J. Semicond. > Volume 40 > Issue 10 > Article Number: 101304

Recent advances of heterogeneously integrated III–V laser on Si

Xuhan Guo , , An He and Yikai Su

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: Due to the indirect bandgap nature, the widely used silicon CMOS is very inefficient at light emitting. The integration of silicon lasers is deemed as the ‘Mount Everest’ for the full take-up of Si photonics. The major challenge has been the materials dissimilarity caused impaired device performance. We present a brief overview of the recent advances of integrated III–V laser on Si. We will then focus on the heterogeneous direct/adhesive bonding enabling methods and associated light coupling structures. A selected review of recent representative novel heterogeneously integrated Si lasers for emerging applications like spectroscopy, sensing, metrology and microwave photonics will be presented, including DFB laser array, ultra-dense comb lasers and nanolasers. Finally, the challenges and opportunities of heterogeneous integration approach are discussed.

Key words: heterogeneous integrationlaserssilicon photonicsintegrated circuits

Abstract: Due to the indirect bandgap nature, the widely used silicon CMOS is very inefficient at light emitting. The integration of silicon lasers is deemed as the ‘Mount Everest’ for the full take-up of Si photonics. The major challenge has been the materials dissimilarity caused impaired device performance. We present a brief overview of the recent advances of integrated III–V laser on Si. We will then focus on the heterogeneous direct/adhesive bonding enabling methods and associated light coupling structures. A selected review of recent representative novel heterogeneously integrated Si lasers for emerging applications like spectroscopy, sensing, metrology and microwave photonics will be presented, including DFB laser array, ultra-dense comb lasers and nanolasers. Finally, the challenges and opportunities of heterogeneous integration approach are discussed.

Key words: heterogeneous integrationlaserssilicon photonicsintegrated circuits



References:

[1]

Doerr C. Silicon photonic integration in telecommunications. Front Phys Rev, 2015, 3

[2]

Soref R. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron, 2006, 12, 1678

[3]

Heck M J R, Bauters J F, Davenport M L, et al. Ultra-low loss waveguide platform and its integration with silicon photonics. Laser Photonics Rev, 2014, 8, 667

[4]

Graham T R, Goran Z M, Y. Frederic Y G, et al Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics, 2014, 3, 229

[5]

Reed G T, Mashanovich G, Gardes F Y, et al. Silicon optical modulators. Nat Photon, 2010, 4, 518

[6]

Casalino M, Coppola G, De La Rue R M, et al. State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths. Laser Photonics Rev, 2016, 10, 895

[7]

David T, Aaron Z, John E B, et al. Roadmap on silicon photonics. J Opt, 2016, 18, 073003

[8]

Liu H, Wang T, Jiang Q, et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photon, 2011, 5, 416

[9]

Zhu S, Shi B, Li Q, et al. Room-temperature electrically-pumped 1.5 μm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si. Opt Express, 2018, 26, 14514

[10]

Liu A Y, Zhang C, Norman J, et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 2014, 104, 041104

[11]

Liao M, Chen S, Park J S, et al. III–V quantum-dot lasers monolithically grown on silicon. Semicond Sci Technol, 2018, 33, 123002

[12]

Hatori N, Shimizu T, Okano M, et al. A hybrid integrated light source on a silicon platform using a trident spot-size converter. J Lightwave Technol, 2014, 32, 1329

[13]

Davenport M L, Tran M A, Komljenovic T, et al. Heterogeneous integration of III–V lasers on Si by bonding. Semiconductors and Semimetals, 2018, 99, 139

[14]

Komljenovic T, Davenport M, Hulme J, et al. Heterogeneous silicon photonic integrated circuits. J Lightwave Technol, 2016, 34, 20

[15]

Liang D, Roelkens G, Baets R, et al. Hybrid integrated platforms for silicon photonics. Materials, 2010, 3, 1782

[16]

Liang D, Fiorentino M, Srinivasan S, et al. Low threshold electrically-pumped hybrid silicon microring lasers. IEEE J Sel Top Quantum Electron, 2011, 17, 1528

