J. Semicond. > Volume 41 > Issue 7 > Article Number: 071901

Contact engineering for two-dimensional semiconductors

Peng Zhang 1, , Yiwei Zhang 1, , Yi Wei 2, , Huaning Jiang 1, , Xingguo Wang 1, and Yongji Gong 1, ,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: Two-dimensional (2D) layered materials, including graphene, black phosphorus (BP) and transition metal dichalcogenide (TMD) such as molybdenum disulfide (MoS2), tungsten diselenide (WSe2), have attracted increasing attention for the application in electronic and optoelectronic devices. Contacts, which are the communication links between these 2D materials and external circuitry, have significant effects on the performance of electronic and optoelectronic devices. However, the performance of devices based on 2D semiconductors (SCs) is often limited by the contacts. Here, we provide a comprehensive overview of the basic physics and role of contacts in 2D SCs, elucidating Schottky barrier nature and Fermi level pinning effect at metal/2D SCs contact interface. The progress of contact engineering, including traditional metals contacts and metallic 2D materials contacts, for improving the performance of 2D SCs based devices is presented. Traditional metal contacts, named 3D top and edge contacts, are discussed briefly. Meanwhile, methods of building 2D materials contacts (2D top contact and 2D edge contact) are discussed in detail, such as chemical vapor deposition (CVD) growth of 2D metallic material contacts, phase engineered metallic phase contacts and intercalation induced metallic state contacts. Finally, the challenges and opportunities of contact engineering for 2D SCs are outlined.

Key words: two-dimensional materialscontact engineeringSchottky barrierFermi level pinningheterostructures

Abstract: Two-dimensional (2D) layered materials, including graphene, black phosphorus (BP) and transition metal dichalcogenide (TMD) such as molybdenum disulfide (MoS2), tungsten diselenide (WSe2), have attracted increasing attention for the application in electronic and optoelectronic devices. Contacts, which are the communication links between these 2D materials and external circuitry, have significant effects on the performance of electronic and optoelectronic devices. However, the performance of devices based on 2D semiconductors (SCs) is often limited by the contacts. Here, we provide a comprehensive overview of the basic physics and role of contacts in 2D SCs, elucidating Schottky barrier nature and Fermi level pinning effect at metal/2D SCs contact interface. The progress of contact engineering, including traditional metals contacts and metallic 2D materials contacts, for improving the performance of 2D SCs based devices is presented. Traditional metal contacts, named 3D top and edge contacts, are discussed briefly. Meanwhile, methods of building 2D materials contacts (2D top contact and 2D edge contact) are discussed in detail, such as chemical vapor deposition (CVD) growth of 2D metallic material contacts, phase engineered metallic phase contacts and intercalation induced metallic state contacts. Finally, the challenges and opportunities of contact engineering for 2D SCs are outlined.

Key words: two-dimensional materialscontact engineeringSchottky barrierFermi level pinningheterostructures



References:

[1]

Schaller R. Moore's law: past, present and future. IEEE Spectrum, 1997, 34(6), 52

[2]

Frank D J, Dennard R H, Nowak E, et al. Device scaling limits of Si MOSFETs and their application dependencies. Proc IEEE, 2001, 89(3), 259

[3]

Sarkar D, Xie X J, Liu W, et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature, 2015, 526, 91

[4]

Arnold A J, Razavieh A, Nas J R, et al. Mimicking neurotransmitter release in chemical synapses via hysteresis engineering in MoS2 transistors. ACS Nano, 2017, 11(3), 3110

[5]

Gong Y J, Shi G, Zhang Z H, et al. Direct chemical conversion of graphene to boronand nitrogen-and carbon-containing atomic layers. Nat Common, 2014, 5, 3193

[6]

Xie Y L, Lian B, Jäck B, et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature, 2019, 572, 101

[7]

Li L F, Liu W, Gao A Y, et al. Plasmon excited ultrahot carriers and negative differential photoresponse in a vertical graphene van der Waals heterostructure. Nano Lett, 2019, 19(5), 3295

[8]

Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438, 197

[9]

Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 2005, 438, 201

[10]

Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887), 385

[11]

Liu Y P, Yudhistira I, Yang M, et al. Phonon-mediated colossal magnetoresistance in graphene/black phosphorus heterostructures. Nano Lett, 2018, 18(6), 3377

[12]

Huang S Y, Zhang G W, Fan F R, et al. Strain-tunable van der Waals interactions in few-layer black phosphorus. Nat Common, 2019, 10, 2447

[13]

Chaudhary K, Tamagnone M, Rezaee M, et al. Engineering phonon polaritons in van der Waals heterostructures to enhance in-plane optical anisotropy. Sci Adv, 2019, 5(4), eaau7171

[14]

Kim J M, Baik S S, Ryu S H, et al. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science, 2015, 349(6249), 723

[15]

Peng R M, Khaliji K, Youngblood N, et al. Midinfrared electro-optic modulation in few-layer black phosphorus. Nano Lett, 2017, 17(10), 6315

[16]

Liu Z, Gong Y G, Zhou W, et al. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat Commun, 2013, 4, 2541

[17]

Wu E X, Xie Y, Zhang J, et al. Dynamically controllable polarity modulation of MoTe2 field-effect transistors through ultraviolet light and electrostatic activation. Sci Adv, 2019, 5(5), eaav3430

