J. Semicond. > Volume 40 > Issue 10 > Article Number: 101304

Recent advances of heterogeneously integrated III–V laser on Si

Xuhan Guo , , An He and Yikai Su

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: Due to the indirect bandgap nature, the widely used silicon CMOS is very inefficient at light emitting. The integration of silicon lasers is deemed as the ‘Mount Everest’ for the full take-up of Si photonics. The major challenge has been the materials dissimilarity caused impaired device performance. We present a brief overview of the recent advances of integrated III–V laser on Si. We will then focus on the heterogeneous direct/adhesive bonding enabling methods and associated light coupling structures. A selected review of recent representative novel heterogeneously integrated Si lasers for emerging applications like spectroscopy, sensing, metrology and microwave photonics will be presented, including DFB laser array, ultra-dense comb lasers and nanolasers. Finally, the challenges and opportunities of heterogeneous integration approach are discussed.

Key words: heterogeneous integrationlaserssilicon photonicsintegrated circuits

Abstract: Due to the indirect bandgap nature, the widely used silicon CMOS is very inefficient at light emitting. The integration of silicon lasers is deemed as the ‘Mount Everest’ for the full take-up of Si photonics. The major challenge has been the materials dissimilarity caused impaired device performance. We present a brief overview of the recent advances of integrated III–V laser on Si. We will then focus on the heterogeneous direct/adhesive bonding enabling methods and associated light coupling structures. A selected review of recent representative novel heterogeneously integrated Si lasers for emerging applications like spectroscopy, sensing, metrology and microwave photonics will be presented, including DFB laser array, ultra-dense comb lasers and nanolasers. Finally, the challenges and opportunities of heterogeneous integration approach are discussed.

Key words: heterogeneous integrationlaserssilicon photonicsintegrated circuits



References:

[1]

Doerr C. Silicon photonic integration in telecommunications. Front Phys Rev, 2015, 3

[2]

Soref R. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron, 2006, 12, 1678

[3]

Heck M J R, Bauters J F, Davenport M L, et al. Ultra-low loss waveguide platform and its integration with silicon photonics. Laser Photonics Rev, 2014, 8, 667

[4]

Graham T R, Goran Z M, Y. Frederic Y G, et al Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics, 2014, 3, 229

[5]

Reed G T, Mashanovich G, Gardes F Y, et al. Silicon optical modulators. Nat Photon, 2010, 4, 518

[6]

Casalino M, Coppola G, De La Rue R M, et al. State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths. Laser Photonics Rev, 2016, 10, 895

[7]

David T, Aaron Z, John E B, et al. Roadmap on silicon photonics. J Opt, 2016, 18, 073003

[8]

Liu H, Wang T, Jiang Q, et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photon, 2011, 5, 416

[9]

Zhu S, Shi B, Li Q, et al. Room-temperature electrically-pumped 1.5 μm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si. Opt Express, 2018, 26, 14514

[10]

Liu A Y, Zhang C, Norman J, et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 2014, 104, 041104

[11]

Liao M, Chen S, Park J S, et al. III–V quantum-dot lasers monolithically grown on silicon. Semicond Sci Technol, 2018, 33, 123002

[12]

Hatori N, Shimizu T, Okano M, et al. A hybrid integrated light source on a silicon platform using a trident spot-size converter. J Lightwave Technol, 2014, 32, 1329

[13]

Davenport M L, Tran M A, Komljenovic T, et al. Heterogeneous integration of III–V lasers on Si by bonding. Semiconductors and Semimetals, 2018, 99, 139

[14]

Komljenovic T, Davenport M, Hulme J, et al. Heterogeneous silicon photonic integrated circuits. J Lightwave Technol, 2016, 34, 20

[15]

Liang D, Roelkens G, Baets R, et al. Hybrid integrated platforms for silicon photonics. Materials, 2010, 3, 1782

[16]

