J. Semicond. > Volume 37 > Issue 3 > Article Number: 036001

Effect of polishing parameters on abrasive free chemical mechanical planarization of semi-polar(11$\bar{2}$2) aluminum nitride surface

Khushnuma Asghar and D. Das

+ Author Affiliations + Find other works by these authors

PDF

Abstract: An abrasive free chemical mechanical planarization(AFCMP) of semi-polar(11$\bar{2}$2) AlN surface has been demonstrated. The effect of slurry pH, polishing pressure, and platen velocity on the material removal rate(MRR) and surface quality(RMS roughness) have been studied. The effect of polishing pressure on the AFCMP of the(11$\bar{2}$2) AlN surface has been compared with that of the(11$\bar{2}$2) AlGaN surface. The maximum MRR has been found to be ~562 nm/h for the semi-polar(11$\bar{2}$2) AlN surface, under the experimental conditions of 38 kPa pressure, 90 rpm platen velocity, 30 rpm carrier velocity, slurry pH 3 and 0.4 M oxidizer concentration. The best root mean square(RMS) surface roughness of ~1.2 nm and ~0.7 nm, over a large scanning area of 0.70×0.96 mm2, has been achieved on AFCMP processed semi-polar(11$\bar{2}$2) AlN and(AlGaN) surfaces using optimized slurry chemistry and processing parameters.

Key words: AlNAFCMPchemical mechanical planarizationmaterial removal ratesurface roughness

Abstract: An abrasive free chemical mechanical planarization(AFCMP) of semi-polar(11$\bar{2}$2) AlN surface has been demonstrated. The effect of slurry pH, polishing pressure, and platen velocity on the material removal rate(MRR) and surface quality(RMS roughness) have been studied. The effect of polishing pressure on the AFCMP of the(11$\bar{2}$2) AlN surface has been compared with that of the(11$\bar{2}$2) AlGaN surface. The maximum MRR has been found to be ~562 nm/h for the semi-polar(11$\bar{2}$2) AlN surface, under the experimental conditions of 38 kPa pressure, 90 rpm platen velocity, 30 rpm carrier velocity, slurry pH 3 and 0.4 M oxidizer concentration. The best root mean square(RMS) surface roughness of ~1.2 nm and ~0.7 nm, over a large scanning area of 0.70×0.96 mm2, has been achieved on AFCMP processed semi-polar(11$\bar{2}$2) AlN and(AlGaN) surfaces using optimized slurry chemistry and processing parameters.

Key words: AlNAFCMPchemical mechanical planarizationmaterial removal ratesurface roughness



References:

[1]

Slack G, Schujman S, Meyer N. Polar surface preparation of nitride substrates[J]. USS Patent, No| 0288929 A1, 2006.

[2]

Fuhrmann D, Rossow U, Netzel C. Optimizing the internal quantum efficiency of GaInN SQW structures for green light emitters[J]. Phys Status Solidi C, 2006, 3: 1966.

[3]

Nagahama S, Sugimoto Y, Kozaki T. Recent progress of AlInGaN laser diodes[J]. Proc SPIE, 2005, 5738: 57.

[4]

Haskell B A, Nakamura S, DenBaars S P. Progress in the growth of nonpolar gallium nitride[J]. Phys Status Solidi B, 2007, 244: 2847.

[5]

Schwarz U T, Kneissl M. Nitride emitters go nonpolar[J]. Phys Status Solidi RRL, 2007, 1.

[6]

Lee H, Kim D K. Investigation on thermal conductivity of aluminum nitride ceramics by FT-Raman spectroscopy[J]. J Am Ceram Soc, 2010, 93: 2167.

[7]

Kehagias T, Lahourcade L, Lotsari A. Interfacial structure of semipolar AlN grown on m-plane sapphire by MBE[J]. Phys Status Solidi B, 2010, 247: 1637.

[8]

Asghar K, Qasim M, Das D. Effect of polishing parameters on chemical mechanical planarization of C-plane(0001) gallium nitride surface using SiO2 and Al2O3 abrasives[J]. ECS J Solid State Sci Technol, 2014, 3.

[9]

Moeggenbong K. Method for polishing aluminum nitride[J]. .

[10]

Rice K, Collazo R, Tweedie J. Surface preparation and homoepitaxial deposition of AlN on(0001)-oriented AlN substrates by metalorganic chemical vapor deposition[J]. J Appl Phys, 2010, 108: 043510.

[11]

Bondokov R T, Mueller S G, Morgan K E. Large-area AlN substrates for electronic applications:an industrial perspective[J]. J Cryst Growth, 2008, 310: 4020.

[12]

Schowalter L, Lopez J M, Rojo J C. Method for polishing a substrate surface[J]. USA Patent, No. 7323414 B2, 2008.

[13]

Schowalter L, Lopez J M, Rojo J C. Method for polishing a substrate surface[J]. USA Patent, No. 0033690 A1, 2004.

[14]

Schowalter L, Lopez J M, Rojo J C. Method for polishing a substrate surface[J]. USA Patent, No. 7037838 B2, 2006.

[15]

Bobea M, Tweedie J, Bryan I. X-ray characterization techniques for the assessment of surface damage in crystalline wafers:a model study in AlN[J]. J Appl Phys, 2013, 113: 123508.

[16]

Su Jianxiu, Du Jiaxi, Ma Lijie. Material removal rate of 6H-SiC crystal substrate CMP using an alumina(Al2O3) abrasive[J]. Journal of Semiconductors, 2012, 33(10): 106003.

[17]

Wang Y L, Tseng W T, Chang S C. Chemical-mechanical polish of aluminum alloy thin films:slurry chemistries and polish mechanisms[J]. Thin Solid Films, 2005, 474: 36.

[18]

Preston F W. The theory and design of plate glass polishing machines[J]. J Soc Glass Tech, 1927, 11: 214.

[19]

Zhang K, Feng Y, Cao J. Optimization and mechanism on chemical mechanical planarization of hafnium oxide for RRAM devices[J]. ECS Journal of Solid State Science and Technology, 2014, 3: 249.

[20]

Asghar K, Das D. Influence of polishing parameters on abrasive free chemical mechanical planarization(AFCMP) of non-polar(11$\bar{2}$0) and semi-polar(11$\bar{2}$2) GaN surfaces[J]. ECS Journal of Solid State Science and Technology, 2015, 4(7).

[1]

Slack G, Schujman S, Meyer N. Polar surface preparation of nitride substrates[J]. USS Patent, No| 0288929 A1, 2006.

[2]

Fuhrmann D, Rossow U, Netzel C. Optimizing the internal quantum efficiency of GaInN SQW structures for green light emitters[J]. Phys Status Solidi C, 2006, 3: 1966.

[3]

Nagahama S, Sugimoto Y, Kozaki T. Recent progress of AlInGaN laser diodes[J]. Proc SPIE, 2005, 5738: 57.

[4]

Haskell B A, Nakamura S, DenBaars S P. Progress in the growth of nonpolar gallium nitride[J]. Phys Status Solidi B, 2007, 244: 2847.

[5]

Schwarz U T, Kneissl M. Nitride emitters go nonpolar[J]. Phys Status Solidi RRL, 2007, 1.

[6]

Lee H, Kim D K. Investigation on thermal conductivity of aluminum nitride ceramics by FT-Raman spectroscopy[J]. J Am Ceram Soc, 2010, 93: 2167.

[7]

Kehagias T, Lahourcade L, Lotsari A. Interfacial structure of semipolar AlN grown on m-plane sapphire by MBE[J]. Phys Status Solidi B, 2010, 247: 1637.

[8]

Asghar K, Qasim M, Das D. Effect of polishing parameters on chemical mechanical planarization of C-plane(0001) gallium nitride surface using SiO2 and Al2O3 abrasives[J]. ECS J Solid State Sci Technol, 2014, 3.

[9]

Moeggenbong K. Method for polishing aluminum nitride[J]. .

[10]

Rice K, Collazo R, Tweedie J. Surface preparation and homoepitaxial deposition of AlN on(0001)-oriented AlN substrates by metalorganic chemical vapor deposition[J]. J Appl Phys, 2010, 108: 043510.

[11]

Bondokov R T, Mueller S G, Morgan K E. Large-area AlN substrates for electronic applications:an industrial perspective[J]. J Cryst Growth, 2008, 310: 4020.

[12]

Schowalter L, Lopez J M, Rojo J C. Method for polishing a substrate surface[J]. USA Patent, No. 7323414 B2, 2008.

[13]

Schowalter L, Lopez J M, Rojo J C. Method for polishing a substrate surface[J]. USA Patent, No. 0033690 A1, 2004.

[14]

Schowalter L, Lopez J M, Rojo J C. Method for polishing a substrate surface[J]. USA Patent, No. 7037838 B2, 2006.

[15]

Bobea M, Tweedie J, Bryan I. X-ray characterization techniques for the assessment of surface damage in crystalline wafers:a model study in AlN[J]. J Appl Phys, 2013, 113: 123508.

[16]

Su Jianxiu, Du Jiaxi, Ma Lijie. Material removal rate of 6H-SiC crystal substrate CMP using an alumina(Al2O3) abrasive[J]. Journal of Semiconductors, 2012, 33(10): 106003.

[17]

Wang Y L, Tseng W T, Chang S C. Chemical-mechanical polish of aluminum alloy thin films:slurry chemistries and polish mechanisms[J]. Thin Solid Films, 2005, 474: 36.

[18]

Preston F W. The theory and design of plate glass polishing machines[J]. J Soc Glass Tech, 1927, 11: 214.

[19]

Zhang K, Feng Y, Cao J. Optimization and mechanism on chemical mechanical planarization of hafnium oxide for RRAM devices[J]. ECS Journal of Solid State Science and Technology, 2014, 3: 249.

[20]

Asghar K, Das D. Influence of polishing parameters on abrasive free chemical mechanical planarization(AFCMP) of non-polar(11$\bar{2}$0) and semi-polar(11$\bar{2}$2) GaN surfaces[J]. ECS Journal of Solid State Science and Technology, 2015, 4(7).

Search

Advanced Search >>

GET CITATION

K Asghar, D. Das. Effect of polishing parameters on abrasive free chemical mechanical planarization of semi-polar(11$\bar{2}$2) aluminum nitride surface[J]. J. Semicond., 2016, 37(3): 036001. doi: 10.1088/1674-4926/37/3/036001.

Export: BibTex EndNote

Article Metrics

Article views: 2096 Times PDF downloads: 15 Times Cited by: 0 Times

History

Manuscript received: 07 January 2014 Manuscript revised: Online: Published: 01 March 2016

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误