J. Semicond. > Volume 40 > Issue 5 > Article Number: 052301

Multi-channel 28-GHz millimeter-wave signal generation on a silicon photonic chip with automated polarization control

Ruiyuan Cao , Yu He , Qingming Zhu , Jingchi Li , Shaohua An , Yong Zhang and Yikai Su ,

+ Author Affilications + Find other works by these authors

PDF

Turn off MathJax

Abstract: We propose and experimentally demonstrate an integrated silicon photonic scheme to generate multi-channel millimeter-wave (MMW) signals for 5G multi-user applications. The fabricated silicon photonic chip has a footprint of 1.1 × 2.1 mm2 and integrates 7 independent channels each having on-chip polarization control and heterodyne mixing functions. 7 channels of 4-Gb/s QPSK baseband signals are delivered via a 2-km multi-core fiber (MCF) and coupled into the chip with a local oscillator (LO) light. The polarization state of each signal light is automatically adjusted and aligned with that of the LO light, and then 7 channels of 28-GHz MMW carrying 4-Gb/s QPSK signals are generated by optical heterodyne beating. Automated polarization-control function of each channel is also demonstrated with ~7-ms tuning time and ~27-dB extinction ratio.

Key words: multi-channelmillimeter-wave (MMW) generationsilicon photonic integrated circuitssilicon polarization control (SPC)

Abstract: We propose and experimentally demonstrate an integrated silicon photonic scheme to generate multi-channel millimeter-wave (MMW) signals for 5G multi-user applications. The fabricated silicon photonic chip has a footprint of 1.1 × 2.1 mm2 and integrates 7 independent channels each having on-chip polarization control and heterodyne mixing functions. 7 channels of 4-Gb/s QPSK baseband signals are delivered via a 2-km multi-core fiber (MCF) and coupled into the chip with a local oscillator (LO) light. The polarization state of each signal light is automatically adjusted and aligned with that of the LO light, and then 7 channels of 28-GHz MMW carrying 4-Gb/s QPSK signals are generated by optical heterodyne beating. Automated polarization-control function of each channel is also demonstrated with ~7-ms tuning time and ~27-dB extinction ratio.

Key words: multi-channelmillimeter-wave (MMW) generationsilicon photonic integrated circuitssilicon polarization control (SPC)



References:

[1]

Agiwal M, Roy A, Saxena N. Next generation 5G wireless networks: A comprehensive survey. IEEE Commun Surv Tut, 2016, 18(3), 1617

[2]

Han S F, I C L, Xu Z K, et al. Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun Mag, 2015, 53(1), 186

[3]

Pi Z, Khan F. An introduction to millimeter-wave mobile broadband systems. IEEE Commun Mag, 2011, 49(6), 101

[4]

Sulyman A I, Nassar A T, Samimi M K, et al. Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. IEEE Commun Mag, 2014, 52(9), 78

[5]

Roh W, Ji-Yun Seol J Y, Park J, et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Commun Mag, 2014, 52(2), 106

[6]

Rappaport T S. Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 2013, 1(1), 335

[7]

Heath R W. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 2016, 10(3), 436

[8]

Gao X, Dai L, Sayeed A M. Low RF-complexity technologies to enable millimeter-wave MIMO with large antenna array for 5G wireless communications. IEEE Commun Mag, 2018, 56(4), 211

[9]

Rebeiz G. Millimeter-wave large-scale phased-arrays for 5G systems. Microwave Symposium (IMS), IEEE MTT-S International, 2015, 1

[10]

Gao X. Energy-efficient hybrid analog and digital precoding for mm-Wave MIMO systems with large antenna arrays. IEEE J Sel Areas Commun, 2016, 34(4), 998

[11]

Li M. Harnessing optical forces in integrated photonic circuits. Nature, 2008, 456(7221), 480

[12]

Marpaung D. Integrated microwave photonics. Laser Photonics Rev, 2013, 7(4), 506

[13]

Zhang W, Yao J. Silicon-based integrated microwave photonics. IEEE J Quantum Electron, 2016, 52(1), 1

[14]

Guzmán R, Carpintero G, Gordon C, et al. Millimeter-wave signal generation for a wireless transmission system based on on-chip photonic integrated circuit structures. Opt Lett, 2016, 41(20), 4843

[15]

Amato F, Serafino G, Ghelfi P. Ultra-fast beam steering of a phased-array antenna based on packaged photonic integrated circuits. IEEE European Conference on Optical Communication (ECOC), 2018, Tu3H