Liang D, Fiorentino M, Srinivasan S, et al. Low threshold electrically-pumped hybrid silicon microring lasers. IEEE J Sel Top Quantum Electron, 2011, 17, 1528

[17]

Keyvaninia S, Muneeb M, Stanković S, et al. Ultra-thin DVS-BCB adhesive bonding of III–V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Opt Mater Express, 2013, 3, 35

[18]

Van Campenhout J, Rojo-Romeo P, Regreny P, et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt Express, 2007, 15, 6744

[19]

Koninck Y D, Roelkens G, Baets R. Design of a hybrid III–V-on-silicon microlaser with resonant cavity mirrors. IEEE Photonics J, 2013, 5, 2700413

[20]

Ben Bakir B, Descos A, Olivier N, et al. Electrically driven hybrid Si/III–V Fabry-Pérot lasers based on adiabatic mode transformers. Opt Express, 2011, 19, 10317

[21]

Keyvaninia S, Roelkens G, Van Thourhout D, et al. Demonstration of a heterogeneously integrated III–V/SOI single wavelength tunable laser. Opt Express, 2013, 21, 3784

[22]

Keyvaninia S, Verstuyft S, Van Landschoot L, et al. Heterogeneously integrated III–V/silicon distributed feedback lasers. Opt Lett, 2013, 38, 5434

[23]

Sun X, Liu H C, Yariv A. Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system. Opt Lett, 2009, 34, 280

[24]

Sun X, Yariv A. Engineering supermode silicon/III–V hybrid waveguides for laser oscillation. J Opt Soc Am B, 2008, 25, 923

[25]

Yariv A, Sun X. Supermode Si/III–V hybrid lasers, optical amplifiers and modulators: A proposal and analysis. Opt Express, 2007, 15, 9147

[26]

Kurczveil G, Heck M J R, Peters J D, et al. An integrated hybrid silicon multiwavelength AWG laser. IEEE J Sel Top Quantum Electron, 2011, 17, 1521

[27]

Uvin S, Kumari S, De Groote A, et al. 1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding. Opt Express, 2018, 26, 18302

[28]

Bowers J E, Huang D, Jung D, et al. Realities and challenges of III–V/Si integration technologies. Optical Fiber Communication Conference (OFC), 2019, Tu3E.1

[29]

He L S A, Wang H W, Guo X H, et al. Ultra-compact coupling structures for heterogeneously integrated silicon lasers. arXiv: 1906.12027 [physics.optics], 2019

[30]

Ohana D, Levy U. Mode conversion based on dielectric metamaterial in silicon. Opt Express, 2014, 22, 27617

[31]

Wang Z, Abbasi A, Dave E, et al. Novel light source integration approaches for silicon photonics. Laser Photonics Rev, 2017, 11, 1700063

[32]

Roelkens G, Liu L, Liang D, et al. III–V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photonics Rev, 2010, 4, 751

[33]

Fang A W, Lively E, Kuo Y H, et al. A distributed feedback silicon evanescent laser. Opt Express, 2008, 16, 4413

[34]

Abbasi A, Keyvaninia S, Verbist J, et al. 43 Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser. J Lightwave Technol, 2017, 35, 1235

[35]

Abbasi A, Moeneclaey B, Verbist J, et al. Direct and electroabsorption modulation of a III–V-on-silicon DFB laser at 56 Gb/s. IEEE J Sel Top Quantum Electron, 2017, 23, 1

[36]

Zou Y, Chakravarty S, Chung C J, et al. Mid-infrared silicon photonic waveguides and devices. Photonics Res, 2018, 6

[37]

Wang R, Sprengel S, Malik A, et al. Heterogeneously integrated IIIV-on-silicon 2.3x μm distributed feedback lasers based on a typeII active region. Appl Phys Lett, 2016, 109, 221111

[38]

