J. Semicond. > Volume 37 > Issue 3 > Article Number: 036001

Effect of polishing parameters on abrasive free chemical mechanical planarization of semi-polar(11$\bar{2}$2) aluminum nitride surface

Khushnuma Asghar and D. Das

+ Author Affiliations + Find other works by these authors

PDF

Abstract: An abrasive free chemical mechanical planarization(AFCMP) of semi-polar(11$\bar{2}$2) AlN surface has been demonstrated. The effect of slurry pH, polishing pressure, and platen velocity on the material removal rate(MRR) and surface quality(RMS roughness) have been studied. The effect of polishing pressure on the AFCMP of the(11$\bar{2}$2) AlN surface has been compared with that of the(11$\bar{2}$2) AlGaN surface. The maximum MRR has been found to be ~562 nm/h for the semi-polar(11$\bar{2}$2) AlN surface, under the experimental conditions of 38 kPa pressure, 90 rpm platen velocity, 30 rpm carrier velocity, slurry pH 3 and 0.4 M oxidizer concentration. The best root mean square(RMS) surface roughness of ~1.2 nm and ~0.7 nm, over a large scanning area of 0.70×0.96 mm2, has been achieved on AFCMP processed semi-polar(11$\bar{2}$2) AlN and(AlGaN) surfaces using optimized slurry chemistry and processing parameters.

Key words: AlNAFCMPchemical mechanical planarizationmaterial removal ratesurface roughness

Abstract: An abrasive free chemical mechanical planarization(AFCMP) of semi-polar(11$\bar{2}$2) AlN surface has been demonstrated. The effect of slurry pH, polishing pressure, and platen velocity on the material removal rate(MRR) and surface quality(RMS roughness) have been studied. The effect of polishing pressure on the AFCMP of the(11$\bar{2}$2) AlN surface has been compared with that of the(11$\bar{2}$2) AlGaN surface. The maximum MRR has been found to be ~562 nm/h for the semi-polar(11$\bar{2}$2) AlN surface, under the experimental conditions of 38 kPa pressure, 90 rpm platen velocity, 30 rpm carrier velocity, slurry pH 3 and 0.4 M oxidizer concentration. The best root mean square(RMS) surface roughness of ~1.2 nm and ~0.7 nm, over a large scanning area of 0.70×0.96 mm2, has been achieved on AFCMP processed semi-polar(11$\bar{2}$2) AlN and(AlGaN) surfaces using optimized slurry chemistry and processing parameters.

Key words: AlNAFCMPchemical mechanical planarizationmaterial removal ratesurface roughness



References:

[1]

Slack G, Schujman S, Meyer N. Polar surface preparation of nitride substrates[J]. USS Patent, No| 0288929 A1, 2006.

[2]

Fuhrmann D, Rossow U, Netzel C. Optimizing the internal quantum efficiency of GaInN SQW structures for green light emitters[J]. Phys Status Solidi C, 2006, 3: 1966.

[3]

Nagahama S, Sugimoto Y, Kozaki T. Recent progress of AlInGaN laser diodes[J]. Proc SPIE, 2005, 5738: 57.

[4]

Haskell B A, Nakamura S, DenBaars S P. Progress in the growth of nonpolar gallium nitride[J]. Phys Status Solidi B, 2007, 244: 2847.

[5]

Schwarz U T, Kneissl M. Nitride emitters go nonpolar[J]. Phys Status Solidi RRL, 2007, 1.

[6]

Lee H, Kim D K. Investigation on thermal conductivity of aluminum nitride ceramics by FT-Raman spectroscopy[J]. J Am Ceram Soc, 2010, 93: 2167.

[7]

Kehagias T, Lahourcade L, Lotsari A. Interfacial structure of semipolar AlN grown on m-plane sapphire by MBE[J]. Phys Status Solidi B, 2010, 247: 1637.

[8]

Asghar K, Qasim M, Das D. Effect of polishing parameters on chemical mechanical planarization of C-plane(0001) gallium nitride surface using SiO2 and Al2O3 abrasives[J]. ECS J Solid State Sci Technol, 2014, 3.

[9]

Moeggenbong K. Method for polishing aluminum nitride[J]. .

