J. Semicond. > Volume 40 > Issue 10 > Article Number: 101303

Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates

Wenqi Wei 1, , Qi Feng 1, , Zihao Wang 1, 2, , Ting Wang 1, 2, , and Jianjun Zhang 1, 2,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: Direct epitaxial growth III–V quantum dot (QD) structures on CMOS-compatible silicon substrates is considered as one of the most promising approaches to achieve low-cost and high-yield Si-based lasers for silicon photonic integration. However, epitaxial growth of III–V materials on Si encounters the following three major challenges: high density of threading dislocations, antiphase boundaries and thermal cracks, which significantly degrade the crystal quality and potential device performance. In this review, we will focus on some recent results related to InAs/GaAs quantum dot lasers on Si (001) substrates by III–V/IV hybrid epitaxial growth via (111)-faceted Si hollow structures. Moreover, by using the step-graded epitaxial growth process the emission wavelength of InAs QDs can be extended from O-band to C/L-band. High-performance InAs/GaAs QD micro-disk lasers with sub-milliwatts threshold on Si (001) substrates are fabricated and characterized. The above results pave a promising path towards the on-chip lasers for optical interconnect applications.

Key words: quantum dotssilicon photonicsepitaxial growthsemiconductor lasers

Abstract: Direct epitaxial growth III–V quantum dot (QD) structures on CMOS-compatible silicon substrates is considered as one of the most promising approaches to achieve low-cost and high-yield Si-based lasers for silicon photonic integration. However, epitaxial growth of III–V materials on Si encounters the following three major challenges: high density of threading dislocations, antiphase boundaries and thermal cracks, which significantly degrade the crystal quality and potential device performance. In this review, we will focus on some recent results related to InAs/GaAs quantum dot lasers on Si (001) substrates by III–V/IV hybrid epitaxial growth via (111)-faceted Si hollow structures. Moreover, by using the step-graded epitaxial growth process the emission wavelength of InAs QDs can be extended from O-band to C/L-band. High-performance InAs/GaAs QD micro-disk lasers with sub-milliwatts threshold on Si (001) substrates are fabricated and characterized. The above results pave a promising path towards the on-chip lasers for optical interconnect applications.

Key words: quantum dotssilicon photonicsepitaxial growthsemiconductor lasers



References:

[1]

Asghari M, Krishnamoorthy A V. Silicon photonics: Energy-efficient communication. Nat Photonics, 2011, 5(5), 268

[2]

Rickman A. The commercialization of silicon photonics. Nat Photonics, 2014, 8(8), 579

[3]

Vahdat A, Liu H, Zhao X, et al. The emerging optical data center. Optical Fiber Communication Conference, 2011, OTuH2

[4]

Bauters J F, Davenport M L, Heck M J R, et al. Silicon on ultra-low-loss waveguide photonic integration platform. Opt Express, 2013, 21(1), 544

[5]

Heck M J R, Bauters J F, Davenport M L, et al. Ultra-low loss waveguide platform and its integration with silicon photonics. Laser Photonics Rev, 2014, 8(5), 667

[6]

Yin T, Cohen R, Morse M M, et al. 31 GHz Ge n–i–p waveguide photodetectors on silicon-on-insulator substrate. Opt Express, 2007, 15(21), 13965

[7]

Vivien L, Polzer A, Marris-Morini D, et al. Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt Express, 2012, 20(2), 1096

[8]

Reed G T, Mashanovich G, Gardes F Y, et al. Silicon optical modulators. Nat Photonics, 2010, 4(8), 518

[9]

Xiao X, Xu H, Li X, et al. High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization. Opt Express, 2013, 21(4), 4116

[10]

Zheng X, Shubin I, Li G, et al. A tunable 1 × 4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects. Opt Express, 2010, 18(5), 5151

[11]

Liang D, Bowers J E. Recent progress in lasers on silicon. Nat Photonics, 2010, 4(8), 511

[12]

Rong H, Liu A, Jones R, et al. An all-silicon Raman laser. Nature, 2005, 433(7023), 292

[13]

Camacho-Aguilera R E, Cai Y, Patel N, et al. An electrically pumped germanium laser. Opt Express, 2012, 20(10), 11316

