J. Semicond. > Volume 41 > Issue 7 > Article Number: 072901

Growth of large-scale two-dimensional insulator Na2Ta4O11 through chemical vapor deposition

Yuanyuan Jin , Huimin Li , and Song Liu ,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: The insulator Na2Ta4O11 has been considered as a potential photocatalyst. However, little attention has been given to the synthesis of Na2Ta4O11 nanoparticles, let alone the growth of two-dimensional (2D) layered Na2Ta4O11 flake, which may bring innovative properties and promising applications. Here, the 2D thin-layer Na2Ta4O11 flake was first produced by chemical vapor deposition (CVD) method, with the smallest thickness reported currently. We have also synthesized 2D Na2Ta4O11 flake over 100 μm, which was the largest value over the 2D level reported to date. Our work proposed novel strategies to synthesize other 2D metal oxide material and endow the Na2Ta4O11 more properties and applications.

Key words: Na2Ta4O11two-dimensional materialschemical vapor depositioninsulator

Abstract: The insulator Na2Ta4O11 has been considered as a potential photocatalyst. However, little attention has been given to the synthesis of Na2Ta4O11 nanoparticles, let alone the growth of two-dimensional (2D) layered Na2Ta4O11 flake, which may bring innovative properties and promising applications. Here, the 2D thin-layer Na2Ta4O11 flake was first produced by chemical vapor deposition (CVD) method, with the smallest thickness reported currently. We have also synthesized 2D Na2Ta4O11 flake over 100 μm, which was the largest value over the 2D level reported to date. Our work proposed novel strategies to synthesize other 2D metal oxide material and endow the Na2Ta4O11 more properties and applications.

Key words: Na2Ta4O11two-dimensional materialschemical vapor depositioninsulator



References:

[1]

Machida M, Yabunaka J I, Kijima T. Efficient photocatalytic decomposition of water with the novel layered tantalate RbNdTa2O7. Chem Commun, 1999, 30(15), 1939

[2]

Tanaka T, Nojima H, Yamamoto T, et al. Structure of surface tantalate species and photo-oxidation of carbon monoxide over silica-supported tantalum oxide. Phys Chem Chem Phys, 1999, 1(22), 5235

[3]

Suzuki S, Saito H, Yubuta K, et al. Growth of millimeter-sized platy single crystals of NaTaO3 from Na2MoO4 flux. Cryst Growth Des, 2019, 19(7), 3607

[4]

Ivanova I, Kandiel T A, Cho Y J, et al. Mechanisms of photocatalytic molecular hydrogen and molecular oxygen evolution over La-doped NaTaO3 particles: effect of different cocatalysts and their specific activity. ACS Catal, 2018, 8(3), 2313

[5]

Sudrajat H, Zhou Y, Sasaki T, et al. The atomic-scale structure of LaCrO3–NaTaO3 solid solution photocatalysts with enhanced electron population. Phys Chem Chem Phys, 2019, 21, 5148

[6]

Kishimoto K, Yoshio M, Mukai T, et al. Nanostructured anisotropic ion-conductive films. J Am Chem Soc, 2003, 125(11), 3196

[7]

Su Y G, Yang X, Wang T T, et al. Sol-gel synthesis of Na2Ta4O11 nanocrystals showing high efficient photocatalytic performance. Adv Mater Res, 2014, 1058, 35

[8]

Mattes R, Schaper J. Crystal structure of Na2Ta4O11. Revue de Chimie Minerale, 1985, 22(6), 817

[9]

Ratnamala, A, Suresh, G, Kumari, V, et al. Template synthesized nano-crystalline natrotantite: preparation and photocatalytic activity for water decomposition. Mater Chem Physs, 2008, 110, 176

[10]

McLamb N, Sahoo P P, Fuoco L, et al. Flux growth of single-crystal Na2Ta4O11 particles and their photocatalytic hydrogen production. Cryst Growth Des, 2013, 13(6), 2322

[11]

Teshima K, Tomomatsu D, Suzuki T, et al. Growth of Na2Ta4O11 crystals from a Na2Mo2O7 flux. Cryst Growth Des, 2006, 6(1), 18

[12]

Kim Y, Kim S, Lee W H, et al. Direct transfer of CVD-grown graphene onto eco-friendly cellulose film for highly sensitive gas sensor. Cellulose, 2020, 27(3), 1685

[13]

Kumar D, Ghadai R K, Das S, et al. Effect of nitrogen flow rate on the mechanical properties of CVD-deposited SiCN thin films. Bull Mater Sci, 2019, 42(5), 251

[14]

Jin Y, Zeng Z, Xu Z, et al. Synthesis and transport properties of degenerate p-type Nb-doped WS2 monolayers. Chem Mater, 2019, 31(9), 3534