Wang R, Sprengel S, Boehm G, et al. Broad wavelength coverage 2.3 μm III–V-on-silicon DFB laser array. Optica, 2017, 4, 972

[39]

Delfyett P J, Hartman D H, Ahmad S Z. Optical clock distribution using a mode-locked semiconductor laser diode system. J Lightwave Technol, 1991, 9, 1646

[40]

Picqué N, Hänsch T W. Frequency comb spectroscopy. Nat Photonics, 2019, 13, 146

[41]

Mandon J, Guelachvili G, Picqué N. Fourier transform spectroscopy with a laser frequency comb. Nat Photonics, 2009, 3, 99

[42]

Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs. Nat Photonics, 2019, 13, 158

[43]

Spencer D T, Drake T, Briles T C, et al. An optical-frequency synthesizer using integrated photonics. Nature, 2018, 557, 81

[44]

Wang Z, Van Gasse K, Moskalenko V, et al. A III–V-on-Si ultra-dense comb laser. Light: Sci Appl, 2017, 6, e16260

[45]

Dong G, Deng W, Hou J, et al. Ultra-compact multi-channel all-optical switches with improved switching dynamic characteristics. Opt Express, 2018, 26, 25630

[46]

Altug H, Englund D, Vučković J. Ultrafast photonic crystal nanocavity laser. Nat Phys, 2006, 2, 484

[47]

Nozaki K, Tanabe T, Shinya A, et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat Photonics, 2010, 4, 477

[48]

Matsuo S, Shinya A, Kakitsuka T, et al. High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted. Nat Photonics, 2010, 4, 648

[49]

Monat C, Seassal C, Letartre X, et al. InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm. Electron Lett, 2001, 37, 764

[50]

Vecchi G, Raineri F, Sagnes I, et al. Photonic-crystal surface-emitting laser near 1.55 μm on gold-coated silicon wafer. Electron Lett, 2007, 43, 39

[51]

Tanabe K, Nomura M, Guimard D, et al. Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate. Opt Express, 2009, 17, 7036

[52]

Karle T J, Halioua Y, Raineri F, et al. Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides. J Appl Phys, 2010, 107, 063103

[53]

Takeda K, Sato T, Shinya A, et al. Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers. Nat Photonics, 2013, 7, 569

[54]

Crosnier G, Sanchez D, Bazin A, et al. High Q factor InP photonic crystal nanobeam cavities on silicon wire waveguides. Opt Lett, 2016, 41, 579

[55]

Atlasov K A, Felici M, Karlsson K F, et al. 1D photonic band formation and photon localization in finite-size photonic-crystal waveguides. Opt Express, 2010, 18, 117

[56]

Seo M K, Jeong K Y, Yang J K, et al. Low threshold current single-cell hexapole mode photonic crystal laser. Appl Phys Lett, 2007, 90, 171122

[57]

Crosnier G, Sanchez D, Bouchoule S, et al. Hybrid indium phosphide-on-silicon nanolaser diode. Nat Photon, 2017, 11, 297

[58]

Spuesens T, Mandorlo F, Rojo-Romeo P, et al. Compact integration of optical sources and detectors on soi for optical interconnects fabricated in a 200 mm CMOS pilot line. J Lightwave Technol, 2012, 30, 1764

[59]

Jeong K Y, No Y S, Hwang Y, et al. Electrically driven nanobeam laser. Nat Commun, 2013, 4, 2822

[60]

Kobayashi W, Ito T, Yamanaka T, et al. 50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure. IEEE J Sel Top Quantum Electron, 2013, 19, 1500908

[61]

Kim H, Lee W J, Farrell A C, et al. Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator. Nano Lett, 2017, 17, 5244

[62]

Intel®. (2016). Intel® Silicon Photonics 100G PSM4 QSFP28 Optical Transceiver. Available: https://ark.intel.com/content/www/us/en/ark/products/96610/intel-silicon-photonics-100g-psm4-qsfp28-optical-transceiver.html