[14]

Liu J, Sun X, Pan D, et al. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. Opt Express, 2007, 15(18), 11272

[15]

Liu A Y, Bowers J. Photonic integration with epitaxial III–V on silicon. IEEE J Sel Top in Quantum Electron, 2018, 24(6), 1

[16]

Tanabe K, Watanabe K, Arakawa Y. III–V/Si hybrid photonic devices by direct fusion bonding. Sci Rep, 2012, 2, 349

[17]

Wang Z, Van Gasse K, Moskalenko V, et al. A III–V-on-Si ultra-dense comb laser. Light: Sci Appl, 2017, 6(5), e16260

[18]

Zhou Z, Yin B, Michel J. On-chip light sources for silicon photonics. Light: Sci Appl, 2015, 4(11), e358

[19]

Wang Z, Abbasi A, Dave U, et al. Novel light source integration approaches for silicon photonics. Laser Photonics Rev, 2017, 11(4), 1700063

[20]

Liu C W, Östling M, Hannon J B. New materials for post-Si computing. MRS Bulletin, 2014, 39(8), 658

[21]

Wu J, Chen S, Seeds A, et al. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells. J Phys D, 2015, 48(36), 363001

[22]

Tang M, Chen S, Wu J, et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers. Opt Express, 2014, 22(10), 11528

[23]

Wang J, Hu H Y, Deng C, et al. Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition. Chin Phys B, 2015, 24(2), 028101

[24]

Li Q, Lau K M. Epitaxial growth of highly mismatched III–V materials on (001) silicon for electronics and optoelectronics. Prog Cryst Growth Charact Mater, 2017, 63(4), 105

[25]

Faucher J, Masuda T, Lee M L. Initiation strategies for simultaneous control of antiphase domains and stacking faults in GaAs solar cells on Ge. J Vac Sci Technol B, 2016, 34(4), 041203

[26]

Liao M, Chen S, Park J S, et al. III–V quantum-dot lasers monolithically grown on silicon. Semicond Sci Technol, 2018, 33(12), 123002

[27]

Brammertz G, Mols Y, Degroote S, et al. Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates. J Appl Phys, 2006, 99(9), 093514

[28]

Alcotte R, Martin M, Moeyaert J, et al. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility. Appl Mater, 2016, 4(4), 046101

[29]

Akiyama M, Kawarada Y, Kaminishi K. Growth of single domain GaAs layer on (100)-oriented Si substrate by MOCVD. Jpn J Appl Phys, 1984, 23(11A), L843

[30]

Chadi D J. Stabilities of single-layer and bilayer steps on Si (001) surfaces. Phys Rev Lett, 1987, 59(15), 1691

[31]

Wang T, Liu H, Lee A, et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt Express, 2011, 19(12), 11381

[32]

Lee A, Jiang Q, Tang M, et al. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. Opt Express, 2012, 20(20), 22181

[33]

Liao M, Chen S, Huo S, et al. Monolithically integrated electrically pumped continuous-wave III–V quantum dot light sources on silicon. IEEE J Sel Top Quantum Electron, 2017, 23(6), 1

[34]

Chen S, Liao M, Tang M, et al. Electrically pumped continuous-wave 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates. Opt Express, 2017, 25(5), 4632

[35]

Norman J, Kennedy M J, Selvidge J, et al. Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si. Opt Express, 2017, 25(4), 3927

[36]

Volz K, Beyer A, Witte W, et al. GaP-nucleation on exact Si (001) substrates for III/V device integration. J Cryst Growth, 2011, 315(1), 37

[37]

Liu A Y, Peters J, Huang X, et al. Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si. Opt Lett, 2017, 42(2), 338

[38]

Jung D, Zhang Z, Norman J, et al. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency. ACS Photonics, 2017, 5(3), 1094

[39]

Kwoen J, Jang B, Lee J, et al. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001). Opt Express, 2018, 26(9), 11568

[40]

Yang V K, Groenert M, Leitz C W, et al. Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates. J Appl Phys, 2003, 93(7), 3859

[41]

Wei W Q, Wang J H, Gong Y, et al. C/L-band emission of InAs QDs monolithically grown on Ge substrate. Opt Mater Express, 2017, 7(8), 2955