[16]

Carpintero G. Microwave photonic integrated circuits for millimeter-wave wireless communications. IEEE/OSA J Lightw Technol, 2014, 32(20), 3495

[17]

Carpintero G. 95 GHz millimeter wave signal generation using an arrayed waveguide grating dual wavelength semiconductor laser. Opt Lett, 2012, 37(17), 3657

[18]

Yao J. Photonic integrated circuits for microwave signal generation and processing. Conference on Lasers and Electro-Optics (CLEO), 2018, JTh4D.1

[19]

Khan M H. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat Photon, 2010, 4(2), 117

[20]

Yao J. Microwave photonics. IEEE/OSA J Lightw Technol, 2009, 27(3), 314

[21]

Cao R Y, He Y, Yao J P. Integrated multi-channel millimeter wave photonic generation based on a silicon chip with automated polarization control. IEEE European Conference on Optical Communication (ECOC), 2018, We2.43

[22]

Ma M L, Murray K, Ye M Y, et al. Silicon photonic polarization receiver with automated stabilization for arbitrary input polarizations. Conference on Lasers and Electro-Optics (CLEO), 2016, STu4G.8

[23]

Zhu M, Zhang L, Wang J, et al. Radio-over-fiber access architecture for integrated broadband wireless services. IEEE/OSA J Lightw Technol, 2013, 31(23), 3614

[24]

Macho A. Next-generation optical fronthaul systems using multicore fiber media. IEEE/OSA J Lightw Technol, 2016, 34(20), 4819

[25]

Kanno A, Dat P T, Kuri T, et al. Evaluation of frequency fluctuation in fiber-wireless link with direct IQ down-converter. IEEE European Conference on Optical Communication (ECOC), 2017, We.3.6.3

[26]

Tan K. Ultra-broadband fabrication-tolerant polarization splitter and rotator. Optical Fiber Communication Conference, 2017, Th1G.7

[27]

Yariv A. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photon Technol Lett, 2002, 14(4), 483

[28]

Luo L. WDM-compatible mode-division multiplexing on a silicon chip. Nat Commun, 2014, 5, 3069

[29]

Zhu Q, et al. Wide-range automated wavelength calibration over a full FSR in a dual-ring based silicon photonic switch. Optical Fiber Communication Conference (OFC), 2018, Th3C.1

[30]

Bergano N S, Kerfoot F W, Davidsion C R. Margin measurements in optical amplifier system. IEEE Photon Technol Lett, 1993, 5(3), 304

[1]

Agiwal M, Roy A, Saxena N. Next generation 5G wireless networks: A comprehensive survey. IEEE Commun Surv Tut, 2016, 18(3), 1617

[2]

Han S F, I C L, Xu Z K, et al. Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun Mag, 2015, 53(1), 186

[3]

Pi Z, Khan F. An introduction to millimeter-wave mobile broadband systems. IEEE Commun Mag, 2011, 49(6), 101

[4]

Sulyman A I, Nassar A T, Samimi M K, et al. Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. IEEE Commun Mag, 2014, 52(9), 78

[5]

Roh W, Ji-Yun Seol J Y, Park J, et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Commun Mag, 2014, 52(2), 106

[6]

Rappaport T S. Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 2013, 1(1), 335

[7]

Heath R W. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 2016, 10(3), 436

[8]

Gao X, Dai L, Sayeed A M. Low RF-complexity technologies to enable millimeter-wave MIMO with large antenna array for 5G wireless communications. IEEE Commun Mag, 2018, 56(4), 211

[9]

Rebeiz G. Millimeter-wave large-scale phased-arrays for 5G systems. Microwave Symposium (IMS), IEEE MTT-S International, 2015, 1

[10]

Gao X. Energy-efficient hybrid analog and digital precoding for mm-Wave MIMO systems with large antenna arrays. IEEE J Sel Areas Commun, 2016, 34(4), 998

[11]

Li M. Harnessing optical forces in integrated photonic circuits. Nature, 2008, 456(7221), 480

[12]

Marpaung D. Integrated microwave photonics. Laser Photonics Rev, 2013, 7(4), 506

[13]

Zhang W, Yao J. Silicon-based integrated microwave photonics. IEEE J Quantum Electron, 2016, 52(1), 1

[14]

Guzmán R, Carpintero G, Gordon C, et al. Millimeter-wave signal generation for a wireless transmission system based on on-chip photonic integrated circuit structures. Opt Lett, 2016, 41(20), 4843