[1]

Doerr C. Silicon photonic integration in telecommunications. Front Phys Rev, 2015, 3

[2]

Soref R. The past, present, and future of silicon photonics. IEEE J Sel Top Quantum Electron, 2006, 12, 1678

[3]

Heck M J R, Bauters J F, Davenport M L, et al. Ultra-low loss waveguide platform and its integration with silicon photonics. Laser Photonics Rev, 2014, 8, 667

[4]

Graham T R, Goran Z M, Y. Frederic Y G, et al Recent breakthroughs in carrier depletion based silicon optical modulators. Nanophotonics, 2014, 3, 229

[5]

Reed G T, Mashanovich G, Gardes F Y, et al. Silicon optical modulators. Nat Photon, 2010, 4, 518

[6]

Casalino M, Coppola G, De La Rue R M, et al. State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths. Laser Photonics Rev, 2016, 10, 895

[7]

David T, Aaron Z, John E B, et al. Roadmap on silicon photonics. J Opt, 2016, 18, 073003

[8]

Liu H, Wang T, Jiang Q, et al. Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate. Nat Photon, 2011, 5, 416

[9]

Zhu S, Shi B, Li Q, et al. Room-temperature electrically-pumped 1.5 μm InGaAs/InAlGaAs laser monolithically grown on on-axis (001) Si. Opt Express, 2018, 26, 14514

[10]

Liu A Y, Zhang C, Norman J, et al. High performance continuous wave 1.3 μm quantum dot lasers on silicon. Appl Phys Lett, 2014, 104, 041104

[11]

Liao M, Chen S, Park J S, et al. III–V quantum-dot lasers monolithically grown on silicon. Semicond Sci Technol, 2018, 33, 123002

[12]

Hatori N, Shimizu T, Okano M, et al. A hybrid integrated light source on a silicon platform using a trident spot-size converter. J Lightwave Technol, 2014, 32, 1329

[13]

Davenport M L, Tran M A, Komljenovic T, et al. Heterogeneous integration of III–V lasers on Si by bonding. Semiconductors and Semimetals, 2018, 99, 139

[14]

Komljenovic T, Davenport M, Hulme J, et al. Heterogeneous silicon photonic integrated circuits. J Lightwave Technol, 2016, 34, 20

[15]

Liang D, Roelkens G, Baets R, et al. Hybrid integrated platforms for silicon photonics. Materials, 2010, 3, 1782

[16]

Liang D, Fiorentino M, Srinivasan S, et al. Low threshold electrically-pumped hybrid silicon microring lasers. IEEE J Sel Top Quantum Electron, 2011, 17, 1528

[17]

Keyvaninia S, Muneeb M, Stanković S, et al. Ultra-thin DVS-BCB adhesive bonding of III–V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate. Opt Mater Express, 2013, 3, 35

[18]

Van Campenhout J, Rojo-Romeo P, Regreny P, et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt Express, 2007, 15, 6744

[19]

Koninck Y D, Roelkens G, Baets R. Design of a hybrid III–V-on-silicon microlaser with resonant cavity mirrors. IEEE Photonics J, 2013, 5, 2700413

[20]

Ben Bakir B, Descos A, Olivier N, et al. Electrically driven hybrid Si/III–V Fabry-Pérot lasers based on adiabatic mode transformers. Opt Express, 2011, 19, 10317

[21]

Keyvaninia S, Roelkens G, Van Thourhout D, et al. Demonstration of a heterogeneously integrated III–V/SOI single wavelength tunable laser. Opt Express, 2013, 21, 3784

[22]

Keyvaninia S, Verstuyft S, Van Landschoot L, et al. Heterogeneously integrated III–V/silicon distributed feedback lasers. Opt Lett, 2013, 38, 5434

[23]

Sun X, Liu H C, Yariv A. Adiabaticity criterion and the shortest adiabatic mode transformer in a coupled-waveguide system. Opt Lett, 2009, 34, 280