[15]

Kwon K C, Kim C, Le Q V, et al. Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices. ACS Nano, 2015, 9(4), 4146

[16]

Ko K Y, Lee S, Park K, et al. High-performance gas sensor using a large-area WS2 xSe2–2 x alloy for low-power operation wearable applications. ACS Appl Mater Interfaces, 2018, 10(40), 34163

[17]

Wang S, Rong Y, Fan Y, et al. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem Mater, 2014, 26(22), 6371

[18]

Harb M, Masih D, Ould-Chikh S, et al. Determination of the electronic structure and UV–Vis absorption properties of (Na2– xCu x)Ta4O11 from first-principle calculations. J Phys Chem C, 2013, 117(34), 17477

[19]

Palasyuk O, Palasyuk A, Maggard P A. Site-differentiated solid solution in (Na1− xCu x)2Ta4O11 and its electronic structure and optical properties. Inorg Chem, 2010, 49(22), 10571

[20]

Mobin M, Malik A. Studies on the interactions of transition metal oxides and sodium sulfate in the temperature range 900–1200 K in oxygen. J Alloy Compd, 1996, 235, 97

[21]

Muñoz-Márquez M A, Zarrabeitia M, Castillo-Martínez E, et al. Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries: XPS and auger parameter analysis. ACS Appl Mater Interfaces, 2015, 7(14), 7801

[22]

Kotsis K, Staemmler V. Ab initio calculations of the O1s XPS spectra of ZnO and Zn oxo compounds. Phys Chem Chem Phys, 2006, 8(13), 1490

[23]

Grilli R, Simpson R, Mallinson C, et al. Comparison of Ar+ monoatomic and cluster ion sputtering of Ta2O5 at different ion energies, by XPS: Part 2-cluster ions. Surf Sci Spectra, 2014, 21, 68

[24]

Van Ngoc H, Qian Y, Han S K, et al. PMMA-etching-free transfer of wafer-scale chemical vapor deposition two-dimensional atomic crystal by a water soluble polyvinyl alcohol polymer method. Sci Rep, 2016, 6(1), 33096

[25]

Ithurria S, Talapin D V. Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. J Am Chem Soc, 2012, 134(45), 18585

[1]

Machida M, Yabunaka J I, Kijima T. Efficient photocatalytic decomposition of water with the novel layered tantalate RbNdTa2O7. Chem Commun, 1999, 30(15), 1939

[2]

Tanaka T, Nojima H, Yamamoto T, et al. Structure of surface tantalate species and photo-oxidation of carbon monoxide over silica-supported tantalum oxide. Phys Chem Chem Phys, 1999, 1(22), 5235

[3]

Suzuki S, Saito H, Yubuta K, et al. Growth of millimeter-sized platy single crystals of NaTaO3 from Na2MoO4 flux. Cryst Growth Des, 2019, 19(7), 3607

[4]

Ivanova I, Kandiel T A, Cho Y J, et al. Mechanisms of photocatalytic molecular hydrogen and molecular oxygen evolution over La-doped NaTaO3 particles: effect of different cocatalysts and their specific activity. ACS Catal, 2018, 8(3), 2313

[5]

Sudrajat H, Zhou Y, Sasaki T, et al. The atomic-scale structure of LaCrO3–NaTaO3 solid solution photocatalysts with enhanced electron population. Phys Chem Chem Phys, 2019, 21, 5148

[6]

Kishimoto K, Yoshio M, Mukai T, et al. Nanostructured anisotropic ion-conductive films. J Am Chem Soc, 2003, 125(11), 3196

[7]

Su Y G, Yang X, Wang T T, et al. Sol-gel synthesis of Na2Ta4O11 nanocrystals showing high efficient photocatalytic performance. Adv Mater Res, 2014, 1058, 35

[8]

Mattes R, Schaper J. Crystal structure of Na2Ta4O11. Revue de Chimie Minerale, 1985, 22(6), 817

[9]

Ratnamala, A, Suresh, G, Kumari, V, et al. Template synthesized nano-crystalline natrotantite: preparation and photocatalytic activity for water decomposition. Mater Chem Physs, 2008, 110, 176

[10]

McLamb N, Sahoo P P, Fuoco L, et al. Flux growth of single-crystal Na2Ta4O11 particles and their photocatalytic hydrogen production. Cryst Growth Des, 2013, 13(6), 2322

[11]

Teshima K, Tomomatsu D, Suzuki T, et al. Growth of Na2Ta4O11 crystals from a Na2Mo2O7 flux. Cryst Growth Des, 2006, 6(1), 18

[12]

Kim Y, Kim S, Lee W H, et al. Direct transfer of CVD-grown graphene onto eco-friendly cellulose film for highly sensitive gas sensor. Cellulose, 2020, 27(3), 1685

[13]

Kumar D, Ghadai R K, Das S, et al. Effect of nitrogen flow rate on the mechanical properties of CVD-deposited SiCN thin films. Bull Mater Sci, 2019, 42(5), 251

[14]

Jin Y, Zeng Z, Xu Z, et al. Synthesis and transport properties of degenerate p-type Nb-doped WS2 monolayers. Chem Mater, 2019, 31(9), 3534

[15]

Kwon K C, Kim C, Le Q V, et al. Synthesis of atomically thin transition metal disulfides for charge transport layers in optoelectronic devices. ACS Nano, 2015, 9(4), 4146

[16]

Ko K Y, Lee S, Park K, et al. High-performance gas sensor using a large-area WS2 xSe2–2 x alloy for low-power operation wearable applications. ACS Appl Mater Interfaces, 2018, 10(40), 34163

[17]

Wang S, Rong Y, Fan Y, et al. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem Mater, 2014, 26(22), 6371

[18]

Harb M, Masih D, Ould-Chikh S, et al. Determination of the electronic structure and UV–Vis absorption properties of (Na2– xCu x)Ta4O11 from first-principle calculations. J Phys Chem C, 2013, 117(34), 17477

[19]

Palasyuk O, Palasyuk A, Maggard P A. Site-differentiated solid solution in (Na1− xCu x)2Ta4O11 and its electronic structure and optical properties. Inorg Chem, 2010, 49(22), 10571

[20]

Mobin M, Malik A. Studies on the interactions of transition metal oxides and sodium sulfate in the temperature range 900–1200 K in oxygen. J Alloy Compd, 1996, 235, 97

[21]

Muñoz-Márquez M A, Zarrabeitia M, Castillo-Martínez E, et al. Composition and evolution of the solid-electrolyte interphase in Na2Ti3O7 electrodes for Na-ion batteries: XPS and auger parameter analysis. ACS Appl Mater Interfaces, 2015, 7(14), 7801

[22]

Kotsis K, Staemmler V. Ab initio calculations of the O1s XPS spectra of ZnO and Zn oxo compounds. Phys Chem Chem Phys, 2006, 8(13), 1490

[23]

Grilli R, Simpson R, Mallinson C, et al. Comparison of Ar+ monoatomic and cluster ion sputtering of Ta2O5 at different ion energies, by XPS: Part 2-cluster ions. Surf Sci Spectra, 2014, 21, 68

[24]

Van Ngoc H, Qian Y, Han S K, et al. PMMA-etching-free transfer of wafer-scale chemical vapor deposition two-dimensional atomic crystal by a water soluble polyvinyl alcohol polymer method. Sci Rep, 2016, 6(1), 33096

[25]

Ithurria S, Talapin D V. Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. J Am Chem Soc, 2012, 134(45), 18585

[1]

Guoguo Yan, Feng Zhang, Yingxi Niu, Fei Yang, Lei Wang, Wanshun Zhao, Guosheng Sun, Yiping Zeng. Chloride-based fast homoepitaxial growth of 4H-SiC films in a vertical hot-wall CVD. J. Semicond., 2016, 37(6): 063001. doi: 10.1088/1674-4926/37/6/063001

[2]

Shuliang Ren, Qinghai Tan, Jun Zhang. Review on the quantum emitters in two-dimensional materials. J. Semicond., 2019, 40(7): 071903. doi: 10.1088/1674-4926/40/7/071903

[3]

Xudong Qin, Yonghai Chen, Yu Liu, Laipan Zhu, Yuan Li, Qing Wu, Wei Huang. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials. J. Semicond., 2016, 37(1): 013002. doi: 10.1088/1674-4926/37/1/013002

[4]

Tongchuan Ma, Xuanhu Chen, Fangfang Ren, Shunming Zhu, Shulin Gu, Rong Zhang, Youdou Zheng, Jiandong Ye. Heteroepitaxial growth of thick α-Ga2O3 film on sapphire (0001) by MIST-CVD technique. J. Semicond., 2019, 40(1): 012804. doi: 10.1088/1674-4926/40/1/012804

[5]

Peng Zhang, Yiwei Zhang, Yi Wei, Huaning Jiang, Xingguo Wang, Yongji Gong. Contact engineering for two-dimensional semiconductors. J. Semicond., 2020, 41(7): 071901. doi: 10.1088/1674-4926/41/7/071901

[6]

Haolin Wang, Yajuan Zhao, Yong Xie, Xiaohua Ma, Xingwang Zhang. Recent progress in synthesis of two-dimensional hexagonal boron nitride. J. Semicond., 2017, 38(3): 031003. doi: 10.1088/1674-4926/38/3/031003

[7]

Jingjing Zhang, Jin Yang, Liangzhong Lin, JiaJi Zhu. An antiferromagnetic two-dimensional material: chromium diiodides monolayer. J. Semicond., 2020, 41(0): -1.

[8]

Ce Huang, Yibo Jin, Weiyi Wang, Lei Tang, Chaoyu Song, Faxian Xiu. Manganese and chromium doping in atomically thin MoS2. J. Semicond., 2017, 38(3): 033004. doi: 10.1088/1674-4926/38/3/033004

[9]

Fang Liang, Hejun Xu, Zuoyuan Dong, Yafeng Xie, Chen Luo, Yin Xia, Jian Zhang, Jun Wang, Xing Wu. Substrates and interlayer coupling effects on Mo1−xWxSe2 alloys. J. Semicond., 2019, 40(6): 062005. doi: 10.1088/1674-4926/40/6/062005

[10]

Meng Hui, Wang Cong. Growth and Characterization of Zn Doped SnO2 Nanowires. J. Semicond., 2007, 28(S1): 267.

[11]

Yixuan Fan, Le Huang, Dechao Geng, Wenping Hu. Controlled growth of Mo2C pyramids on liquid Cu surface. J. Semicond., 2020, 41(8): 082001. doi: 10.1088/1674-4926/41/8/082001

[12]

Yuanhui Sun, Xinjiang Wang, Xin-Gang Zhao, Zhiming Shi, Lijun Zhang. First-principle high-throughput calculations of carrier effective masses of two-dimensional transition metal dichalcogenides. J. Semicond., 2018, 39(7): 072001. doi: 10.1088/1674-4926/39/7/072001

[13]

Xin Cong, Miaoling Lin, Ping-Heng Tan. Lattice vibration and Raman scattering of two-dimensional van der Waals heterostructure. J. Semicond., 2019, 40(9): 091001. doi: 10.1088/1674-4926/40/9/091001

[14]

Jiaxing Wei, Rui Xu, Yanfei Yu, Jinliang Hou, Changfeng Li. Simulation and analysis of Si deposition in turbulent CVD reactors. J. Semicond., 2014, 35(8): 083002. doi: 10.1088/1674-4926/35/8/083002

[15]

Yan Wang, Le Huang, Zhongming Wei. Photoresponsive field-effect transistors based on multilayer SnS2 nanosheets. J. Semicond., 2017, 38(3): 034001. doi: 10.1088/1674-4926/38/3/034001

[16]

Du Yuanyuan, Jie Wanqi, Li Huanyong. Synthesis of ZnS whiskers and their photoluminescence properties. J. Semicond., 2009, 30(8): 083005. doi: 10.1088/1674-4926/30/8/083005

[17]

Jinbo Pan, Qimin Yan. Data-driven material discovery for photocatalysis: a short review. J. Semicond., 2018, 39(7): 071001. doi: 10.1088/1674-4926/39/7/071001

[18]

Hongtao Ren, Yachao Liu, Lei Zhang, Kai Liu. Synthesis, properties, and applications of large-scale two-dimensional materials by polymer-assisted deposition. J. Semicond., 2019, 40(6): 061003. doi: 10.1088/1674-4926/40/6/061003

[19]

Gao Xin, Sun Guosheng, Li Jinmin, Zhao Wanshun, Wang Lei, Zhang Yongxing, Zeng Yiping. Homoepitaxial Growth and Properties of 4H-SiC by Chemical Vapor Deposition. J. Semicond., 2005, 26(S1): 70.

[20]

Li Jin, Liu Hongxia, Li Bin, Cao Lei, Yuan Bo. Two-dimensional threshold voltage analytical model of DMG strained-silicon-on-insulator MOSFETs. J. Semicond., 2010, 31(8): 084008. doi: 10.1088/1674-4926/31/8/084008

Search

Advanced Search >>

GET CITATION

Y Y Jin, H M Li, S Liu, Growth of large-scale two-dimensional insulator Na2Ta4O11 through chemical vapor deposition[J]. J. Semicond., 2020, 41(7): 072901. doi: 10.1088/1674-4926/41/7/072901.

Export: BibTex EndNote

Article Metrics

Article views: 393 Times PDF downloads: 16 Times Cited by: 0 Times

History

Manuscript received: 23 March 2020 Manuscript revised: 04 April 2020 Online: Accepted Manuscript: 25 May 2020 Uncorrected proof: 26 May 2020 Published: 02 July 2020

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误