[17]

Keyvaninia S, Muneeb M, Stanković S, et al. Ultra-thin DVS-BCB adhesive bonding of III–V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Opt Mater Express, 2013, 3, 35

[18]

Van Campenhout J, Rojo-Romeo P, Regreny P, et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt Express, 2007, 15, 6744

[19]

Koninck Y D, Roelkens G, Baets R. Design of a hybrid III–V-on-silicon microlaser with resonant cavity mirrors. IEEE Photonics J, 2013, 5, 2700413

[20]

Ben Bakir B, Descos A, Olivier N, et al. Electrically driven hybrid Si/III–V Fabry-Pérot lasers based on adiabatic mode transformers. Opt Express, 2011, 19, 10317

[21]

Keyvaninia S, Roelkens G, Van Thourhout D, et al. Demonstration of a heterogeneously integrated III–V/SOI single wavelength tunable laser. Opt Express, 2013, 21, 3784

[22]

Keyvaninia S, Verstuyft S, Van Landschoot L, et al. Heterogeneously integrated III–V/silicon distributed feedback lasers. Opt Lett, 2013, 38, 5434

[23]

Sun X, Liu H C, Yariv A. Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system. Opt Lett, 2009, 34, 280

[24]

Sun X, Yariv A. Engineering supermode silicon/III–V hybrid waveguides for laser oscillation. J Opt Soc Am B, 2008, 25, 923

[25]

Yariv A, Sun X. Supermode Si/III–V hybrid lasers, optical amplifiers and modulators: A proposal and analysis. Opt Express, 2007, 15, 9147

[26]

Kurczveil G, Heck M J R, Peters J D, et al. An integrated hybrid silicon multiwavelength AWG laser. IEEE J Sel Top Quantum Electron, 2011, 17, 1521

[27]

Uvin S, Kumari S, De Groote A, et al. 1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding. Opt Express, 2018, 26, 18302

[28]

Bowers J E, Huang D, Jung D, et al. Realities and challenges of III–V/Si integration technologies. Optical Fiber Communication Conference (OFC), 2019, Tu3E.1

[29]

He L S A, Wang H W, Guo X H, et al. Ultra-compact coupling structures for heterogeneously integrated silicon lasers. arXiv: 1906.12027 [physics.optics], 2019

[30]

Ohana D, Levy U. Mode conversion based on dielectric metamaterial in silicon. Opt Express, 2014, 22, 27617

[31]

Wang Z, Abbasi A, Dave E, et al. Novel light source integration approaches for silicon photonics. Laser Photonics Rev, 2017, 11, 1700063

[32]

Roelkens G, Liu L, Liang D, et al. III–V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photonics Rev, 2010, 4, 751

[33]

Fang A W, Lively E, Kuo Y H, et al. A distributed feedback silicon evanescent laser. Opt Express, 2008, 16, 4413

[34]

Abbasi A, Keyvaninia S, Verbist J, et al. 43 Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser. J Lightwave Technol, 2017, 35, 1235

[35]

Abbasi A, Moeneclaey B, Verbist J, et al. Direct and electroabsorption modulation of a III–V-on-silicon DFB laser at 56 Gb/s. IEEE J Sel Top Quantum Electron, 2017, 23, 1

[36]

Zou Y, Chakravarty S, Chung C J, et al. Mid-infrared silicon photonic waveguides and devices. Photonics Res, 2018, 6

[37]

Wang R, Sprengel S, Malik A, et al. Heterogeneously integrated IIIV-on-silicon 2.3x μm distributed feedback lasers based on a typeII active region. Appl Phys Lett, 2016, 109, 221111

[38]

Wang R, Sprengel S, Boehm G, et al. Broad wavelength coverage 2.3 μm III–V-on-silicon DFB laser array. Optica, 2017, 4, 972

[39]

Delfyett P J, Hartman D H, Ahmad S Z. Optical clock distribution using a mode-locked semiconductor laser diode system. J Lightwave Technol, 1991, 9, 1646

[40]

Picqué N, Hänsch T W. Frequency comb spectroscopy. Nat Photonics, 2019, 13, 146

[41]

Mandon J, Guelachvili G, Picqué N. Fourier transform spectroscopy with a laser frequency comb. Nat Photonics, 2009, 3, 99

[42]

Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs. Nat Photonics, 2019, 13, 158

[43]

Spencer D T, Drake T, Briles T C, et al. An optical-frequency synthesizer using integrated photonics. Nature, 2018, 557, 81

[44]

Wang Z, Van Gasse K, Moskalenko V, et al. A III–V-on-Si ultra-dense comb laser. Light: Sci Appl, 2017, 6, e16260

[45]

Dong G, Deng W, Hou J, et al. Ultra-compact multi-channel all-optical switches with improved switching dynamic characteristics. Opt Express, 2018, 26, 25630

[46]

Altug H, Englund D, Vučković J. Ultrafast photonic crystal nanocavity laser. Nat Phys, 2006, 2, 484

[47]

Nozaki K, Tanabe T, Shinya A, et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat Photonics, 2010, 4, 477

[48]

Matsuo S, Shinya A, Kakitsuka T, et al. High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted. Nat Photonics, 2010, 4, 648

[49]

Monat C, Seassal C, Letartre X, et al. InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm. Electron Lett, 2001, 37, 764

[50]

Vecchi G, Raineri F, Sagnes I, et al. Photonic-crystal surface-emitting laser near 1.55 μm on gold-coated silicon wafer. Electron Lett, 2007, 43, 39

[51]

Tanabe K, Nomura M, Guimard D, et al. Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate. Opt Express, 2009, 17, 7036

[52]

Karle T J, Halioua Y, Raineri F, et al. Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides. J Appl Phys, 2010, 107, 063103

[53]

Takeda K, Sato T, Shinya A, et al. Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers. Nat Photonics, 2013, 7, 569

[54]

Crosnier G, Sanchez D, Bazin A, et al. High Q factor InP photonic crystal nanobeam cavities on silicon wire waveguides. Opt Lett, 2016, 41, 579

[55]

Atlasov K A, Felici M, Karlsson K F, et al. 1D photonic band formation and photon localization in finite-size photonic-crystal waveguides. Opt Express, 2010, 18, 117

[56]

Seo M K, Jeong K Y, Yang J K, et al. Low threshold current single-cell hexapole mode photonic crystal laser. Appl Phys Lett, 2007, 90, 171122

[57]

Crosnier G, Sanchez D, Bouchoule S, et al. Hybrid indium phosphide-on-silicon nanolaser diode. Nat Photon, 2017, 11, 297

[58]

Spuesens T, Mandorlo F, Rojo-Romeo P, et al. Compact integration of optical sources and detectors on soi for optical interconnects fabricated in a 200 mm CMOS pilot line. J Lightwave Technol, 2012, 30, 1764

[59]

Jeong K Y, No Y S, Hwang Y, et al. Electrically driven nanobeam laser. Nat Commun, 2013, 4, 2822

[60]

Kobayashi W, Ito T, Yamanaka T, et al. 50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure. IEEE J Sel Top Quantum Electron, 2013, 19, 1500908

[61]

Kim H, Lee W J, Farrell A C, et al. Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator. Nano Lett, 2017, 17, 5244

[62]

Intel®. (2016). Intel® Silicon Photonics 100G PSM4 QSFP28 Optical Transceiver. Available: https://ark.intel.com/content/www/us/en/ark/products/96610/intel-silicon-photonics-100g-psm4-qsfp28-optical-transceiver.html

[1]

Doerr C. Silicon photonic integration in telecommunications. Front Phys Rev, 2015, 3

[2]

Soref R. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron, 2006, 12, 1678

[3]

Heck M J R, Bauters J F, Davenport M L, et al. Ultra-low loss waveguide platform and its integration with silicon photonics. Laser Photonics Rev, 2014, 8, 667

[4]

Graham T R, Goran Z M, Y. Frederic Y G, et al Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics, 2014, 3, 229

[5]

Reed G T, Mashanovich G, Gardes F Y, et al. Silicon optical modulators. Nat Photon, 2010, 4, 518

[6]

Casalino M, Coppola G, De La Rue R M, et al. State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths. Laser Photonics Rev, 2016, 10, 895

[7]

David T, Aaron Z, John E B, et al. Roadmap on silicon photonics. J Opt, 2016, 18, 073003

[8]

Liu H, Wang T, Jiang Q, et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photon, 2011, 5, 416

[9]

Zhu S, Shi B, Li Q, et al. Room-temperature electrically-pumped 1.5 μm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si. Opt Express, 2018, 26, 14514

[10]

Liu A Y, Zhang C, Norman J, et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 2014, 104, 041104

[11]

Liao M, Chen S, Park J S, et al. III–V quantum-dot lasers monolithically grown on silicon. Semicond Sci Technol, 2018, 33, 123002

[12]

Hatori N, Shimizu T, Okano M, et al. A hybrid integrated light source on a silicon platform using a trident spot-size converter. J Lightwave Technol, 2014, 32, 1329

[13]

Davenport M L, Tran M A, Komljenovic T, et al. Heterogeneous integration of III–V lasers on Si by bonding. Semiconductors and Semimetals, 2018, 99, 139

[14]

Komljenovic T, Davenport M, Hulme J, et al. Heterogeneous silicon photonic integrated circuits. J Lightwave Technol, 2016, 34, 20

[15]

Liang D, Roelkens G, Baets R, et al. Hybrid integrated platforms for silicon photonics. Materials, 2010, 3, 1782

[16]

Liang D, Fiorentino M, Srinivasan S, et al. Low threshold electrically-pumped hybrid silicon microring lasers. IEEE J Sel Top Quantum Electron, 2011, 17, 1528

[17]

Keyvaninia S, Muneeb M, Stanković S, et al. Ultra-thin DVS-BCB adhesive bonding of III–V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Opt Mater Express, 2013, 3, 35

[18]

Van Campenhout J, Rojo-Romeo P, Regreny P, et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt Express, 2007, 15, 6744

[19]

Koninck Y D, Roelkens G, Baets R. Design of a hybrid III–V-on-silicon microlaser with resonant cavity mirrors. IEEE Photonics J, 2013, 5, 2700413

[20]

Ben Bakir B, Descos A, Olivier N, et al. Electrically driven hybrid Si/III–V Fabry-Pérot lasers based on adiabatic mode transformers. Opt Express, 2011, 19, 10317

[21]

Keyvaninia S, Roelkens G, Van Thourhout D, et al. Demonstration of a heterogeneously integrated III–V/SOI single wavelength tunable laser. Opt Express, 2013, 21, 3784

[22]

Keyvaninia S, Verstuyft S, Van Landschoot L, et al. Heterogeneously integrated III–V/silicon distributed feedback lasers. Opt Lett, 2013, 38, 5434

[23]

Sun X, Liu H C, Yariv A. Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system. Opt Lett, 2009, 34, 280

[24]

Sun X, Yariv A. Engineering supermode silicon/III–V hybrid waveguides for laser oscillation. J Opt Soc Am B, 2008, 25, 923

[25]

Yariv A, Sun X. Supermode Si/III–V hybrid lasers, optical amplifiers and modulators: A proposal and analysis. Opt Express, 2007, 15, 9147

[26]

Kurczveil G, Heck M J R, Peters J D, et al. An integrated hybrid silicon multiwavelength AWG laser. IEEE J Sel Top Quantum Electron, 2011, 17, 1521

[27]

Uvin S, Kumari S, De Groote A, et al. 1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding. Opt Express, 2018, 26, 18302

[28]

Bowers J E, Huang D, Jung D, et al. Realities and challenges of III–V/Si integration technologies. Optical Fiber Communication Conference (OFC), 2019, Tu3E.1

[29]

He L S A, Wang H W, Guo X H, et al. Ultra-compact coupling structures for heterogeneously integrated silicon lasers. arXiv: 1906.12027 [physics.optics], 2019

[30]

Ohana D, Levy U. Mode conversion based on dielectric metamaterial in silicon. Opt Express, 2014, 22, 27617

[31]

Wang Z, Abbasi A, Dave E, et al. Novel light source integration approaches for silicon photonics. Laser Photonics Rev, 2017, 11, 1700063

[32]

Roelkens G, Liu L, Liang D, et al. III–V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photonics Rev, 2010, 4, 751

[33]

Fang A W, Lively E, Kuo Y H, et al. A distributed feedback silicon evanescent laser. Opt Express, 2008, 16, 4413

[34]

Abbasi A, Keyvaninia S, Verbist J, et al. 43 Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser. J Lightwave Technol, 2017, 35, 1235

[35]

Abbasi A, Moeneclaey B, Verbist J, et al. Direct and electroabsorption modulation of a III–V-on-silicon DFB laser at 56 Gb/s. IEEE J Sel Top Quantum Electron, 2017, 23, 1

[36]

Zou Y, Chakravarty S, Chung C J, et al. Mid-infrared silicon photonic waveguides and devices. Photonics Res, 2018, 6

[37]

Wang R, Sprengel S, Malik A, et al. Heterogeneously integrated IIIV-on-silicon 2.3x μm distributed feedback lasers based on a typeII active region. Appl Phys Lett, 2016, 109, 221111

[38]

Wang R, Sprengel S, Boehm G, et al. Broad wavelength coverage 2.3 μm III–V-on-silicon DFB laser array. Optica, 2017, 4, 972

[39]

Delfyett P J, Hartman D H, Ahmad S Z. Optical clock distribution using a mode-locked semiconductor laser diode system. J Lightwave Technol, 1991, 9, 1646

[40]

Picqué N, Hänsch T W. Frequency comb spectroscopy. Nat Photonics, 2019, 13, 146

[41]

Mandon J, Guelachvili G, Picqué N. Fourier transform spectroscopy with a laser frequency comb. Nat Photonics, 2009, 3, 99

[42]

Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs. Nat Photonics, 2019, 13, 158

[43]

Spencer D T, Drake T, Briles T C, et al. An optical-frequency synthesizer using integrated photonics. Nature, 2018, 557, 81

[44]

Wang Z, Van Gasse K, Moskalenko V, et al. A III–V-on-Si ultra-dense comb laser. Light: Sci Appl, 2017, 6, e16260

[45]

Dong G, Deng W, Hou J, et al. Ultra-compact multi-channel all-optical switches with improved switching dynamic characteristics. Opt Express, 2018, 26, 25630

[46]

Altug H, Englund D, Vučković J. Ultrafast photonic crystal nanocavity laser. Nat Phys, 2006, 2, 484

[47]

Nozaki K, Tanabe T, Shinya A, et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat Photonics, 2010, 4, 477

[48]

Matsuo S, Shinya A, Kakitsuka T, et al. High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted. Nat Photonics, 2010, 4, 648

[49]

Monat C, Seassal C, Letartre X, et al. InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm. Electron Lett, 2001, 37, 764

[50]

Vecchi G, Raineri F, Sagnes I, et al. Photonic-crystal surface-emitting laser near 1.55 μm on gold-coated silicon wafer. Electron Lett, 2007, 43, 39

[51]

Tanabe K, Nomura M, Guimard D, et al. Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate. Opt Express, 2009, 17, 7036

[52]

Karle T J, Halioua Y, Raineri F, et al. Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides. J Appl Phys, 2010, 107, 063103

[53]

Takeda K, Sato T, Shinya A, et al. Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers. Nat Photonics, 2013, 7, 569

[54]

Crosnier G, Sanchez D, Bazin A, et al. High Q factor InP photonic crystal nanobeam cavities on silicon wire waveguides. Opt Lett, 2016, 41, 579

[55]

Atlasov K A, Felici M, Karlsson K F, et al. 1D photonic band formation and photon localization in finite-size photonic-crystal waveguides. Opt Express, 2010, 18, 117

[56]

Seo M K, Jeong K Y, Yang J K, et al. Low threshold current single-cell hexapole mode photonic crystal laser. Appl Phys Lett, 2007, 90, 171122

[57]

Crosnier G, Sanchez D, Bouchoule S, et al. Hybrid indium phosphide-on-silicon nanolaser diode. Nat Photon, 2017, 11, 297

[58]

Spuesens T, Mandorlo F, Rojo-Romeo P, et al. Compact integration of optical sources and detectors on soi for optical interconnects fabricated in a 200 mm CMOS pilot line. J Lightwave Technol, 2012, 30, 1764

[59]

Jeong K Y, No Y S, Hwang Y, et al. Electrically driven nanobeam laser. Nat Commun, 2013, 4, 2822

[60]

Kobayashi W, Ito T, Yamanaka T, et al. 50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure. IEEE J Sel Top Quantum Electron, 2013, 19, 1500908

[61]

Kim H, Lee W J, Farrell A C, et al. Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator. Nano Lett, 2017, 17, 5244

[62]

Intel®. (2016). Intel® Silicon Photonics 100G PSM4 QSFP28 Optical Transceiver. Available: https://ark.intel.com/content/www/us/en/ark/products/96610/intel-silicon-photonics-100g-psm4-qsfp28-optical-transceiver.html

[1]

liang Tao, Jia Xinzhang. A numerical integration-based yield estimation method for integrated circuits. J. Semicond., 2011, 32(4): 045012. doi: 10.1088/1674-4926/32/4/045012

[2]

Hongda Chen, Zan Zhang, Beiju Huang, Luhong Mao, Zanyun Zhang. Progress in complementary metal-oxide-semiconductor silicon photonics and optoelectronic integrated circuits. J. Semicond., 2015, 36(12): 121001. doi: 10.1088/1674-4926/36/12/121001

[3]

Shujie Pan, Victoria Cao, Mengya Liao, Ying Lu, Zizhuo Liu, Mingchu Tang, Siming Chen, Alwyn Seeds, Huiyun Liu. Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate. J. Semicond., 2019, 40(10): 101302. doi: 10.1088/1674-4926/40/10/101302

[4]

Hu Huiyong, Zhang Heming, Jia Xinzhang, Dai Xianying, Xuan Rongxi. Study on Si-SiGe Three-Dimensional CMOS Integrated Circuits. J. Semicond., 2007, 28(5): 681.

[5]

Wenqi Wei, Qi Feng, Zihao Wang, Ting Wang, Jianjun Zhang. Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates. J. Semicond., 2019, 40(10): 101303. doi: 10.1088/1674-4926/40/10/101303

[6]

Xiaoxin Wang, Jifeng Liu. Emerging technologies in Si active photonics. J. Semicond., 2018, 39(6): 061001. doi: 10.1088/1674-4926/39/6/061001

[7]

Mao Xiaojian, Yang Huazhong, Wang Hui. Bias Current Compensation Method with 41.4% Standard Deviation Reduction to MOSFET Transconductance in CMOS Circuits. J. Semicond., 2006, 27(5): 783.