[18]

Park H J, Tay R Y J, Wang X, et al. Double-spiral hexagonal boron nitride and shear strained coalescence boundary. Nano Lett, 2019, 19(7), 4229

[19]

Song L, Ci L J, Lu H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett, 2010, 10(8), 3209

[20]

Ci L J, Song L, Jin C J, et al. Atomic layers of hybridized boron nitride and graphene domains. Nat Mater, 2010, 9, 430

[21]

Gong Y G, Lin J H, Wang X L, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater, 2014, 13, 1135

[22]

Gong Y G, Liu Z, Lupini A R, et al. Band gap engineering and layer-by-layer mapping of selenium doped molybdenum disulfide. Nano Lett, 2014, 14(2), 442

[23]

Ma Y, Ajayan P M, Gong Y J, et al. Recent advances in synthesis and applications of 2D junctions. Small, 2018, 14(38), 1801606

[24]

Lin Y C, Li S S, Komsa H P, et al. Revealing the atomic defects of WS2 governing its distinct optical emissions. Adv Funct Mater, 2017, 28(4), 1704210

[25]

Sun L F, Leong W S, Yang S Z, et al. Concurrent synthesis of high-performance monolayer transition metal disulfdes. Adv Funct Mater, 2017, 27(15), 1605896

[26]

Zhou Y, Jang H J, Woods J M, et al. Direct synthesis of large-scale WTe2 thin films with low thermal conductivity. Adv Funct Mater, 2017, 27(8), 1605928

[27]

Zhao Y D, Qiao J S, Yu P, et al. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv Mater, 2017, 28(12), 2399

[28]

Wu J X, Liu Y J, Tan Z J, et al. Chemical patterning of high-mobility semiconducting 2D Bi2O2Se crystals for integrated optoelectronic devices. Adv Mater, 2017, 29(44), 1704060

[29]

Li L, Guo Y C, Sun Y P, et al. A general method for the chemical synthesis of large-scale, seamless transition metal dichalcogenide electronics. Adv Mater, 2018, 30(12), 1706215

[30]

Huan Y H, Shi J P, Zou X L, et al. Vertical 1T-TaS2 synthesis on nanoporous gold for high-performance electrocatalytic applications. Adv Mater, 2018, 30(15), 1705916

[31]

Zhang T, Fu L. Controllable chemical vapor deposition growth of two-dimensional heterostructures. Chem, 2018, 4(4), 671

[32]

Xu R J, Jang H, Lee M H, et al. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett, 2019, 19(4), 2411

[33]

Zhu Y B, Li Y J, Arefe R A, et al. Monolayer molybdenum disulfide transistors with single-atomthick gates. Nano Lett, 2018, 18(6), 3807

[34]

Kim S, Yao Z P, Lim J M, et al. Atomic-scale observation of electrochemically reversible phase transformations in SnSe2 single crystals. Adv Mater, 2018, 30(51), 1804925

[35]

Liu C S, Yan X, Song X F, et al. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat Nano, 2018, 13, 404

[36]

Gao A Y, Lai J W, Wang Y J, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat Nano, 2019, 14, 217

[37]

Das S, Robinson J A, Dubey M, et al. Beyond graphene: progress in novel two dimensional materials and van der Waals solids. Annu Rev Mater Res, 2015, 45, 1

[38]

Sangwan V K, Beck M E, Henning A, et al. Self-aligned van der Waals heterojunction diodes and transistors. Nano Lett, 2018, 18(2), 1421

[39]

Lembke D, Kis A. Breakdown of high-performance monolayer MoS2 transistors. ACS Nano, 2012, 6(11), 10070

[40]

Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nat Rev Mater, 2017, 2, 17033

[41]

Luo W, Zhu M J, Peng G, et al. Carrier modulation of ambipolar few-layer MoTe2 transistors by MgO surface charge transfer doping. Adv Mater, 2018, 28(15), 1704539

[42]

Avsar A, Marinov K, Marin E G, et al. Reconfgurable diodes based on vertical WSe2 transistors with van der Waals bonded contacts. Adv Mater, 2018, 30(18), 17072000

[43]

Kim S, Maassen J, Lee J, et al. Interstitial Mo-assisted photovoltaic effect in multilayer MoSe2 phototransistors. Adv Mater, 2018, 30(12), 1705542

[44]

Song S H, Joo M K, Neumann M, et al. Probing defect dynamics in monolayer MoS2 via noise nanospectroscopy. Nat Commun, 2017, 8, 2121

[45]

Tian H, Guo Q S, Xie Y J, et al. Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv Mater, 2016, 28(25), 4991

[46]

Jena D, Banerjee K, Xing G H, et al. 2D crystal semiconductors: Intimate contacts. Nat Mater, 2014, 13, 2640

[47]

Xu L P, Zhang P, Jiang H N, et al. Large-scale growth and field-effect transistors electrical engineering of atomic-layer SnS2. Small, 2019, 15(46), 1904116

[48]

Han G H, Duong D L, Keum D H, et al. Van der Waals metallic transition metal dichalcogenides. Chem Rev, 2018, 118(13), 6297

[49]

Schulman D S, Arnold A J, Das S. Contact engineering for 2D materials and devices. Chem Soc Rev, 2018, 47(9), 3037

[50]