[42]

Wei W Q, Wang J H, Zhang B, et al. InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm. Appl Phys Lett, 2018, 113(5), 053107

[43]

Feng Q, Wei W, Zhang B, et al. O-band and C/L-band III–V quantum dot lasers monolithically grown on Ge and Si substrate. Appl Sci, 2019, 9(3), 385

[44]

Liu H, Wang T, Jiang Q, et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photonics, 2011, 5(7), 416

[45]

Kaspar P, Brenot R, Le Liepvre A, et al. Packaged hybrid III–V/silicon SOA. The European Conference on Optical Communication (ECOC), 2014, 1

[46]

Ledentsov N N, Kovsh A R, Zhukov A E, et al. High performance quantum dot lasers on GaAs substrates operating in 1.5 μm range. Electron Lett, 2003, 39(15), 1126

[47]

Wang T, Lee A, Tutu F, et al. The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates. Appl Phys Lett, 2012, 100(5), 052113

[48]

Lee A, Liu H, Seeds A. Semiconductor III–V lasers monolithically grown on Si substrates. Semicond Sci Technol, 2012, 28(1), 015027

[49]

Lee A D, Jiang Q, Tang M, et al. InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates. IEEE J Sel Top Quantum Electron, 2013, 19(4), 1901107

[50]

Liu A Y, Zhang C, Norman J, et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 2014, 104(4), 041104

[51]

Chen S, Li W, Wu J, et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photonics, 2016, 10(5), 307

[52]

Wan Y, Li Q, Geng Y, et al. InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band. Appl Phys Lett, 2015, 107(8), 081106

[53]

Wan Y, Li Q, Liu A Y, et al. Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources. Appl Phys Lett, 2016, 109(1), 011104

[54]

Li Q, Ng K W, Lau K M. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon. Appl Phys Lett, 2015, 106(7), 072105

[55]

Shi B, Zhu S, Li Q, et al. Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon. ACS Photonics, 2017, 4(2), 204

[56]

Shi B, Zhu S, Li Q, et al. 1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si. Appl Phys Lett, 2017, 110(12), 121109

[57]

Zhu S, Shi B, Wan Y, et al. 1.55 μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks. Opt Lett, 2017, 42(4), 679

[58]

Wan Y, Jung D, Shang C, et al. Low-threshold continuous-wave operation of electrically pumped 1.55 μm InAs quantum dash microring lasers. ACS Photonics, 2018, 6(2), 279

[59]

Zhang B, Wei W Q, Wang J H, et al. 1310 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy. Opt Express, 2019, 27(14), 19348

[60]

McCall S L, Levi A F J, Slusher R E, et al. Whispering-gallery mode microdisk lasers. Appl Phys Lett, 1992, 60(3), 289

[61]

Wan Y, Li Q, Liu A Y, et al. Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. Opt Lett, 2016, 41(7), 1664

[62]

Li Q, Wan Y, Liu A Y, et al. 1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon. Opt Express, 2016, 24(18), 21038

[63]

Wan Y, Norman J, Li Q, et al. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optia, 2017, 4(8), 940

[64]

Siegman A E. Lasers. University Science Books, Mill Valley, CA, 1986

[1]

Asghari M, Krishnamoorthy A V. Silicon photonics: Energy-efficient communication. Nat Photonics, 2011, 5(5), 268

[2]

Rickman A. The commercialization of silicon photonics. Nat Photonics, 2014, 8(8), 579

[3]

Vahdat A, Liu H, Zhao X, et al. The emerging optical data center. Optical Fiber Communication Conference, 2011, OTuH2

[4]

Bauters J F, Davenport M L, Heck M J R, et al. Silicon on ultra-low-loss waveguide photonic integration platform. Opt Express, 2013, 21(1), 544

[5]

Heck M J R, Bauters J F, Davenport M L, et al. Ultra-low loss waveguide platform and its integration with silicon photonics. Laser Photonics Rev, 2014, 8(5), 667

[6]

Yin T, Cohen R, Morse M M, et al. 31 GHz Ge n–i–p waveguide photodetectors on silicon-on-insulator substrate. Opt Express, 2007, 15(21), 13965

[7]