[10]

Rice K, Collazo R, Tweedie J. Surface preparation and homoepitaxial deposition of AlN on(0001)-oriented AlN substrates by metalorganic chemical vapor deposition[J]. J Appl Phys, 2010, 108: 043510.

[11]

Bondokov R T, Mueller S G, Morgan K E. Large-area AlN substrates for electronic applications:an industrial perspective[J]. J Cryst Growth, 2008, 310: 4020.

[12]

Schowalter L, Lopez J M, Rojo J C. Method for polishing a substrate surface[J]. USA Patent, No. 7323414 B2, 2008.

[13]

Schowalter L, Lopez J M, Rojo J C. Method for polishing a substrate surface[J]. USA Patent, No. 0033690 A1, 2004.

[14]

Schowalter L, Lopez J M, Rojo J C. Method for polishing a substrate surface[J]. USA Patent, No. 7037838 B2, 2006.

[15]

Bobea M, Tweedie J, Bryan I. X-ray characterization techniques for the assessment of surface damage in crystalline wafers:a model study in AlN[J]. J Appl Phys, 2013, 113: 123508.

[16]

Su Jianxiu, Du Jiaxi, Ma Lijie. Material removal rate of 6H-SiC crystal substrate CMP using an alumina(Al2O3) abrasive[J]. Journal of Semiconductors, 2012, 33(10): 106003.

[17]

Wang Y L, Tseng W T, Chang S C. Chemical-mechanical polish of aluminum alloy thin films:slurry chemistries and polish mechanisms[J]. Thin Solid Films, 2005, 474: 36.

[18]

Preston F W. The theory and design of plate glass polishing machines[J]. J Soc Glass Tech, 1927, 11: 214.

[19]

Zhang K, Feng Y, Cao J. Optimization and mechanism on chemical mechanical planarization of hafnium oxide for RRAM devices[J]. ECS Journal of Solid State Science and Technology, 2014, 3: 249.

[20]

Asghar K, Das D. Influence of polishing parameters on abrasive free chemical mechanical planarization(AFCMP) of non-polar(11$\bar{2}$0) and semi-polar(11$\bar{2}$2) GaN surfaces[J]. ECS Journal of Solid State Science and Technology, 2015, 4(7).

[1]

Slack G, Schujman S, Meyer N. Polar surface preparation of nitride substrates[J]. USS Patent, No| 0288929 A1, 2006.

[2]

Fuhrmann D, Rossow U, Netzel C. Optimizing the internal quantum efficiency of GaInN SQW structures for green light emitters[J]. Phys Status Solidi C, 2006, 3: 1966.

[3]

Nagahama S, Sugimoto Y, Kozaki T. Recent progress of AlInGaN laser diodes[J]. Proc SPIE, 2005, 5738: 57.

[4]

Haskell B A, Nakamura S, DenBaars S P. Progress in the growth of nonpolar gallium nitride[J]. Phys Status Solidi B, 2007, 244: 2847.

[5]

Schwarz U T, Kneissl M. Nitride emitters go nonpolar[J]. Phys Status Solidi RRL, 2007, 1.

[6]

Lee H, Kim D K. Investigation on thermal conductivity of aluminum nitride ceramics by FT-Raman spectroscopy[J]. J Am Ceram Soc, 2010, 93: 2167.

[7]

Kehagias T, Lahourcade L, Lotsari A. Interfacial structure of semipolar AlN grown on m-plane sapphire by MBE[J]. Phys Status Solidi B, 2010, 247: 1637.

[8]

Asghar K, Qasim M, Das D. Effect of polishing parameters on chemical mechanical planarization of C-plane(0001) gallium nitride surface using SiO2 and Al2O3 abrasives[J]. ECS J Solid State Sci Technol, 2014, 3.

[9]

Moeggenbong K. Method for polishing aluminum nitride[J]. .

[10]

Rice K, Collazo R, Tweedie J. Surface preparation and homoepitaxial deposition of AlN on(0001)-oriented AlN substrates by metalorganic chemical vapor deposition[J]. J Appl Phys, 2010, 108: 043510.

[11]

Bondokov R T, Mueller S G, Morgan K E. Large-area AlN substrates for electronic applications:an industrial perspective[J]. J Cryst Growth, 2008, 310: 4020.

[12]

Schowalter L, Lopez J M, Rojo J C. Method for polishing a substrate surface[J]. USA Patent, No. 7323414 B2, 2008.