Baranowski M, Surrente A, Klopotowski L, et al. Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Lett, 2017, 17(10), 6360

[51]

Islam M A, Kim J H, Schropp A, et al. Centimeter-scale 2D van der Waals vertical heterostructures integrated on deformable substrates enabled by gold sacrificial layer-assisted growth. Nano Lett, 2017, 17(10), 6157

[52]

Yan C Y, Gong C H, Wang P H, et al. 2D group IVB transition metal dichalcogenides. Adv Funct Mater, 2018, 28(39), 1803305

[53]

Voiry D, Mohite A, Chhowalla M. Phase engineering of transition metal dichalcogenides. Chem Soc Rev, 2015, 44, 2702

[54]

Wang X S, Song Z G, Wen W, et al. Potential 2D materials with phase transitions: structure, synthesis, and device applications. Adv Mater, 2019, 31(45), 1804682

[55]

Stark M S, Kuntz K L, Martens S J, et al. Intercalation of layered materials from bulk to 2D. Adv Mater, 2019, 31(27), 1808213

[56]

Li H, Ruan S C, Zeng Y J. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: new frontiers of spintronics. Adv Mater, 2019, 31(27), 1900065

[57]

Allain A, Kang J H, Banerjee K, et al. Electrical contacts to two-dimensional semiconductors. Nat Mater, 2015, 14, 1195

[58]

Kang J, Liu W, Sarkar D. Computational study of metal contacts to monolayer transition­metal dichalcogenide semiconductors. Phys Rev X, 2014, 4(3), 031005

[59]

Ranuárez J C, Deen M J, Chen C H. A review of gate tunneling current in MOS devices. Microelectron Reliab, 2016, 46(12), 1939

[60]

Liu Y, Guo J, Zhu E B, et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature, 2018, 557, 696

[61]

English C D, Shine G, Dorgan V E, et al. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett, 2016, 16(6), 3824

[62]

Stokbro K, Engelund M, Blom A. Atomic­scale model for the contact resistance of the nickel­graphene interface. Phys Rev B, 2012, 85(16), 165442

[63]

Popov I, Seifert G, Tománek D. Designing electrical contacts to MoS2 monolayers: a computational study. Phys Rev Lett, 2012, 108(15), 156802

[64]

Liu W, Kang J H, Cao W, et al. High­ performance few­ layer­ MoS2 field-effect-transistor with record low contact­resistance. IEEE Int Electron Devices Meet, 2013, 19.4. 1

[65]

Wang L, Meric I, Huang P Y, et al. One-dimensional electrical contact to a two-dimensional material. Science, 2013, 342(6158), 614

[66]

Cui X, Lee G H, Kim Y D, et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat Mater, 2015, 10, 534

[67]

Chai Y, Ionescu R, Su S S, et al. Making one-dimensional electrical contacts to molybdenum disulfid-based heterostructures through plasma etching. Phys Status Solidi A, 2016, 213(5), 1358

[68]

Matsuda Y, Deng W Q, Goddard W A. Contact resistance for “end-contacted” metal−graphene and metal−nanotube interfaces from quantum mechanics. J Phys Chem C, 2010, 114(41), 17845

[69]

Karpiak B, Dankert A, Cummings A W, et al. 1D ferromagnetic edge contacts to 2D graphene/h-BN heterostructures. 2D Mater, 2017, 5(1), 014001

[70]

Zhang Y, Yin L, Chu J W, et al. Edge-epitaxial growth of 2D NbS2-WS2 lateral metal-semiconductor heterostructures. Adv Mater, 2018, 30(40), 1803665

[71]

Gong Y J, Lei S D, Ye G L, et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett, 2015, 15(9), 6135

[72]

Gong Y G, Lin Z, Ye G L, et al. Tellurium-assisted low-temperature synthesis of MoS2 and WS2 monolayers. ACS Nano, 2015, 9(12), 11658

[73]

Ji Q Q, Li C, Wang J L, et al. Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications. Nano Lett, 2017, 17(8), 4908

[74]

Zhou J D, Lin J H, Huang X W, et al. A library of atomically thin metal chalcogenides. Nature, 2018, 556, 358

[75]

Leong W S, Ji Q Q, Mao N N, et al. Synthetic lateral metal–semiconductor heterostructures of transition metal disulfides. J Am Chem Soc, 2018, 140(39), 12354

[76]

Lee C S, Oh S J, Heo H, et al. Epitaxial van der Waals contacts between transition-metal dichalcogenide monolayer polymorphs. Nano Lett, 2019, 19(3), 1814

[77]

Wu R X, Tao Q Y, Dang W Q, et al. van der Waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2. Adv Funct Mater, 2019, 29(12), 1806611

[78]

Jin Y Y, Zeng Z Y, Xu Z W, et al. Synthesis and transport properties of degenerate p-type Nb-doped WS2 monolayers. Chem Mater, 2019, 31(9), 3534

[79]

Suh J, Park T E, Lin D Y, et al. Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. Nano Lett, 2014, 14(12), 6976

[80]

Kappera R, Voiry D, Yalcin S E, et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat Mater, 2014, 13, 1128

[81]

Zhu J Q, Wang Z G, Yu H, et al. Argon plasma induced phase transition in monolayer MoS2. J Am Chem Soc, 2017, 139(30), 10216