[15]

Amato F, Serafino G, Ghelfi P. Ultra-fast beam steering of a phased-array antenna based on packaged photonic integrated circuits. IEEE European Conference on Optical Communication (ECOC), 2018, Tu3H

[16]

Carpintero G. Microwave photonic integrated circuits for millimeter-wave wireless communications. IEEE/OSA J Lightw Technol, 2014, 32(20), 3495

[17]

Carpintero G. 95 GHz millimeter wave signal generation using an arrayed waveguide grating dual wavelength semiconductor laser. Opt Lett, 2012, 37(17), 3657

[18]

Yao J. Photonic integrated circuits for microwave signal generation and processing. Conference on Lasers and Electro-Optics (CLEO), 2018, JTh4D.1

[19]

Khan M H. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat Photon, 2010, 4(2), 117

[20]

Yao J. Microwave photonics. IEEE/OSA J Lightw Technol, 2009, 27(3), 314

[21]

Cao R Y, He Y, Yao J P. Integrated multi-channel millimeter wave photonic generation based on a silicon chip with automated polarization control. IEEE European Conference on Optical Communication (ECOC), 2018, We2.43

[22]

Ma M L, Murray K, Ye M Y, et al. Silicon photonic polarization receiver with automated stabilization for arbitrary input polarizations. Conference on Lasers and Electro-Optics (CLEO), 2016, STu4G.8

[23]

Zhu M, Zhang L, Wang J, et al. Radio-over-fiber access architecture for integrated broadband wireless services. IEEE/OSA J Lightw Technol, 2013, 31(23), 3614

[24]

Macho A. Next-generation optical fronthaul systems using multicore fiber media. IEEE/OSA J Lightw Technol, 2016, 34(20), 4819

[25]

Kanno A, Dat P T, Kuri T, et al. Evaluation of frequency fluctuation in fiber-wireless link with direct IQ down-converter. IEEE European Conference on Optical Communication (ECOC), 2017, We.3.6.3

[26]

Tan K. Ultra-broadband fabrication-tolerant polarization splitter and rotator. Optical Fiber Communication Conference, 2017, Th1G.7

[27]

Yariv A. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photon Technol Lett, 2002, 14(4), 483

[28]

Luo L. WDM-compatible mode-division multiplexing on a silicon chip. Nat Commun, 2014, 5, 3069

[29]

Zhu Q, et al. Wide-range automated wavelength calibration over a full FSR in a dual-ring based silicon photonic switch. Optical Fiber Communication Conference (OFC), 2018, Th3C.1

[30]

Bergano N S, Kerfoot F W, Davidsion C R. Margin measurements in optical amplifier system. IEEE Photon Technol Lett, 1993, 5(3), 304

[1]

Yun Gui, Xu Zhang, Yuan Wang, Ming Liu, Weihua Pei, Kai Liang, Suibiao Huang, Bin Li, Hongda Chen. A multi-channel fully differential programmable integrated circuit for neural recording application. J. Semicond., 2013, 34(10): 105009. doi: 10.1088/1674-4926/34/10/105009

[2]

M. Payal, Y. Singh. A new RF trench-gate multi-channel laterally-diffused MOSFET on InGaAs. J. Semicond., 2017, 38(9): 094001. doi: 10.1088/1674-4926/38/9/094001

[3]

Ling Yuan, Qiang Zhang, Yin Shi. A high speed direct digital frequency synthesizer based on multi-channel structure. J. Semicond., 2015, 36(6): 065006. doi: 10.1088/1674-4926/36/6/065006

[4]

Aritra Acharyya, Jit Chakraborty, Kausik Das, Subir Datta, Pritam De, Suranjana Banerjee, J.P. Banerjee. Large-signal characterization of DDR silicon IMPATTs operating in millimeter-wave and terahertz regime. J. Semicond., 2013, 34(10): 104003. doi: 10.1088/1674-4926/34/10/104003

[5]

Xiaogang Tong, Jun Liu, Chenyang Xue. High-Q micro-ring resonators and grating couplers for silicon-on-insulator integrated photonic circuits. J. Semicond., 2013, 34(8): 085006. doi: 10.1088/1674-4926/34/8/085006

[6]

Feng Yuan, Zhigong Wang, Xiaoying Lü. A multi-channel analog IC for in vitro neural recording. J. Semicond., 2016, 37(2): 025007. doi: 10.1088/1674-4926/37/2/025007

[7]