[8]

Zhao Yong, Wang Wanjun, Shao Haifeng, Yang Jianyi, Wang Minghua, Jiang Xiaoqing. Influence of doping position on the extinction ratio of Mach-Zehnder-interference based silicon optical modulators. J. Semicond., 2012, 33(1): 014009. doi: 10.1088/1674-4926/33/1/014009

[9]

Yunchou Zhao, Hao Jia, Jianfeng Ding, Lei Zhang, Xin Fu, Lin Yang. Five-port silicon optical router based on Mach-Zehnder optical switches for photonic networks-on-chip. J. Semicond., 2016, 37(11): 114008. doi: 10.1088/1674-4926/37/11/114008

[10]

Jun Zhu, Wei Zhang, Chinte Kuo, Qing Wang, Fang Wei, Chenming Zhang, Han Chen, Daquan He, D. Hsu Stephen. Application of resist-profile-aware source optimization in 28 nm full chip optical proximity correction. J. Semicond., 2017, 38(7): 074007. doi: 10.1088/1674-4926/38/7/074007

[11]

Guangyao Zhou, Shunli Ma, Ning Li, Fan Ye, Junyan Ren. A monolithic K-band phase-locked loop for microwave radar application. J. Semicond., 2017, 38(2): 025002. doi: 10.1088/1674-4926/38/2/025002

[12]

Kun Ren, Jiachen Zheng, Haiyan Lu, Jun Liu, Lishu Wu, Wenyong Zhou, Wei Cheng. An investigation of the DC and RF performance of InP DHBTs transferred to RF CMOS wafer substrate. J. Semicond., 2018, 39(5): 054004. doi: 10.1088/1674-4926/39/5/054004

[13]

Zhang Xun, Wang Peng, Jin Dongming. A New Type of CMOS Temperature Sensor. J. Semicond., 2005, 26(11): 2202.

[14]

Chen Yuan, Jincheng Dai, Hao Jia, Jianfeng Ding, Lei Zhang, Xin Fu, Lin Yang. Design of a C-band polarization rotator-splitter based on a mode-evolution structure and an asymmetric directional coupler. J. Semicond., 2018, 39(12): 124008. doi: 10.1088/1674-4926/39/12/124008

[15]

Daquan Yang, Xiao Liu, Xiaogang Li, Bing Duan, Aiqiang Wang, Yunfeng Xiao. Photoic crystal nanobeam cavity devices for on-chip integrated silicon photonics. J. Semicond., 2020, 41(0): -1.

[16]

Xiangfei Chen. Precision photonic integration for future large-scale photonic integrated circuits. J. Semicond., 2019, 40(5): 050301. doi: 10.1088/1674-4926/40/5/050301

[17]

Xiaogang Tong, Jun Liu, Chenyang Xue. High-Q micro-ring resonators and grating couplers for silicon-on-insulator integrated photonic circuits. J. Semicond., 2013, 34(8): 085006. doi: 10.1088/1674-4926/34/8/085006

[18]

Wenyu Yang, Yajie Li, Fangyuan Meng, Hongyan Yu, Mengqi Wang, Pengfei Wang, Guangzhen Luo, Xuliang Zhou, Jiaoqing Pan. III–V compound materials and lasers on silicon. J. Semicond., 2019, 40(10): 101305. doi: 10.1088/1674-4926/40/10/101305

[19]

Wang Lu, Xie Hongyun, Zhao Lingjuan, Pan Jiaoqing, Zhou Fan, Bian Jing, Wang Lufeng, Zhu Hongliang, Wang Wei. Investigation on Monolithic Integration of Distributed Feedback Lasers and Y-Branch for Microwave Generation。. J. Semicond., 2007, 28(S1): 525.

[20]

Hongtao Lin. Mid-infrared lasers on silicon operating close to room temperature. J. Semicond., 2019, 40(10): 100202. doi: 10.1088/1674-4926/40/10/100202

Search

Advanced Search >>

GET CITATION

X H Guo, A He, Y K Su, Recent advances of heterogeneously integrated III–V laser on Si[J]. J. Semicond., 2019, 40(10): 101304. doi: 10.1088/1674-4926/40/10/101304.

Export: BibTex EndNote

Article Metrics

Article views: 1411 Times PDF downloads: 84 Times Cited by: 0 Times

History

Manuscript received: 18 July 2019 Manuscript revised: 19 September 2019 Online: Accepted Manuscript: 25 September 2019 Uncorrected proof: 25 September 2019 Published: 01 October 2019

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误