[13]

Schowalter L, Lopez J M, Rojo J C. Method for polishing a substrate surface[J]. USA Patent, No. 0033690 A1, 2004.

[14]

Schowalter L, Lopez J M, Rojo J C. Method for polishing a substrate surface[J]. USA Patent, No. 7037838 B2, 2006.

[15]

Bobea M, Tweedie J, Bryan I. X-ray characterization techniques for the assessment of surface damage in crystalline wafers:a model study in AlN[J]. J Appl Phys, 2013, 113: 123508.

[16]

Su Jianxiu, Du Jiaxi, Ma Lijie. Material removal rate of 6H-SiC crystal substrate CMP using an alumina(Al2O3) abrasive[J]. Journal of Semiconductors, 2012, 33(10): 106003.

[17]

Wang Y L, Tseng W T, Chang S C. Chemical-mechanical polish of aluminum alloy thin films:slurry chemistries and polish mechanisms[J]. Thin Solid Films, 2005, 474: 36.

[18]

Preston F W. The theory and design of plate glass polishing machines[J]. J Soc Glass Tech, 1927, 11: 214.

[19]

Zhang K, Feng Y, Cao J. Optimization and mechanism on chemical mechanical planarization of hafnium oxide for RRAM devices[J]. ECS Journal of Solid State Science and Technology, 2014, 3: 249.

[20]

Asghar K, Das D. Influence of polishing parameters on abrasive free chemical mechanical planarization(AFCMP) of non-polar(11$\bar{2}$0) and semi-polar(11$\bar{2}$2) GaN surfaces[J]. ECS Journal of Solid State Science and Technology, 2015, 4(7).

[1]

Zhao Hong, Zou Zeya, Zhao Wenbai, Liu Ting, Yang Xiaobo, Liao Xiuying, Wang Zhen, Zhou Yong, Liu Wanqing. Epitaxial Growth of Atomically Flat AlN Layers on Sapphire Substrate by Metal Organic Chemical Vapor Deposition. J. Semicond., 2007, 28(10): 1568.

[2]

Bo Duan, Jianwei Zhou, Yuling Liu, Mingbin Sun, Yufeng Zhang. Surface roughness of optical quartz substrate by chemical mechanical polishing. J. Semicond., 2014, 35(11): 116001. doi: 10.1088/1674-4926/35/11/116001

[3]

Bo Duan, Jianwei Zhou, Yuling Liu, Chenwei Wang, Yufeng Zhang. Investigation on surface roughness in chemical mechanical polishing of TiO2 thin film. J. Semicond., 2014, 35(6): 063003. doi: 10.1088/1674-4926/35/6/063003

[4]

Yan Li, Ming Sun, Xinhuan Niu, Yuling Liu, Yangang He, Hailong Li, Aochen Wang, Hongbo Li. Removal of residual CuO particles on the post CMP wafer surface of multi-layered copper. J. Semicond., 2014, 35(4): 046001. doi: 10.1088/1674-4926/35/4/046001

[5]

Maosong Sun, Jicai Zhang, Jun Huang, Xuewei Li, Linjun Wang, Xuehua Liu, Jianfeng Wang, Ke Xu. Influence of thickness on strain state and surface morphology of AlN grown by HVPE. J. Semicond., 2016, 37(12): 123001. doi: 10.1088/1674-4926/37/12/123001

[6]

Li Weiwei, Zhao Youwen, Dong Zhiyuan, Yang Jun, Hu Weijie, Ke Jianhong. Wet etching and infrared absorption of AlN bulk single crystals. J. Semicond., 2009, 30(7): 073002. doi: 10.1088/1674-4926/30/7/073002

[7]

Dong Zhiyuan, Zhao Youwen, Wei Xuecheng, Li Jinmin. Physical Vapor Transport Growth and Characterization of Large Bulk AlN Crystal. J. Semicond., 2007, 28(2): 204.

[8]

Wang Cailing, Kang Renke, Jin Zhuji, Guo Dongming. Effects of the reciprocating parameters of the carrier on material removal rate and non-uniformity in CMP. J. Semicond., 2010, 31(12): 126001. doi: 10.1088/1674-4926/31/12/126001

[9]

Yi Hu, Yan Li, Yuling Liu, Yangang He. The optimization of FA/O barrier slurry with respect to removal rate selectivity on patterned Cu wafers. J. Semicond., 2016, 37(2): 026003. doi: 10.1088/1674-4926/37/2/026003

[10]

Aodong He, Bo Liu, Zhitang Song, Yegang Lü, Juntao Li, Weili Liu, Songlin Feng, Guanping Wu. Chemical mechanical planarization of amorphous Ge2Sb2Te5 with a soft pad. J. Semicond., 2013, 34(7): 076002. doi: 10.1088/1674-4926/34/7/076002

[11]

Wang Chenwei, Liu Yuling, Niu Xinhuan, Tian Jianying, Gao Baohong, Zhang Xiaoqiang. An advanced alkaline slurry for barrier chemical mechanical planarization on patterned wafers. J. Semicond., 2012, 33(4): 046001. doi: 10.1088/1674-4926/33/4/046001

[12]

Aochen Wang, Shengli Wang, Yuling Liu, Yan Li. Electrochemical investigation of copper chemical mechanical planarization in alkaline slurry without an inhibitor. J. Semicond., 2014, 35(2): 026003. doi: 10.1088/1674-4926/35/2/026003

[13]

Guo Lunchun, Wang Xiaoliang, Hu Guoxin, Li Jianping, Luo Weijun. Growth of GaN on Si(1 l 1) by Inserting 5AI/AIN Buffer Layer. J. Semicond., 2007, 28(S1): 234.

[14]

Chen Jing, Tang Jiyu, Han Peide, Yan Lingyun, Chen Junfang. Optical Properties of a Periodic One-Dimensional Semiconductor-Organic Photonic Crystal. J. Semicond., 2008, 29(10): 1879.

[15]

Bo Duan, Jianwei Zhou, Yuling Liu, Chenwei Wang, Yufeng Zhang. Slurry components of TiO2 thin film in chemical mechanical polishing. J. Semicond., 2014, 35(10): 106003. doi: 10.1088/1674-4926/35/10/106003

[16]

Yan Li, Yuling Liu, Xinhuan Niu, Xiaofeng Bu, Hongbo Li, Jiying Tang, Shiyan Fan. Application of a macromolecular chelating agent in chemical mechanical polishing of copper film under the condition of low pressure and low abrasive concentration. J. Semicond., 2014, 35(1): 016001. doi: 10.1088/1674-4926/35/1/016001

[17]

Jiaojiao Gao, Yuling Liu, Chenwei Wang, Jin Cui. Mechanism analysis of the affect the copper line surface roughness after FA/O alkaline barrier CMP. J. Semicond., 2014, 35(12): 126003. doi: 10.1088/1674-4926/35/12/126003

[18]

Haiwen Deng, Baimei Tan, Baohong Gao, Chenwei Wang, Zhangbing Gu, Yan Zhang. A novel cleaner for colloidal silica abrasive removal in post-Cu CMP cleaning. J. Semicond., 2015, 36(10): 106002. doi: 10.1088/1674-4926/36/10/106002

[19]

Shuo Zhang, Yun Zhang, Xiang Chen, Yanan Guo, Jianchang Yan, Junxi Wang, Jinmin Li. The effect of AlN/AlGaN superlattices on crystal and optical properties of AlGaN epitaxial layers. J. Semicond., 2017, 38(11): 113002. doi: 10.1088/1674-4926/38/11/113002

[20]

Zhengguo Shang, Dongling Li, Zhiyu Wen, Xingqiang Zhao. The fabrication of vibration energy harvester arrays based on AlN piezoelectric film. J. Semicond., 2013, 34(11): 114013. doi: 10.1088/1674-4926/34/11/114013

Search

Advanced Search >>

GET CITATION

K Asghar, D. Das. Effect of polishing parameters on abrasive free chemical mechanical planarization of semi-polar(11$\bar{2}$2) aluminum nitride surface[J]. J. Semicond., 2016, 37(3): 036001. doi: 10.1088/1674-4926/37/3/036001.

Export: BibTex EndNote

Article Metrics

Article views: 960 Times PDF downloads: 13 Times Cited by: 0 Times

History

Manuscript received: 07 January 2014 Manuscript revised: Online: Published: 01 March 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误