Vivien L, Polzer A, Marris-Morini D, et al. Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt Express, 2012, 20(2), 1096

[8]

Reed G T, Mashanovich G, Gardes F Y, et al. Silicon optical modulators. Nat Photonics, 2010, 4(8), 518

[9]

Xiao X, Xu H, Li X, et al. High-speed, low-loss silicon Mach-Zehnder modulators with doping optimization. Opt Express, 2013, 21(4), 4116

[10]

Zheng X, Shubin I, Li G, et al. A tunable 1 × 4 silicon CMOS photonic wavelength multiplexer/demultiplexer for dense optical interconnects. Opt Express, 2010, 18(5), 5151

[11]

Liang D, Bowers J E. Recent progress in lasers on silicon. Nat Photonics, 2010, 4(8), 511

[12]

Rong H, Liu A, Jones R, et al. An all-silicon Raman laser. Nature, 2005, 433(7023), 292

[13]

Camacho-Aguilera R E, Cai Y, Patel N, et al. An electrically pumped germanium laser. Opt Express, 2012, 20(10), 11316

[14]

Liu J, Sun X, Pan D, et al. Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. Opt Express, 2007, 15(18), 11272

[15]

Liu A Y, Bowers J. Photonic integration with epitaxial III–V on silicon. IEEE J Sel Top in Quantum Electron, 2018, 24(6), 1

[16]

Tanabe K, Watanabe K, Arakawa Y. III–V/Si hybrid photonic devices by direct fusion bonding. Sci Rep, 2012, 2, 349

[17]

Wang Z, Van Gasse K, Moskalenko V, et al. A III–V-on-Si ultra-dense comb laser. Light: Sci Appl, 2017, 6(5), e16260

[18]

Zhou Z, Yin B, Michel J. On-chip light sources for silicon photonics. Light: Sci Appl, 2015, 4(11), e358

[19]

Wang Z, Abbasi A, Dave U, et al. Novel light source integration approaches for silicon photonics. Laser Photonics Rev, 2017, 11(4), 1700063

[20]

Liu C W, Östling M, Hannon J B. New materials for post-Si computing. MRS Bulletin, 2014, 39(8), 658

[21]

Wu J, Chen S, Seeds A, et al. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells. J Phys D, 2015, 48(36), 363001

[22]

Tang M, Chen S, Wu J, et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates using InAlAs/GaAs dislocation filter layers. Opt Express, 2014, 22(10), 11528

[23]

Wang J, Hu H Y, Deng C, et al. Defect reduction in GaAs/Si film with InAs quantum-dot dislocation filter grown by metalorganic chemical vapor deposition. Chin Phys B, 2015, 24(2), 028101

[24]

Li Q, Lau K M. Epitaxial growth of highly mismatched III–V materials on (001) silicon for electronics and optoelectronics. Prog Cryst Growth Charact Mater, 2017, 63(4), 105

[25]

Faucher J, Masuda T, Lee M L. Initiation strategies for simultaneous control of antiphase domains and stacking faults in GaAs solar cells on Ge. J Vac Sci Technol B, 2016, 34(4), 041203

[26]

Liao M, Chen S, Park J S, et al. III–V quantum-dot lasers monolithically grown on silicon. Semicond Sci Technol, 2018, 33(12), 123002

[27]

Brammertz G, Mols Y, Degroote S, et al. Low-temperature photoluminescence study of thin epitaxial GaAs films on Ge substrates. J Appl Phys, 2006, 99(9), 093514

[28]

Alcotte R, Martin M, Moeyaert J, et al. Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si (001) substrate by metalorganic chemical vapour deposition with high mobility. Appl Mater, 2016, 4(4), 046101

[29]

Akiyama M, Kawarada Y, Kaminishi K. Growth of single domain GaAs layer on (100)-oriented Si substrate by MOCVD. Jpn J Appl Phys, 1984, 23(11A), L843

[30]

Chadi D J. Stabilities of single-layer and bilayer steps on Si (001) surfaces. Phys Rev Lett, 1987, 59(15), 1691

[31]

Wang T, Liu H, Lee A, et al. 1.3-μm InAs/GaAs quantum-dot lasers monolithically grown on Si substrates. Opt Express, 2011, 19(12), 11381