Luo Zhen'ao, Xie Liang, Qi Xiaoqiong, Wang Hui. 30-GHz millimeter-wave carrier generation with single sideband modulation based on stimulated Brillouin scattering. J. Semicond., 2011, 32(9): 092004. doi: 10.1088/1674-4926/32/9/092004

[8]

Hongda Chen, Zan Zhang, Beiju Huang, Luhong Mao, Zanyun Zhang. Progress in complementary metal-oxide-semiconductor silicon photonics and optoelectronic integrated circuits. J. Semicond., 2015, 36(12): 121001. doi: 10.1088/1674-4926/36/12/121001

[9]

Defen Guo, Kang Hou, Weijie Tang, Tao Chu. Silicon polarization switch based on symmetric polarization splitter-rotators. J. Semicond., 2019, 40(10): 100401. doi: 10.1088/1674-4926/40/10/100401

[10]

Yanlong Yin, Jiang Li, Yang Xu, Hon Ki Tsang, Daoxin Dai. Silicon-graphene photonic devices. J. Semicond., 2018, 39(6): 061009. doi: 10.1088/1674-4926/39/6/061009

[11]

Xu Wang, Hongyan Yang, Ying Yuan, Wuchen Wu. A low noise multi-channel readout IC for X-ray cargo inspection. J. Semicond., 2013, 34(4): 045011. doi: 10.1088/1674-4926/34/4/045011

[12]

Wei Liu, Tingcun Wei, Bo Li, Panjie Guo, Yongcai Hu. A 12-bit 1 MS/s SAR-ADC for multi-channel CdZnTe detectors. J. Semicond., 2015, 36(4): 045007. doi: 10.1088/1674-4926/36/4/045007

[13]

Hui Hong, Shiliang Li, Tao Zhou. Design of a low power 10 bit 300 ksps multi-channel SAR ADC for wireless sensor network applications. J. Semicond., 2015, 36(4): 045009. doi: 10.1088/1674-4926/36/4/045009

[14]

Weiming Lu, Zhigang Wang, Hui Hu. Polarization effects and tests for crystalline silicon solar cells. J. Semicond., 2015, 36(9): 092002. doi: 10.1088/1674-4926/36/9/092002

[15]

Xiangfei Chen. Precision photonic integration for future large-scale photonic integrated circuits. J. Semicond., 2019, 40(5): 050301. doi: 10.1088/1674-4926/40/5/050301

[16]

Xu Leijun, Wang Zhigong, Li Qin. Design of a monolithic millimeter-wave doubly-balanced mixer in GaAs. J. Semicond., 2009, 30(8): 085003. doi: 10.1088/1674-4926/30/8/085003

[17]

Li Qin, Wang Zhigong, Xu Leijun. A millimeter-wave monolithic doubly balanced diode mixer. J. Semicond., 2010, 31(3): 035005. doi: 10.1088/1674-4926/31/3/035005

[18]

Chunjiang Ren, Zhonghui Li, Xuming Yu, Quanhui Wang, Wen Wang, Tangsheng Chen, Bin Zhang. Field plated 0.15 μm GaN HEMTs for millimeter-wave application. J. Semicond., 2013, 34(6): 064002. doi: 10.1088/1674-4926/34/6/064002

[19]

Chen Xinyu, Jiang Youquan, Xu Zhengrong, Huang Ziqian, Li Fuxiao. A Millimeter-Wave GaAs pin Diode SPST Switch MMIC. J. Semicond., 2006, 27(12): 2163.

[20]

Li Ming, Zhang Haiying, Xu Jingbo, Fu Xiaojun. Monolithic Integrated Switches and Logic Control Circuits with E/D-Mode GaAs PHEMTs. J. Semicond., 2008, 29(9): 1823.

Search

Advanced Search >>

GET CITATION

R Y Cao, Y He, Q M Zhu, J C Li, S H An, Y Zhang, Y K Su, Multi-channel 28-GHz millimeter-wave signal generation on a silicon photonic chip with automated polarization control[J]. J. Semicond., 2019, 40(5): 052301. doi: 10.1088/1674-4926/40/5/052301.

Export: BibTex EndNote

Article Metrics

Article views: 454 Times PDF downloads: 37 Times Cited by: 0 Times

History

Manuscript received: 09 January 2019 Manuscript revised: 27 February 2019 Online: Accepted Manuscript: 10 April 2019 Uncorrected proof: 19 April 2019 Published: 08 May 2019

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误