[82]

Gong Y J, Yuan H T, Wu C L, et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat Nano, 2018, 13, 294

[83]

Schottky W. Zur Halbleitertheorie der sperrschicht-und spitzengleichrichter. Z Phys A, 1939, 113, 367

[84]

Mott N. The theory of crystal rectifers. Proc R Soc Lond A, 1939, 171, 27

[85]

Bardeen J. Surface states and rectifcation at a metal semi-conductor contact. Phys Rev, 1947, 71, 717

[86]

Das S, Chen H Y, Penumatcha A V, et al. High performance multi-layer MoS2 transistors with scandium contacts. Nano Lett, 2013, 13(1), 100

[87]

Wang Y, Kim J C, Wu R J, et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature, 2019, 568, 70

[88]

Kang J, Sarkar D, Liu W, et al. A computational study of metal­contacts to beyond­graphene 2D semiconductor materials. IEEE Int Electron Devices Meet, 2012, 407

[89]

Khatami Y, Li H, Xu C, et al. Metal­-to-­multilayer-­graphene contact—Part II: analysis of contact resistance. IEEE Trans Electron Devices, 2012, 59, 2453

[90]

Khatami Y, Li H, Xu C, et al. Metal­-to-­multilayer-­graphene contact—Part I: contact resistance modeling. IEEE Trans Electron Devices, 2012, 59, 2444

[91]

Zhao M, Ye Y, Han Y, et al. Large-scale chemical assembly of atomically thin transistors and circuits. Nat Nano, 2016, 11, 954

[92]

Hong W, Shim G W, Yang S Y, et al. Improved electrical contact properties of MoS2-graphene lateral heterostructure. Adv Funct Mater, 2019, 29(6), 1807550

[93]

Leong W S, Nai C T, Tong J T L. What does annealing do to metal-graphene contacts. Nano Lett, 2014, 14(7), 3840

[94]

Léonard F, Talin A A. Electrical contacts to one- and two-dimensional nanomaterials. Nat Nano, 2011, 6, 773

[95]

Heine V. Theory of surface states. Phys Rev, 1965, 138, A1689

[96]

Liu L N, Wu J X, Wu L Y, et al. Phase-selective synthesis of 1T’ MoS2 monolayers and heterophase bilayers. Nat Mater, 2018, 17, 1108

[97]

Zheng J Y, Yan X X, Lu Z X, et al. High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv Mater, 2017, 29(13), 1604540

[98]

Gong C, Colombo L, Wallace R M, et al. The unusual mechanism of partial fermi level pinning at metal –MoS2 interfaces. Nano Lett, 2014, 14(4), 1714

[99]

Saidi W A. Trends in the adsorption and growth morphology of metals on the MoS2 (001) surface. Cryst Growth Des, 2015, 15(7), 3190

[100]

Meng L J, Ma Y, Si K P, et al. Recent advances of phase engineering in group VI transition metal dichalcogenides. Tungsten, 2019, 1, 46

[101]

Li J, Yang X D, Liu Y, et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature, 2020, 579, 368

[1]

Schaller R. Moore's law: past, present and future. IEEE Spectrum, 1997, 34(6), 52

[2]

Frank D J, Dennard R H, Nowak E, et al. Device scaling limits of Si MOSFETs and their application dependencies. Proc IEEE, 2001, 89(3), 259

[3]

Sarkar D, Xie X J, Liu W, et al. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature, 2015, 526, 91

[4]

Arnold A J, Razavieh A, Nas J R, et al. Mimicking neurotransmitter release in chemical synapses via hysteresis engineering in MoS2 transistors. ACS Nano, 2017, 11(3), 3110

[5]

Gong Y J, Shi G, Zhang Z H, et al. Direct chemical conversion of graphene to boronand nitrogen-and carbon-containing atomic layers. Nat Common, 2014, 5, 3193

[6]

Xie Y L, Lian B, Jäck B, et al. Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene. Nature, 2019, 572, 101

[7]

Li L F, Liu W, Gao A Y, et al. Plasmon excited ultrahot carriers and negative differential photoresponse in a vertical graphene van der Waals heterostructure. Nano Lett, 2019, 19(5), 3295

[8]

Novoselov K S, Geim A K, Morozov S V, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438, 197

[9]

Zhang Y B, Tan Y W, Stormer H L, et al. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 2005, 438, 201

[10]

Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887), 385

[11]

Liu Y P, Yudhistira I, Yang M, et al. Phonon-mediated colossal magnetoresistance in graphene/black phosphorus heterostructures. Nano Lett, 2018, 18(6), 3377

[12]

Huang S Y, Zhang G W, Fan F R, et al. Strain-tunable van der Waals interactions in few-layer black phosphorus. Nat Common, 2019, 10, 2447

[13]

Chaudhary K, Tamagnone M, Rezaee M, et al. Engineering phonon polaritons in van der Waals heterostructures to enhance in-plane optical anisotropy. Sci Adv, 2019, 5(4), eaau7171

[14]

Kim J M, Baik S S, Ryu S H, et al. Observation of tunable band gap and anisotropic Dirac semimetal state in black phosphorus. Science, 2015, 349(6249), 723

[15]

Peng R M, Khaliji K, Youngblood N, et al. Midinfrared electro-optic modulation in few-layer black phosphorus. Nano Lett, 2017, 17(10), 6315

[16]

Liu Z, Gong Y G, Zhou W, et al. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat Commun, 2013, 4, 2541

[17]

Wu E X, Xie Y, Zhang J, et al. Dynamically controllable polarity modulation of MoTe2 field-effect transistors through ultraviolet light and electrostatic activation. Sci Adv, 2019, 5(5), eaav3430

[18]

Park H J, Tay R Y J, Wang X, et al. Double-spiral hexagonal boron nitride and shear strained coalescence boundary. Nano Lett, 2019, 19(7), 4229

[19]

Song L, Ci L J, Lu H, et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett, 2010, 10(8), 3209

[20]

Ci L J, Song L, Jin C J, et al. Atomic layers of hybridized boron nitride and graphene domains. Nat Mater, 2010, 9, 430

[21]

Gong Y G, Lin J H, Wang X L, et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater, 2014, 13, 1135

[22]

Gong Y G, Liu Z, Lupini A R, et al. Band gap engineering and layer-by-layer mapping of selenium doped molybdenum disulfide. Nano Lett, 2014, 14(2), 442

[23]

Ma Y, Ajayan P M, Gong Y J, et al. Recent advances in synthesis and applications of 2D junctions. Small, 2018, 14(38), 1801606

[24]

Lin Y C, Li S S, Komsa H P, et al. Revealing the atomic defects of WS2 governing its distinct optical emissions. Adv Funct Mater, 2017, 28(4), 1704210

[25]

Sun L F, Leong W S, Yang S Z, et al. Concurrent synthesis of high-performance monolayer transition metal disulfdes. Adv Funct Mater, 2017, 27(15), 1605896

[26]

Zhou Y, Jang H J, Woods J M, et al. Direct synthesis of large-scale WTe2 thin films with low thermal conductivity. Adv Funct Mater, 2017, 27(8), 1605928

[27]

Zhao Y D, Qiao J S, Yu P, et al. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv Mater, 2017, 28(12), 2399

[28]

Wu J X, Liu Y J, Tan Z J, et al. Chemical patterning of high-mobility semiconducting 2D Bi2O2Se crystals for integrated optoelectronic devices. Adv Mater, 2017, 29(44), 1704060

[29]

Li L, Guo Y C, Sun Y P, et al. A general method for the chemical synthesis of large-scale, seamless transition metal dichalcogenide electronics. Adv Mater, 2018, 30(12), 1706215

[30]

Huan Y H, Shi J P, Zou X L, et al. Vertical 1T-TaS2 synthesis on nanoporous gold for high-performance electrocatalytic applications. Adv Mater, 2018, 30(15), 1705916

[31]

Zhang T, Fu L. Controllable chemical vapor deposition growth of two-dimensional heterostructures. Chem, 2018, 4(4), 671

[32]

Xu R J, Jang H, Lee M H, et al. Vertical MoS2 double-layer memristor with electrochemical metallization as an atomic-scale synapse with switching thresholds approaching 100 mV. Nano Lett, 2019, 19(4), 2411

[33]

Zhu Y B, Li Y J, Arefe R A, et al. Monolayer molybdenum disulfide transistors with single-atomthick gates. Nano Lett, 2018, 18(6), 3807

[34]

Kim S, Yao Z P, Lim J M, et al. Atomic-scale observation of electrochemically reversible phase transformations in SnSe2 single crystals. Adv Mater, 2018, 30(51), 1804925

[35]

Liu C S, Yan X, Song X F, et al. A semi-floating gate memory based on van der Waals heterostructures for quasi-non-volatile applications. Nat Nano, 2018, 13, 404

[36]

Gao A Y, Lai J W, Wang Y J, et al. Observation of ballistic avalanche phenomena in nanoscale vertical InSe/BP heterostructures. Nat Nano, 2019, 14, 217

[37]

Das S, Robinson J A, Dubey M, et al. Beyond graphene: progress in novel two dimensional materials and van der Waals solids. Annu Rev Mater Res, 2015, 45, 1

[38]

Sangwan V K, Beck M E, Henning A, et al. Self-aligned van der Waals heterojunction diodes and transistors. Nano Lett, 2018, 18(2), 1421

[39]

Lembke D, Kis A. Breakdown of high-performance monolayer MoS2 transistors. ACS Nano, 2012, 6(11), 10070

[40]

Manzeli S, Ovchinnikov D, Pasquier D, et al. 2D transition metal dichalcogenides. Nat Rev Mater, 2017, 2, 17033

[41]

Luo W, Zhu M J, Peng G, et al. Carrier modulation of ambipolar few-layer MoTe2 transistors by MgO surface charge transfer doping. Adv Mater, 2018, 28(15), 1704539

[42]

Avsar A, Marinov K, Marin E G, et al. Reconfgurable diodes based on vertical WSe2 transistors with van der Waals bonded contacts. Adv Mater, 2018, 30(18), 17072000

[43]

Kim S, Maassen J, Lee J, et al. Interstitial Mo-assisted photovoltaic effect in multilayer MoSe2 phototransistors. Adv Mater, 2018, 30(12), 1705542

[44]

Song S H, Joo M K, Neumann M, et al. Probing defect dynamics in monolayer MoS2 via noise nanospectroscopy. Nat Commun, 2017, 8, 2121

[45]

Tian H, Guo Q S, Xie Y J, et al. Anisotropic black phosphorus synaptic device for neuromorphic applications. Adv Mater, 2016, 28(25), 4991

[46]

Jena D, Banerjee K, Xing G H, et al. 2D crystal semiconductors: Intimate contacts. Nat Mater, 2014, 13, 2640

[47]

Xu L P, Zhang P, Jiang H N, et al. Large-scale growth and field-effect transistors electrical engineering of atomic-layer SnS2. Small, 2019, 15(46), 1904116

[48]

Han G H, Duong D L, Keum D H, et al. Van der Waals metallic transition metal dichalcogenides. Chem Rev, 2018, 118(13), 6297

[49]

Schulman D S, Arnold A J, Das S. Contact engineering for 2D materials and devices. Chem Soc Rev, 2018, 47(9), 3037

[50]

Baranowski M, Surrente A, Klopotowski L, et al. Probing the interlayer exciton physics in a MoS2/MoSe2/MoS2 van der Waals heterostructure. Nano Lett, 2017, 17(10), 6360

[51]

Islam M A, Kim J H, Schropp A, et al. Centimeter-scale 2D van der Waals vertical heterostructures integrated on deformable substrates enabled by gold sacrificial layer-assisted growth. Nano Lett, 2017, 17(10), 6157

[52]

Yan C Y, Gong C H, Wang P H, et al. 2D group IVB transition metal dichalcogenides. Adv Funct Mater, 2018, 28(39), 1803305

[53]

Voiry D, Mohite A, Chhowalla M. Phase engineering of transition metal dichalcogenides. Chem Soc Rev, 2015, 44, 2702

[54]

Wang X S, Song Z G, Wen W, et al. Potential 2D materials with phase transitions: structure, synthesis, and device applications. Adv Mater, 2019, 31(45), 1804682

[55]

Stark M S, Kuntz K L, Martens S J, et al. Intercalation of layered materials from bulk to 2D. Adv Mater, 2019, 31(27), 1808213

[56]

Li H, Ruan S C, Zeng Y J. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: new frontiers of spintronics. Adv Mater, 2019, 31(27), 1900065

[57]

Allain A, Kang J H, Banerjee K, et al. Electrical contacts to two-dimensional semiconductors. Nat Mater, 2015, 14, 1195

[58]

Kang J, Liu W, Sarkar D. Computational study of metal contacts to monolayer transition­metal dichalcogenide semiconductors. Phys Rev X, 2014, 4(3), 031005

[59]

Ranuárez J C, Deen M J, Chen C H. A review of gate tunneling current in MOS devices. Microelectron Reliab, 2016, 46(12), 1939

[60]

Liu Y, Guo J, Zhu E B, et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature, 2018, 557, 696

[61]

English C D, Shine G, Dorgan V E, et al. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett, 2016, 16(6), 3824

[62]

Stokbro K, Engelund M, Blom A. Atomic­scale model for the contact resistance of the nickel­graphene interface. Phys Rev B, 2012, 85(16), 165442

[63]

Popov I, Seifert G, Tománek D. Designing electrical contacts to MoS2 monolayers: a computational study. Phys Rev Lett, 2012, 108(15), 156802

[64]

Liu W, Kang J H, Cao W, et al. High­ performance few­ layer­ MoS2 field-effect-transistor with record low contact­resistance. IEEE Int Electron Devices Meet, 2013, 19.4. 1

[65]

Wang L, Meric I, Huang P Y, et al. One-dimensional electrical contact to a two-dimensional material. Science, 2013, 342(6158), 614

[66]

Cui X, Lee G H, Kim Y D, et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat Mater, 2015, 10, 534

[67]

Chai Y, Ionescu R, Su S S, et al. Making one-dimensional electrical contacts to molybdenum disulfid-based heterostructures through plasma etching. Phys Status Solidi A, 2016, 213(5), 1358

[68]

Matsuda Y, Deng W Q, Goddard W A. Contact resistance for “end-contacted” metal−graphene and metal−nanotube interfaces from quantum mechanics. J Phys Chem C, 2010, 114(41), 17845

[69]

Karpiak B, Dankert A, Cummings A W, et al. 1D ferromagnetic edge contacts to 2D graphene/h-BN heterostructures. 2D Mater, 2017, 5(1), 014001

[70]

Zhang Y, Yin L, Chu J W, et al. Edge-epitaxial growth of 2D NbS2-WS2 lateral metal-semiconductor heterostructures. Adv Mater, 2018, 30(40), 1803665

[71]

Gong Y J, Lei S D, Ye G L, et al. Two-step growth of two-dimensional WSe2/MoSe2 heterostructures. Nano Lett, 2015, 15(9), 6135

[72]

Gong Y G, Lin Z, Ye G L, et al. Tellurium-assisted low-temperature synthesis of MoS2 and WS2 monolayers. ACS Nano, 2015, 9(12), 11658

[73]

Ji Q Q, Li C, Wang J L, et al. Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications. Nano Lett, 2017, 17(8), 4908

[74]

Zhou J D, Lin J H, Huang X W, et al. A library of atomically thin metal chalcogenides. Nature, 2018, 556, 358

[75]

Leong W S, Ji Q Q, Mao N N, et al. Synthetic lateral metal–semiconductor heterostructures of transition metal disulfides. J Am Chem Soc, 2018, 140(39), 12354

[76]

Lee C S, Oh S J, Heo H, et al. Epitaxial van der Waals contacts between transition-metal dichalcogenide monolayer polymorphs. Nano Lett, 2019, 19(3), 1814

[77]

Wu R X, Tao Q Y, Dang W Q, et al. van der Waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2. Adv Funct Mater, 2019, 29(12), 1806611

[78]

Jin Y Y, Zeng Z Y, Xu Z W, et al. Synthesis and transport properties of degenerate p-type Nb-doped WS2 monolayers. Chem Mater, 2019, 31(9), 3534

[79]

Suh J, Park T E, Lin D Y, et al. Doping against the native propensity of MoS2: degenerate hole doping by cation substitution. Nano Lett, 2014, 14(12), 6976

[80]

Kappera R, Voiry D, Yalcin S E, et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat Mater, 2014, 13, 1128

[81]

Zhu J Q, Wang Z G, Yu H, et al. Argon plasma induced phase transition in monolayer MoS2. J Am Chem Soc, 2017, 139(30), 10216

[82]

Gong Y J, Yuan H T, Wu C L, et al. Spatially controlled doping of two-dimensional SnS2 through intercalation for electronics. Nat Nano, 2018, 13, 294

[83]

Schottky W. Zur Halbleitertheorie der sperrschicht-und spitzengleichrichter. Z Phys A, 1939, 113, 367

[84]

Mott N. The theory of crystal rectifers. Proc R Soc Lond A, 1939, 171, 27

[85]

Bardeen J. Surface states and rectifcation at a metal semi-conductor contact. Phys Rev, 1947, 71, 717

[86]

Das S, Chen H Y, Penumatcha A V, et al. High performance multi-layer MoS2 transistors with scandium contacts. Nano Lett, 2013, 13(1), 100

[87]

Wang Y, Kim J C, Wu R J, et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature, 2019, 568, 70

[88]

Kang J, Sarkar D, Liu W, et al. A computational study of metal­contacts to beyond­graphene 2D semiconductor materials. IEEE Int Electron Devices Meet, 2012, 407

[89]

Khatami Y, Li H, Xu C, et al. Metal­-to-­multilayer-­graphene contact—Part II: analysis of contact resistance. IEEE Trans Electron Devices, 2012, 59, 2453

[90]

Khatami Y, Li H, Xu C, et al. Metal­-to-­multilayer-­graphene contact—Part I: contact resistance modeling. IEEE Trans Electron Devices, 2012, 59, 2444

[91]

Zhao M, Ye Y, Han Y, et al. Large-scale chemical assembly of atomically thin transistors and circuits. Nat Nano, 2016, 11, 954

[92]

Hong W, Shim G W, Yang S Y, et al. Improved electrical contact properties of MoS2-graphene lateral heterostructure. Adv Funct Mater, 2019, 29(6), 1807550

[93]

Leong W S, Nai C T, Tong J T L. What does annealing do to metal-graphene contacts. Nano Lett, 2014, 14(7), 3840

[94]

Léonard F, Talin A A. Electrical contacts to one- and two-dimensional nanomaterials. Nat Nano, 2011, 6, 773

[95]

Heine V. Theory of surface states. Phys Rev, 1965, 138, A1689

[96]

Liu L N, Wu J X, Wu L Y, et al. Phase-selective synthesis of 1T’ MoS2 monolayers and heterophase bilayers. Nat Mater, 2018, 17, 1108

[97]

Zheng J Y, Yan X X, Lu Z X, et al. High-mobility multilayered MoS2 flakes with low contact resistance grown by chemical vapor deposition. Adv Mater, 2017, 29(13), 1604540

[98]

Gong C, Colombo L, Wallace R M, et al. The unusual mechanism of partial fermi level pinning at metal –MoS2 interfaces. Nano Lett, 2014, 14(4), 1714

[99]

Saidi W A. Trends in the adsorption and growth morphology of metals on the MoS2 (001) surface. Cryst Growth Des, 2015, 15(7), 3190

[100]

Meng L J, Ma Y, Si K P, et al. Recent advances of phase engineering in group VI transition metal dichalcogenides. Tungsten, 2019, 1, 46

[101]

Li J, Yang X D, Liu Y, et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature, 2020, 579, 368

[1]

Huihui Yang, Feng Gao, Mingjin Dai, Dechang Jia, Yu Zhou, Ping'an Hu. Recent advances in preparation,properties and device applications of two-dimensional h-BN and its vertical heterostructures. J. Semicond., 2017, 38(3): 031004. doi: 10.1088/1674-4926/38/3/031004

[2]

Hongtao Ren, Yachao Liu, Lei Zhang, Kai Liu. Synthesis, properties, and applications of large-scale two-dimensional materials by polymer-assisted deposition. J. Semicond., 2019, 40(6): 061003. doi: 10.1088/1674-4926/40/6/061003

[3]

Shuliang Ren, Qinghai Tan, Jun Zhang. Review on the quantum emitters in two-dimensional materials. J. Semicond., 2019, 40(7): 071903. doi: 10.1088/1674-4926/40/7/071903

[4]

Li Shuping, Wang Renzhi. Average-Bond-Energy and Fermi Level on Metal-Semiconductor Contacts. J. Semicond., 2006, 27(5): 834.