[32]

Lee A, Jiang Q, Tang M, et al. Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. Opt Express, 2012, 20(20), 22181

[33]

Liao M, Chen S, Huo S, et al. Monolithically integrated electrically pumped continuous-wave III–V quantum dot light sources on silicon. IEEE J Sel Top Quantum Electron, 2017, 23(6), 1

[34]

Chen S, Liao M, Tang M, et al. Electrically pumped continuous-wave 1.3 μm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates. Opt Express, 2017, 25(5), 4632

[35]

Norman J, Kennedy M J, Selvidge J, et al. Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si. Opt Express, 2017, 25(4), 3927

[36]

Volz K, Beyer A, Witte W, et al. GaP-nucleation on exact Si (001) substrates for III/V device integration. J Cryst Growth, 2011, 315(1), 37

[37]

Liu A Y, Peters J, Huang X, et al. Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si. Opt Lett, 2017, 42(2), 338

[38]

Jung D, Zhang Z, Norman J, et al. Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency. ACS Photonics, 2017, 5(3), 1094

[39]

Kwoen J, Jang B, Lee J, et al. All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001). Opt Express, 2018, 26(9), 11568

[40]

Yang V K, Groenert M, Leitz C W, et al. Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates. J Appl Phys, 2003, 93(7), 3859

[41]

Wei W Q, Wang J H, Gong Y, et al. C/L-band emission of InAs QDs monolithically grown on Ge substrate. Opt Mater Express, 2017, 7(8), 2955

[42]

Wei W Q, Wang J H, Zhang B, et al. InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm. Appl Phys Lett, 2018, 113(5), 053107

[43]

Feng Q, Wei W, Zhang B, et al. O-band and C/L-band III–V quantum dot lasers monolithically grown on Ge and Si substrate. Appl Sci, 2019, 9(3), 385

[44]

Liu H, Wang T, Jiang Q, et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photonics, 2011, 5(7), 416

[45]

Kaspar P, Brenot R, Le Liepvre A, et al. Packaged hybrid III–V/silicon SOA. The European Conference on Optical Communication (ECOC), 2014, 1

[46]

Ledentsov N N, Kovsh A R, Zhukov A E, et al. High performance quantum dot lasers on GaAs substrates operating in 1.5 μm range. Electron Lett, 2003, 39(15), 1126

[47]

Wang T, Lee A, Tutu F, et al. The effect of growth temperature of GaAs nucleation layer on InAs/GaAs quantum dots monolithically grown on Ge substrates. Appl Phys Lett, 2012, 100(5), 052113

[48]

Lee A, Liu H, Seeds A. Semiconductor III–V lasers monolithically grown on Si substrates. Semicond Sci Technol, 2012, 28(1), 015027

[49]

Lee A D, Jiang Q, Tang M, et al. InAs/GaAs quantum-dot lasers monolithically grown on Si, Ge, and Ge-on-Si substrates. IEEE J Sel Top Quantum Electron, 2013, 19(4), 1901107

[50]

Liu A Y, Zhang C, Norman J, et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 2014, 104(4), 041104

[51]

Chen S, Li W, Wu J, et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photonics, 2016, 10(5), 307

[52]

Wan Y, Li Q, Geng Y, et al. InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band. Appl Phys Lett, 2015, 107(8), 081106

[53]

Wan Y, Li Q, Liu A Y, et al. Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources. Appl Phys Lett, 2016, 109(1), 011104

[54]

Li Q, Ng K W, Lau K M. Growing antiphase-domain-free GaAs thin films out of highly ordered planar nanowire arrays on exact (001) silicon. Appl Phys Lett, 2015, 106(7), 072105

[55]

Shi B, Zhu S, Li Q, et al. Continuous-wave optically pumped 1.55 μm InAs/InAlGaAs quantum dot microdisk lasers epitaxially grown on silicon. ACS Photonics, 2017, 4(2), 204

[56]

Shi B, Zhu S, Li Q, et al. 1.55 μm room-temperature lasing from subwavelength quantum-dot microdisks directly grown on (001) Si. Appl Phys Lett, 2017, 110(12), 121109

[57]

Zhu S, Shi B, Wan Y, et al. 1.55 μm band low-threshold, continuous-wave lasing from InAs/InAlGaAs quantum dot microdisks. Opt Lett, 2017, 42(4), 679

[58]

Wan Y, Jung D, Shang C, et al. Low-threshold continuous-wave operation of electrically pumped 1.55 μm InAs quantum dash microring lasers. ACS Photonics, 2018, 6(2), 279

[59]

Zhang B, Wei W Q, Wang J H, et al. 1310 nm InAs quantum-dot microdisk lasers on SOI by hybrid epitaxy. Opt Express, 2019, 27(14), 19348

[60]

McCall S L, Levi A F J, Slusher R E, et al. Whispering-gallery mode microdisk lasers. Appl Phys Lett, 1992, 60(3), 289

[61]

Wan Y, Li Q, Liu A Y, et al. Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. Opt Lett, 2016, 41(7), 1664

[62]

Li Q, Wan Y, Liu A Y, et al. 1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon. Opt Express, 2016, 24(18), 21038

[63]

Wan Y, Norman J, Li Q, et al. 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optia, 2017, 4(8), 940

[64]

Siegman A E. Lasers. University Science Books, Mill Valley, CA, 1986

[1]

Shujie Pan, Victoria Cao, Mengya Liao, Ying Lu, Zizhuo Liu, Mingchu Tang, Siming Chen, Alwyn Seeds, Huiyun Liu. Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate. J. Semicond., 2019, 40(10): 101302. doi: 10.1088/1674-4926/40/10/101302

[2]

Hongda Chen, Zan Zhang, Beiju Huang, Luhong Mao, Zanyun Zhang. Progress in complementary metal-oxide-semiconductor silicon photonics and optoelectronic integrated circuits. J. Semicond., 2015, 36(12): 121001. doi: 10.1088/1674-4926/36/12/121001

[3]

Xinzhe Min, Pengchen Zhu, Shuai Gu, Jia Zhu. Research progress of low-dimensional perovskites: synthesis, properties and optoelectronic applications. J. Semicond., 2017, 38(1): 011004. doi: 10.1088/1674-4926/38/1/011004

[4]

Xiaowu He, Yifeng Song, Ying Yu, Ben Ma, Zesheng Chen, Xiangjun Shang, Haiqiao Ni, Baoquan Sun, Xiuming Dou, Hao Chen, Hongyue Hao, Tongtong Qi, Shushan Huang, Hanqing Liu, Xiangbin Su, Xinliang Su, Yujun Shi, Zhichuan Niu. Quantum light source devices of In(Ga)As semiconductor self-assembled quantum dots. J. Semicond., 2019, 40(7): 071902. doi: 10.1088/1674-4926/40/7/071902

[5]

Shuangyi Zhao, Xiangkai Liu, Xiaodong Pi, Deren Yang. Light-emitting diodes based on colloidal silicon quantum dots. J. Semicond., 2018, 39(6): 061008. doi: 10.1088/1674-4926/39/6/061008

[6]

W. Nakwaski, R.P. Sarzała. Comprehensive and fully self-consistent modeling of modern semiconductor lasers. J. Semicond., 2016, 37(2): 024001. doi: 10.1088/1674-4926/37/2/024001

[7]

Hao Chen, Xiuming Dou, Kun Ding, Baoquan Sun. Electrically driven uniaxial stress device for tuning in situ semiconductor quantum dot symmetry and exciton emission in cryostat. J. Semicond., 2019, 40(7): 072901. doi: 10.1088/1674-4926/40/7/072901

[8]

Li Zehong, Ren Min, Zhang Bo, Ma Jun, Hu Tao, Zhang Shuai, Wang Fei, Chen Jian. Above 700 V superjunction MOSFETs fabricated by deep trench etching and epitaxial growth. J. Semicond., 2010, 31(8): 084002. doi: 10.1088/1674-4926/31/8/084002

[9]

Liang Song, Zhu Hongliang, Pan Jiaoqing, Wang Wei. . J. Semicond., 2005, 26(11): 2074.

