J. Semicond. > Volume 38 > Issue 12 > Article Number: 124003

Design and optimization analysis of dual material gate on DG-IMOS

Sarabdeep Singh , Ashish Raman , and Naveen Kumar

+ Author Affiliations + Find other works by these authors

PDF

Abstract: An impact ionization MOSFET (IMOS) is evolved for overcoming the constraint of less than 60 mV/decade sub-threshold slope (SS) of conventional MOSFET at room temperature. In this work, first, the device performance of the p-type double gate impact ionization MOSFET (DG-IMOS) is optimized by adjusting the device design parameters. The adjusted parameters are ratio of gate and intrinsic length, gate dielectric thickness and gate work function. Secondly, the DMG (dual material gate) DG-IMOS is proposed and investigated. This DMG DG-IMOS is further optimized to obtain the best possible performance parameters. Simulation results reveal that DMG DG-IMOS when compared to DG-IMOS, shows better ION, ION/IOFF ratio, and RF parameters. Results show that by properly tuning the lengths of two materials at a ratio of 1.5 in DMG DG-IMOS, optimized performance is achieved including ION/IOFF ratio of 2.87 × 109 A/μm with ION as 11.87 × 10−4 A/μm and transconductance of 1.06×10−3 S/μm. It is analyzed that length of drain side material should be greater than the length of source side material to attain the higher transconductance in DMG DG-IMOS.

Key words: impact ionization MOSFET (IMOS)avalanche breakdownsub-threshold slopedual material gate (DMG)biosensor

Abstract: An impact ionization MOSFET (IMOS) is evolved for overcoming the constraint of less than 60 mV/decade sub-threshold slope (SS) of conventional MOSFET at room temperature. In this work, first, the device performance of the p-type double gate impact ionization MOSFET (DG-IMOS) is optimized by adjusting the device design parameters. The adjusted parameters are ratio of gate and intrinsic length, gate dielectric thickness and gate work function. Secondly, the DMG (dual material gate) DG-IMOS is proposed and investigated. This DMG DG-IMOS is further optimized to obtain the best possible performance parameters. Simulation results reveal that DMG DG-IMOS when compared to DG-IMOS, shows better ION, ION/IOFF ratio, and RF parameters. Results show that by properly tuning the lengths of two materials at a ratio of 1.5 in DMG DG-IMOS, optimized performance is achieved including ION/IOFF ratio of 2.87 × 109 A/μm with ION as 11.87 × 10−4 A/μm and transconductance of 1.06×10−3 S/μm. It is analyzed that length of drain side material should be greater than the length of source side material to attain the higher transconductance in DMG DG-IMOS.

Key words: impact ionization MOSFET (IMOS)avalanche breakdownsub-threshold slopedual material gate (DMG)biosensor



References:

[1]

Gopalakrishnan K, Griffin P B, Plummer J D. I-MOS: a novel semiconductor device with a subthreshold slope lower than kT/q[J]. IEEE Electron Devices Meeting, 2002: 289.

[2]

Gopalakrishnan K, Griffin P B, Plummer J D. Impact ionization MOS (I-MOS)-Part I: device and circuit simulations[J]. IEEE Trans Eelectron devices, 2005, 52(1): 69. doi: 10.1109/TED.2004.841344

[3]

Saad I, Zuhir H M, Seng C B. Characterization of vertical strained SiGe impact ionization MOSFET for ultra-sensitive biosensor application[J]. IEEE International Conference on Semiconductor Electronics, 2014: 154.

[4]

Singh S, Kondekar P N. Analytical modeling of Schottky tunneling source impact ionization MOSFET with reduced breakdown voltage[J]. Eng Sci Technol, 2016, 19(1): 421.

[5]

Choi W Y, Song J Y, Lee J D. A novel biasing scheme for I-MOS (impact-ionization MOS) devices[J]. IEEE Trans Nanotechnol, 2005, 4(3): 322. doi: 10.1109/TNANO.2005.847001

[6]

Ramaswamy S, Kumar M J. Junctionless impact ionization MOS: proposal and investigation[J]. IEEE Trans Electron Devices, 2014, 61(12): 4295. doi: 10.1109/TED.2014.2361343

[7]

Hassani FA, Fathipour M, Mehran M. A comparison study between double and single gate p-IMOS[J]. IEEE AFRICON, 2007: 1.

[8]

ATLAS Device Simulation Software, Silvaco International, Santa Clara, CA, USA, 2014

[9]

Dixit A, Singh S, Kondekar P N. Parameters optimization of lateral impact ionization MOS (LIMOS)[J]. IEEE Global High Tech Congress on Electronics (GHTCE), 2013: 56.

[10]

Long W, