liu Xingfang, Wang Lei, Zhao Wanshun, Zeng Yiping, Li Jinmin. Epitaxial growth on 4H-SiC by TCS as a silicon precursor. J. Semicond., 2009, 30(9): 093006. doi: 10.1088/1674-4926/30/9/093006

[17]

Naili Yue, Joshua Myers, Liqin Su, Wentao Wang, Fude Liu, Raphael Tsu, Yan Zhuang, Yong Zhang. Growth of oxidation-resistive silicene-like thin flakes and Si nanostructures on graphene. J. Semicond., 2019, 40(6): 062001. doi: 10.1088/1674-4926/40/6/062001

[18]

Zhang Guanjie, Xu Bo, Chen Yonghai, Yao Jianghong, Lin Yaowang, Shu Yongchun, Pi Biao, Xing Xiaodong, Liu Rubin, Shu Qiang, Wang Zhanguo, Xu Jingjun. Raman Scattering of InAs Quantum Dots with Different Deposition Thicknesses. J. Semicond., 2006, 27(6): 1012.

[19]

E. Garduno-Nolasco, M. Missous, D. Donoval, J. Kovac, M. Mikolasek. Temperature dependence of InAs/GaAs quantum dots solar photovoltaic devices. J. Semicond., 2014, 35(5): 054001. doi: 10.1088/1674-4926/35/5/054001

[20]

Zhen Dong, Yihao Zhao, Qi Zhang, Cuiluan Wang, Wei Li, Suping Liu, Xiaoyu Ma. High power 980 nm broad area distributed feedback laser with first-order gratings. J. Semicond., 2016, 37(2): 024010. doi: 10.1088/1674-4926/37/2/024010

Search

Advanced Search >>

GET CITATION

S J Pan, V Cao, M Y Liao, Y Lu, Z Z Liu, M C Tang, S M Chen, A Seeds, H Y Liu, Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate[J]. J. Semicond., 2019, 40(10): 101302. doi: 10.1088/1674-4926/40/10/101302.

Export: BibTex EndNote

Article Metrics

Article views: 1380 Times PDF downloads: 89 Times Cited by: 0 Times

History

Manuscript received: 29 June 2019 Manuscript revised: 27 July 2019 Online: Accepted Manuscript: 03 September 2019 Uncorrected proof: 06 September 2019 Published: 01 October 2019

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误