[10]

Zhang Xing, Ning Yongqiang, Sun Yanfang, Zhang Yan, Liu Guangyu, Peng Hangyu, Li Zaijin, Qin Li, Liu Yun, Wang Lijun. Light-current characteristics of vertical-cavity surface-emitting lasers with external optical feedback. J. Semicond., 2010, 31(3): 034006. doi: 10.1088/1674-4926/31/3/034006

[11]

Xiaoxin Wang, Jifeng Liu. Emerging technologies in Si active photonics. J. Semicond., 2018, 39(6): 061001. doi: 10.1088/1674-4926/39/6/061001

[12]

Ji Gang, Sun Guosheng, Liu Xingfang, Wang Lei, Zhao Wanshun, Zeng Yiping, Li Jinmin. Epitaxial growth on 4H-SiC by TCS as a silicon precursor. J. Semicond., 2009, 30(9): 093006. doi: 10.1088/1674-4926/30/9/093006

[13]

Naili Yue, Joshua Myers, Liqin Su, Wentao Wang, Fude Liu, Raphael Tsu, Yan Zhuang, Yong Zhang. Growth of oxidation-resistive silicene-like thin flakes and Si nanostructures on graphene. J. Semicond., 2019, 40(6): 062001. doi: 10.1088/1674-4926/40/6/062001

[14]

Zhang Guanjie, Xu Bo, Chen Yonghai, Yao Jianghong, Lin Yaowang, Shu Yongchun, Pi Biao, Xing Xiaodong, Liu Rubin, Shu Qiang, Wang Zhanguo, Xu Jingjun. Raman Scattering of InAs Quantum Dots with Different Deposition Thicknesses. J. Semicond., 2006, 27(6): 1012.

[15]

E. Garduno-Nolasco, M. Missous, D. Donoval, J. Kovac, M. Mikolasek. Temperature dependence of InAs/GaAs quantum dots solar photovoltaic devices. J. Semicond., 2014, 35(5): 054001. doi: 10.1088/1674-4926/35/5/054001

[16]

Liang Zhimei, Wu Ju, Jin Peng, Lü Xueqin, Wang Zhanguo. The Origin of Multi-Peak Structures Observed in Photoluminescence Spectra of InAs/GaAs Quantum Dots. J. Semicond., 2008, 29(11): 2121.

[17]

Dandan Ning, Yanan Chen, Xinkun Li, Dechun Liang, Shufang Ma, Peng Jin, Zhanguo Wang. Research on the photoluminescence of spectral broadening by rapid thermal annealing on InAs/GaAs quantum dots. J. Semicond., 2020, 41(0): -1.

[18]

Zhao Yong, Wang Wanjun, Shao Haifeng, Yang Jianyi, Wang Minghua, Jiang Xiaoqing. Influence of doping position on the extinction ratio of Mach-Zehnder-interference based silicon optical modulators. J. Semicond., 2012, 33(1): 014009. doi: 10.1088/1674-4926/33/1/014009

[19]

Feifan Xu, Xu Cen, Bin Liu, Danbei Wang, Tao Tao, Ting Zhi, Qi Wang, Zili Xie, Yugang Zhou, Youdou Zheng, Rong Zhang. High performance GaN-based hybrid white micro-LEDs integrated with quantum-dots. J. Semicond., 2020, 41(3): 032301. doi: 10.1088/1674-4926/41/3/032301

[20]

Yunchou Zhao, Hao Jia, Jianfeng Ding, Lei Zhang, Xin Fu, Lin Yang. Five-port silicon optical router based on Mach-Zehnder optical switches for photonic networks-on-chip. J. Semicond., 2016, 37(11): 114008. doi: 10.1088/1674-4926/37/11/114008

Search

Advanced Search >>

GET CITATION

W Q Wei, Q Feng, Z H Wang, T Wang, J J Zhang, Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates[J]. J. Semicond., 2019, 40(10): 101303. doi: 10.1088/1674-4926/40/10/101303.

Export: BibTex EndNote

Article Metrics

Article views: 1313 Times PDF downloads: 48 Times Cited by: 0 Times

History

Manuscript received: 13 July 2019 Manuscript revised: 09 September 2019 Online: Accepted Manuscript: 19 September 2019 Uncorrected proof: 25 September 2019 Corrected proof: 17 October 2019 Published: 01 October 2019

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误