[24]

Sun X, Yariv A. Engineering supermode silicon/III–V hybrid waveguides for laser oscillation. J Opt Soc Am B, 2008, 25, 923

[25]

Yariv A, Sun X. Supermode Si/III–V hybrid lasers, optical amplifiers and modulators: A proposal and analysis. Opt Express, 2007, 15, 9147

[26]

Kurczveil G, Heck M J R, Peters J D, et al. An integrated hybrid silicon multiwavelength AWG laser. IEEE J Sel Top Quantum Electron, 2011, 17, 1521

[27]

Uvin S, Kumari S, De Groote A, et al. 1.3 μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding. Opt Express, 2018, 26, 18302

[28]

Bowers J E, Huang D, Jung D, et al. Realities and challenges of III–V/Si integration technologies. Optical Fiber Communication Conference (OFC), 2019, Tu3E.1

[29]

He L S A, Wang H W, Guo X H, et al. Ultra-compact coupling structures for heterogeneously integrated silicon lasers. arXiv: 1906.12027 [physics.optics], 2019

[30]

Ohana D, Levy U. Mode conversion based on dielectric metamaterial in silicon. Opt Express, 2014, 22, 27617

[31]

Wang Z, Abbasi A, Dave E, et al. Novel light source integration approaches for silicon photonics. Laser Photonics Rev, 2017, 11, 1700063

[32]

Roelkens G, Liu L, Liang D, et al. III–V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photonics Rev, 2010, 4, 751

[33]

Fang A W, Lively E, Kuo Y H, et al. A distributed feedback silicon evanescent laser. Opt Express, 2008, 16, 4413

[34]

Abbasi A, Keyvaninia S, Verbist J, et al. 43 Gb/s NRZ-OOK direct modulation of a heterogeneously integrated InP/Si DFB laser. J Lightwave Technol, 2017, 35, 1235

[35]

Abbasi A, Moeneclaey B, Verbist J, et al. Direct and electroabsorption modulation of a III–V-on-silicon DFB laser at 56 Gb/s. IEEE J Sel Top Quantum Electron, 2017, 23, 1

[36]

Zou Y, Chakravarty S, Chung C J, et al. Mid-infrared silicon photonic waveguides and devices. Photonics Res, 2018, 6

[37]

Wang R, Sprengel S, Malik A, et al. Heterogeneously integrated IIIV-on-silicon 2.3x μm distributed feedback lasers based on a typeII active region. Appl Phys Lett, 2016, 109, 221111

[38]

Wang R, Sprengel S, Boehm G, et al. Broad wavelength coverage 2.3 μm III–V-on-silicon DFB laser array. Optica, 2017, 4, 972

[39]

Delfyett P J, Hartman D H, Ahmad S Z. Optical clock distribution using a mode-locked semiconductor laser diode system. J Lightwave Technol, 1991, 9, 1646

[40]

Picqué N, Hänsch T W. Frequency comb spectroscopy. Nat Photonics, 2019, 13, 146

[41]

Mandon J, Guelachvili G, Picqué N. Fourier transform spectroscopy with a laser frequency comb. Nat Photonics, 2009, 3, 99

[42]

Gaeta A L, Lipson M, Kippenberg T J. Photonic-chip-based frequency combs. Nat Photonics, 2019, 13, 158

[43]

Spencer D T, Drake T, Briles T C, et al. An optical-frequency synthesizer using integrated photonics. Nature, 2018, 557, 81

[44]

Wang Z, Van Gasse K, Moskalenko V, et al. A III–V-on-Si ultra-dense comb laser. Light: Sci Appl, 2017, 6, e16260

[45]

Dong G, Deng W, Hou J, et al. Ultra-compact multi-channel all-optical switches with improved switching dynamic characteristics. Opt Express, 2018, 26, 25630

[46]

