J. Semicond. > Volume 40 > Issue 5 > Article Number: 052201

Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate

Yan Gao 1, 2, , Liyun Zhao 2, 3, , Qiuyu Shang 2, 3, , Chun Li 2, , Zhen Liu 2, , Qi Li 1, , Xina Wang 1, , and Qing Zhang 2, 3, ,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: Fabricating high-quality cesium lead chloride (CsPbCl3) perovskite nanowires (NWs) with dimension below 10 nm is not only of interests in fundamental physics, but also holds the great promise for optoelectronic applications. Herein, ultrathin CsPbCl3 NWs with height of ~7 nm, have been achieved via vapor phase deposition method. Power and temperature-dependent photoluminescence (PL) spectroscopy is performed to explore the emission properties of the CsPbCl3 NWs. Strong free exciton recombination is observed at ~3.02 eV as the temperature (T) is 78−294 K with binding energy of ~ 37.5 meV. With the decreasing of T, the PL peaks exhibit a first blueshift by 2 meV for T ~ 294−190 K and then a redshift by 4 meV for T ~ 190−78 K. The exciton–optical phonon interaction plays a major role in the linewidth broadening of the PL spectra with average optical phonon energy of ~48.0 meV and the interaction coefficient of 203.9 meV. These findings advance the fabrication of low dimensional CsPbCl3 perovskite and provide insights into the photophysics of the CsPbCl3 perovskite.

Key words: perovskiteCsPbCl3nanowirevan der Waals epitaxy

Abstract: Fabricating high-quality cesium lead chloride (CsPbCl3) perovskite nanowires (NWs) with dimension below 10 nm is not only of interests in fundamental physics, but also holds the great promise for optoelectronic applications. Herein, ultrathin CsPbCl3 NWs with height of ~7 nm, have been achieved via vapor phase deposition method. Power and temperature-dependent photoluminescence (PL) spectroscopy is performed to explore the emission properties of the CsPbCl3 NWs. Strong free exciton recombination is observed at ~3.02 eV as the temperature (T) is 78−294 K with binding energy of ~ 37.5 meV. With the decreasing of T, the PL peaks exhibit a first blueshift by 2 meV for T ~ 294−190 K and then a redshift by 4 meV for T ~ 190−78 K. The exciton–optical phonon interaction plays a major role in the linewidth broadening of the PL spectra with average optical phonon energy of ~48.0 meV and the interaction coefficient of 203.9 meV. These findings advance the fabrication of low dimensional CsPbCl3 perovskite and provide insights into the photophysics of the CsPbCl3 perovskite.

Key words: perovskiteCsPbCl3nanowirevan der Waals epitaxy



References:

[1]

Shang Q, Zhang S, Liu Z, et al. Surface plasmon enhanced strong exciton–photon coupling in hybrid inorganic–organic perovskite nanowires. Nano Lett, 2018, 18, 3335

[2]

Zhu H, Fu Y, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater, 2015, 14, 636

[3]

Zhang Q, Ha S T, Liu X, et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett, 2014, 14, 5995

[4]

Yettapu G R, Talukdar D, Sarkar S, et al. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Lett, 2016, 16, 4838

[5]

Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347, 519

[6]

Cao Y, Wang N, Tian H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562, 249

[7]

Pan J, Quan L N, Zhao Y, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater, 2016, 28, 8718

[8]

Zhang Q, Su R, Liu X, et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv Funct Mater, 2016, 26, 6238

[9]

Zhou H, Yuan S, Wang X, et al. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section. ACS Nano, 2017, 11, 1189

[10]

Lin K, Xing J, Quan L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 2018, 562, 245

[11]

Gao Y, Zhao L, Shang Q, et al. Ultrathin CsPbX3 nanowire arrays with strong emission anisotropy. Adv Mater, 2018, 30, 1801805

[12]

Akkerman Q A, Gandini M, Di Stasio F, et al. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat Energy, 2016, 2, 16194

[13]

Liu Z, Shang Q, Li C, et al. Temperature-dependent photoluminescence and lasing properties of CsPbBr3 nanowires. Appl Phys Lett, 2019, 114, 101902

[14]

Zhang J, Wang Q, Zhang X, et al. High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl3 nanocrystals. RSC Adv, 2017, 7, 36722

[15]

Yong Z J, Guo S Q, Ma J P, et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield. J Am Chem Soc, 2018, 140, 9942

[16]

Zou S, Liu Y, Li J, et al. Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. J Am Chem Soc, 2017, 139, 11443

[17]

Gong M, Sakidja R, Goul R, et al. High-performance all-inorganic CsPbCl3 perovskite nanocrystal photodetectors with superior stability. ACS Nano, 2019

[18]

Fu Y, Zhu H, Stoumpos C C, et al. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano, 2016, 10, 7963

[19]

Chen J, Fu Y, Samad L, et al. Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett, 2017, 17, 460

[20]

Gao G, Xi Q, Zhou H, et al. Novel inorganic perovskite quantum dots for photocatalysis. Nanoscale, 2017, 9, 12032

[21]

Wang Y, Sun X, Shivanna R, et al. Photon transport in one-dimensional incommensurately epitaxial CsPbX3 arrays. Nano Lett, 2016, 16, 7974

[22]

Lohar A A, Shinde A, Gahlaut R, et al. Enhanced photoluminescence and stimulated emission in CsPbCl3 nanocrystals at low temperature. J Phys Chem C, 2018, 122, 25014

[23]

Kondo S, Suzuki K, Saito T, et al. Photoluminescence and stimulated emission from microcrystalline CsPbCl3 films prepared by amorphous-to-crystalline transformation. Phys Rev B, 2004, 70, 205322

[24]

Sebastian M, Peters J A, Stoumpos C C, et al. Excitonic emissions and above-band-gap luminescence in the single-crystal perovskite semiconductors CsPbBr3 and CsPbCl3. Phys Rev B, 2015, 92, 235210

[25]

Schmidt T, Lischka K, Zulehner W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys Rev B, 1992, 45, 8989

[26]

Xing G, Wu B, Wu X, et al. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat Commun, 2017, 8, 14558

[27]

Taguchi T, Shirafuji J, Inuishi Y. Excitonic emission in cadmium telluride. Phys Status Solidi B, 1975, 68, 727

[28]

Saran R, Heuer-Jungemann A, Kanaras A G, et al. Giant bandgap renormalization and exciton–phonon scattering in perovskite nanocrystals. Adv Opt Mater, 2017, 5, 1700231

[29]

Du W, Zhang S, Wu Z, et al. Unveiling lasing mechanism in CsPbBr3 microsphere cavities. Nanoscale, 2019, 11, 3145

[30]

Niesner D, Schuster O, Wilhelm M, et al. Temperature-dependent optical spectra of single-crystal (CH3NH3)PbBr3 cleaved in ultrahigh vacuum. Phys Rev B, 2017, 95, 075207

[31]

Yu C, Chen Z, Wang J J, et al. Temperature dependence of the band gap of perovskite semiconductor compound CsSnI3. J Appl Phys, 2011, 110, 063526

[32]

Wu K, Bera A, Ma C, et al. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Phys Chem Chem Phys, 2014, 16, 22476

[33]

Calistru D M, Mihut L, Lefrant S, et al. Identification of the symmetry of phonon modes in CsPbCl3 in phase IV by Raman and resonance-Raman scattering. J Appl Phys, 1997, 82, 5391

[1]

Shang Q, Zhang S, Liu Z, et al. Surface plasmon enhanced strong exciton–photon coupling in hybrid inorganic–organic perovskite nanowires. Nano Lett, 2018, 18, 3335

[2]

Zhu H, Fu Y, Meng F, et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat Mater, 2015, 14, 636

[3]

Zhang Q, Ha S T, Liu X, et al. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett, 2014, 14, 5995

[4]

Yettapu G R, Talukdar D, Sarkar S, et al. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Lett, 2016, 16, 4838

[5]

Shi D, Adinolfi V, Comin R, et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347, 519

[6]

Cao Y, Wang N, Tian H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562, 249

[7]

Pan J, Quan L N, Zhao Y, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater, 2016, 28, 8718

[8]

Zhang Q, Su R, Liu X, et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv Funct Mater, 2016, 26, 6238

[9]

Zhou H, Yuan S, Wang X, et al. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section. ACS Nano, 2017, 11, 1189

[10]

Lin K, Xing J, Quan L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 2018, 562, 245

[11]

Gao Y, Zhao L, Shang Q, et al. Ultrathin CsPbX3 nanowire arrays with strong emission anisotropy. Adv Mater, 2018, 30, 1801805

[12]

Akkerman Q A, Gandini M, Di Stasio F, et al. Strongly emissive perovskite nanocrystal inks for high-voltage solar cells. Nat Energy, 2016, 2, 16194

[13]

Liu Z, Shang Q, Li C, et al. Temperature-dependent photoluminescence and lasing properties of CsPbBr3 nanowires. Appl Phys Lett, 2019, 114, 101902

[14]

Zhang J, Wang Q, Zhang X, et al. High-performance transparent ultraviolet photodetectors based on inorganic perovskite CsPbCl3 nanocrystals. RSC Adv, 2017, 7, 36722

[15]

Yong Z J, Guo S Q, Ma J P, et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield. J Am Chem Soc, 2018, 140, 9942

[16]

Zou S, Liu Y, Li J, et al. Stabilizing cesium lead halide perovskite lattice through Mn(II) substitution for air-stable light-emitting diodes. J Am Chem Soc, 2017, 139, 11443

[17]

Gong M, Sakidja R, Goul R, et al. High-performance all-inorganic CsPbCl3 perovskite nanocrystal photodetectors with superior stability. ACS Nano, 2019

[18]

Fu Y, Zhu H, Stoumpos C C, et al. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano, 2016, 10, 7963

[19]

Chen J, Fu Y, Samad L, et al. Vapor-phase epitaxial growth of aligned nanowire networks of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett, 2017, 17, 460

[20]

Gao G, Xi Q, Zhou H, et al. Novel inorganic perovskite quantum dots for photocatalysis. Nanoscale, 2017, 9, 12032

[21]

Wang Y, Sun X, Shivanna R, et al. Photon transport in one-dimensional incommensurately epitaxial CsPbX3 arrays. Nano Lett, 2016, 16, 7974

[22]

Lohar A A, Shinde A, Gahlaut R, et al. Enhanced photoluminescence and stimulated emission in CsPbCl3 nanocrystals at low temperature. J Phys Chem C, 2018, 122, 25014

[23]

Kondo S, Suzuki K, Saito T, et al. Photoluminescence and stimulated emission from microcrystalline CsPbCl3 films prepared by amorphous-to-crystalline transformation. Phys Rev B, 2004, 70, 205322

[24]

Sebastian M, Peters J A, Stoumpos C C, et al. Excitonic emissions and above-band-gap luminescence in the single-crystal perovskite semiconductors CsPbBr3 and CsPbCl3. Phys Rev B, 2015, 92, 235210

[25]

Schmidt T, Lischka K, Zulehner W. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys Rev B, 1992, 45, 8989

[26]

Xing G, Wu B, Wu X, et al. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat Commun, 2017, 8, 14558

[27]

Taguchi T, Shirafuji J, Inuishi Y. Excitonic emission in cadmium telluride. Phys Status Solidi B, 1975, 68, 727

[28]

Saran R, Heuer-Jungemann A, Kanaras A G, et al. Giant bandgap renormalization and exciton–phonon scattering in perovskite nanocrystals. Adv Opt Mater, 2017, 5, 1700231

[29]

Du W, Zhang S, Wu Z, et al. Unveiling lasing mechanism in CsPbBr3 microsphere cavities. Nanoscale, 2019, 11, 3145

[30]

Niesner D, Schuster O, Wilhelm M, et al. Temperature-dependent optical spectra of single-crystal (CH3NH3)PbBr3 cleaved in ultrahigh vacuum. Phys Rev B, 2017, 95, 075207

[31]

Yu C, Chen Z, Wang J J, et al. Temperature dependence of the band gap of perovskite semiconductor compound CsSnI3. J Appl Phys, 2011, 110, 063526

[32]

Wu K, Bera A, Ma C, et al. Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films. Phys Chem Chem Phys, 2014, 16, 22476

[33]

Calistru D M, Mihut L, Lefrant S, et al. Identification of the symmetry of phonon modes in CsPbCl3 in phase IV by Raman and resonance-Raman scattering. J Appl Phys, 1997, 82, 5391

[1]

Guanhaojie Zheng, Liang Li, Ligang Wang, Xingyu Gao, Huanping Zhou. The investigation of an amidine-based additive in the perovskite films and solar cells. J. Semicond., 2017, 38(1): 014001. doi: 10.1088/1674-4926/38/1/014001

[2]

Bang Li, Xin Yan, Xia Zhang, Xiaomin Ren. Growth and characteristics of p-type doped GaAs nanowire. J. Semicond., 2018, 39(5): 053004. doi: 10.1088/1674-4926/39/5/053004

[3]

Zhang Jiashun, An Junming, Zhao Lei, Song Shijiao, Wang Liangliang, Li Jianguang, Wang Hongjie, Wu Yuanda, Hu Xiongwei. Ultra compact triplexing filters based on SOI nanowire AWGs. J. Semicond., 2011, 32(4): 044009. doi: 10.1088/1674-4926/32/4/044009

[4]

Dongxue Liu, Yongsheng Liu. Recent progress of dopant-free organic hole-transporting materials in perovskite solar cells. J. Semicond., 2017, 38(1): 011005. doi: 10.1088/1674-4926/38/1/011005

[5]

Xiaojun Qin, Zhiguo Zhao, Yidan Wang, Junbo Wu, Qi Jiang, Jingbi You. Recent progress in stability of perovskite solar cells. J. Semicond., 2017, 38(1): 011002. doi: 10.1088/1674-4926/38/1/011002

[6]

Lixia Li, Dong Pan, Xuezhe Yu, Hyok So, Jianhua Zhao. Manipulation of morphology and structure of the top of GaAs nanowires grown by molecular-beam epitaxy. J. Semicond., 2017, 38(10): 103001. doi: 10.1088/1674-4926/38/10/103001