[5]

Xudong Qin, Yonghai Chen, Yu Liu, Laipan Zhu, Yuan Li, Qing Wu, Wei Huang. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials. J. Semicond., 2016, 37(1): 013002. doi: 10.1088/1674-4926/37/1/013002

[6]

Wang Wei, Wang Jing, Zhao Mei, Liang Renrong, Xu Jun. Fermi level depinning by a C-containing layer in a metal/Ge structure by using a chemical bath. J. Semicond., 2012, 33(10): 102004. doi: 10.1088/1674-4926/33/10/102004

[7]

Nengjie Huo, Yujue Yang, Jingbo Li. Optoelectronics based on 2D TMDs and heterostructures. J. Semicond., 2017, 38(3): 031002. doi: 10.1088/1674-4926/38/3/031002

[8]

Jiajun Deng, Pei Chen, Wenjie Wang, Bing Hu, Jiantao Che, Lin Chen, Hailong Wang, Jianhua Zhao. The structural and magnetic properties of Fe/(Ga, Mn)As heterostructures. J. Semicond., 2013, 34(8): 083003. doi: 10.1088/1674-4926/34/8/083003

[9]

Liu Zongshun, Zhao Degang, Zhu Jianjun, Zhang Shuming, Duan Lihong, Wang Hai, Shi Yongsheng, Liu Wenbao, Zhang Shuang, Jiang Desheng, Yang Hui. Analysis and Performance of a High Responsivity GaN Schottky-Barrier Ultraviolet Detector. J. Semicond., 2007, 28(4): 592.

[10]

Haolin Wang, Yajuan Zhao, Yong Xie, Xiaohua Ma, Xingwang Zhang. Recent progress in synthesis of two-dimensional hexagonal boron nitride. J. Semicond., 2017, 38(3): 031003. doi: 10.1088/1674-4926/38/3/031003

[11]

Jingjing Zhang, Jin Yang, Liangzhong Lin, JiaJi Zhu. An antiferromagnetic two-dimensional material: chromium diiodides monolayer. J. Semicond., 2020, 41(0): -1.

[12]

Manoj Kumar, Yogesh Pratap, Subhasis Haldar, Mridula Gupta, R. S. Gupta. Cylindrical gate all around Schottky barrier MOSFET with insulated shallow extensions at source/drain for removal of ambipolarity: a novel approach. J. Semicond., 2017, 38(12): 124002. doi: 10.1088/1674-4926/38/12/124002

[13]

Yuanhui Sun, Xinjiang Wang, Xin-Gang Zhao, Zhiming Shi, Lijun Zhang. First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides. J. Semicond., 2018, 39(7): 072001. doi: 10.1088/1674-4926/39/7/072001

[14]

Xin Cong, Miaoling Lin, Ping-Heng Tan. Lattice vibration and Raman scattering of two-dimensional van der Waals heterostructure. J. Semicond., 2019, 40(9): 091001. doi: 10.1088/1674-4926/40/9/091001

[15]

Yuanyuan Jin, Huimin Li, Song Liu. Growth of large-scale two-dimensional insulator Na2Ta4O11 through chemical vapor deposition. J. Semicond., 2020, 41(7): 072901. doi: 10.1088/1674-4926/41/7/072901

[16]

Luan Suzhen, Liu Hongxia, Jia Renxu, Cai Naiqiong, Wang Jin, Kuang Qianwei. An Analytical Model of Drain Current for Ultra-Thin Body and Double-Gate Schottky Source/Drain MOSFETs Accounting for Quantum Effects. J. Semicond., 2008, 29(5): 869.

[17]

Bi Jinshun, Hai Chaohe. Study on the Characteristics of SOI DTMOS with Reverse Schottky Barriers. J. Semicond., 2006, 27(9): 1526.

[18]

Xu Bojuan, Du Gang, Xia Zhiliang, Zeng Lang, Han Ruqi, Liu Xiaoyan. Threshold Voltage Model of a Double-Gate MOSFET with Schottky Source and Drain. J. Semicond., 2007, 28(8): 1179.

[19]

Haizhen Wang, Chen Fang, Hongmei Luo, Dehui Li. Recent progress of the optoelectronic properties of 2D Ruddlesden-Popper perovskites. J. Semicond., 2019, 40(4): 041901. doi: 10.1088/1674-4926/40/4/041901

[20]

Jie Jiang, Zhenhua Ni. Defect engineering in two-dimensional materials. J. Semicond., 2019, 40(7): 070403. doi: 10.1088/1674-4926/40/7/070403

Search

Advanced Search >>

GET CITATION

P Zhang, Y W Zhang, Y Wei, H N Jiang, X G Wang, Y J Gong, Contact engineering for two-dimensional semiconductors[J]. J. Semicond., 2020, 41(7): 071901. doi: 10.1088/1674-4926/41/7/071901.

Export: BibTex EndNote

Article Metrics

Article views: 1201 Times PDF downloads: 98 Times Cited by: 0 Times

History

Manuscript received: 26 March 2020 Manuscript revised: 01 April 2020 Online: Accepted Manuscript: 27 May 2020 Uncorrected proof: 03 June 2020 Published: 02 July 2020

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误