Altug H, Englund D, Vučković J. Ultrafast photonic crystal nanocavity laser. Nat Phys, 2006, 2, 484

[47]

Nozaki K, Tanabe T, Shinya A, et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat Photonics, 2010, 4, 477

[48]

Matsuo S, Shinya A, Kakitsuka T, et al. High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted. Nat Photonics, 2010, 4, 648

[49]

Monat C, Seassal C, Letartre X, et al. InP 2D photonic crystal microlasers on silicon wafer: room temperature operation at 1.55 μm. Electron Lett, 2001, 37, 764

[50]

Vecchi G, Raineri F, Sagnes I, et al. Photonic-crystal surface-emitting laser near 1.55 μm on gold-coated silicon wafer. Electron Lett, 2007, 43, 39

[51]

Tanabe K, Nomura M, Guimard D, et al. Room temperature continuous wave operation of InAs/GaAs quantum dot photonic crystal nanocavity laser on silicon substrate. Opt Express, 2009, 17, 7036

[52]

Karle T J, Halioua Y, Raineri F, et al. Heterogeneous integration and precise alignment of InP-based photonic crystal lasers to complementary metal-oxide semiconductor fabricated silicon-on-insulator wire waveguides. J Appl Phys, 2010, 107, 063103

[53]

Takeda K, Sato T, Shinya A, et al. Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers. Nat Photonics, 2013, 7, 569

[54]

Crosnier G, Sanchez D, Bazin A, et al. High Q factor InP photonic crystal nanobeam cavities on silicon wire waveguides. Opt Lett, 2016, 41, 579

[55]

Atlasov K A, Felici M, Karlsson K F, et al. 1D photonic band formation and photon localization in finite-size photonic-crystal waveguides. Opt Express, 2010, 18, 117

[56]

Seo M K, Jeong K Y, Yang J K, et al. Low threshold current single-cell hexapole mode photonic crystal laser. Appl Phys Lett, 2007, 90, 171122

[57]

Crosnier G, Sanchez D, Bouchoule S, et al. Hybrid indium phosphide-on-silicon nanolaser diode. Nat Photon, 2017, 11, 297

[58]

Spuesens T, Mandorlo F, Rojo-Romeo P, et al. Compact integration of optical sources and detectors on soi for optical interconnects fabricated in a 200 mm CMOS pilot line. J Lightwave Technol, 2012, 30, 1764

[59]

Jeong K Y, No Y S, Hwang Y, et al. Electrically driven nanobeam laser. Nat Commun, 2013, 4, 2822

[60]

Kobayashi W, Ito T, Yamanaka T, et al. 50-Gb/s direct modulation of a 1.3-μm InGaAlAs-based DFB laser with a ridge waveguide structure. IEEE J Sel Top Quantum Electron, 2013, 19, 1500908

[61]

Kim H, Lee W J, Farrell A C, et al. Telecom-wavelength bottom-up nanobeam lasers on silicon-on-insulator. Nano Lett, 2017, 17, 5244

[62]

Intel®. (2016). Intel® Silicon Photonics 100G PSM4 QSFP28 Optical Transceiver. Available: https://ark.intel.com/content/www/us/en/ark/products/96610/intel-silicon-photonics-100g-psm4-qsfp28-optical-transceiver.html

Search

Advanced Search >>

GET CITATION

X H Guo, A He, Y K Su, Recent advances of heterogeneously integrated III–V laser on Si[J]. J. Semicond., 2019, 40(10): 101304. doi: 10.1088/1674-4926/40/10/101304.

Export: BibTex EndNote

Article Metrics

Article views: 2033 Times PDF downloads: 94 Times Cited by: 0 Times

History

Manuscript received: 18 July 2019 Manuscript revised: 19 September 2019 Online: Accepted Manuscript: 25 September 2019 Uncorrected proof: 25 September 2019 Published: 01 October 2019

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误