[7]

Fengjing Liu, Jiawei Wang, Liang Wang, Xiaoyong Cai, Chao Jiang, Gongtang Wang. Enhancement of photodetection based on perovskite/MoS2 hybrid thin film transistor. J. Semicond., 2017, 38(3): 034002. doi: 10.1088/1674-4926/38/3/034002

[8]

Zheng Lou, Xiaoli Yang, Haoran Chen, Zhongzhu Liang. Flexible ultraviolet photodetectors based on ZnO–SnO2 heterojunction nanowire arrays. J. Semicond., 2018, 39(2): 024002. doi: 10.1088/1674-4926/39/2/024002

[9]

Huihui Yang, Feng Gao, Mingjin Dai, Dechang Jia, Yu Zhou, Ping'an Hu. Recent advances in preparation,properties and device applications of two-dimensional h-BN and its vertical heterostructures. J. Semicond., 2017, 38(3): 031004. doi: 10.1088/1674-4926/38/3/031004

[10]

He Linxiang, Peng Gang, Yang Weiming, Zheng Chaodan, Yu Jun, Wang Yunbo. Preparation and Phase Analysis of PZT Ceramic Targets. J. Semicond., 2007, 28(5): 711.

[11]

Zhang Qifeng, Rong Yi, , Chen Xianxiang, , Zhang Gengmin, Zhang Zhaoxiang, Xue Zengquan. Fabrication of ZnO Nanowires by Vapor-Phase Deposition and Their Field Emission Properties. J. Semicond., 2006, 27(7): 1225.

[12]

Tetsuya Shimogaki, Masahiro Takahashi, Masaaki Yamasaki, Taichi Fukuda, Mitsuhiro Higashihata, Hiroshi Ikenoue, Daisuke Nakamura, Tatsuo Okada. Catalyst-free growth of ZnO nanowires on various-oriented sapphire substrates by pulsed-laser deposition. J. Semicond., 2016, 37(2): 023001. doi: 10.1088/1674-4926/37/2/023001

[13]

Chao Li, Peng Zhou, David Wei Zhang. Devices and applications of van der Waals heterostructures. J. Semicond., 2017, 38(3): 031005. doi: 10.1088/1674-4926/38/3/031005

[14]

Baoxing Zhai, Juan Du, Xueping Li, Congxin Xia, Zhongming Wei. Two-dimensional ferromagnetic materials and related van der Waals heterostructures: A first-principle study. J. Semicond., 2019, 40(8): 000000.

[15]

Yuxiang Qin, Deyan Hua, Xiao Li. First principles study on the surface-and orientation-dependent electronic structure of a WO3 nanowire. J. Semicond., 2013, 34(6): 062002. doi: 10.1088/1674-4926/34/6/062002

[16]

Nanjie Guo, Taiyang Zhang, Ge Li, Feng Xu, Xufang Qian, Yixin Zhao. A simple fabrication of CH3NH3PbI3 perovskite for solar cells using low-purity PbI2. J. Semicond., 2017, 38(1): 014004. doi: 10.1088/1674-4926/38/1/014004

[17]

Jincheng Zhang, Chengwu Shi, Junjun Chen, Chao Ying, Ni Wu, Mao Wang. Pyrolysis preparation of WO3 thin films using ammonium metatungstate DMF/water solution for efficient compact layers in planar perovskite solar cells. J. Semicond., 2016, 37(3): 033002. doi: 10.1088/1674-4926/37/3/033002

[18]

Jun Zhang. Perovskite Exciton-Polaritons. J. Semicond., 2019, 40(2): 020201. doi: 10.1088/1674-4926/40/2/020201

[19]

Yu Dongliang, Ge Chuannan, Du Youwei. Preparation and characterization of CuO nanowire arrays. J. Semicond., 2009, 30(7): 072003. doi: 10.1088/1674-4926/30/7/072003

[20]

Fengjun Ye, Wenqiang Yang, Deying Luo, Rui Zhu, Qihuang Gong. Applications of cesium in the perovskite solar cells. J. Semicond., 2017, 38(1): 011003. doi: 10.1088/1674-4926/38/1/011003

Search

Advanced Search >>

GET CITATION

Y Gao, L Y Zhao, Q Y Shang, C Li, Z Liu, Q Li, X N Wang, Q Zhang, Photoluminescence properties of ultrathin CsPbCl3 nanowires on mica substrate[J]. J. Semicond., 2019, 40(5): 052201. doi: 10.1088/1674-4926/40/5/052201.

Export: BibTex EndNote

Article Metrics

Article views: 419 Times PDF downloads: 32 Times Cited by: 0 Times

History

Manuscript received: 10 March 2019 Manuscript revised: 07 April 2019 Online: Uncorrected proof: 30 April 2019 Accepted Manuscript: 08 May 2019 Published: 08 May 2019

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误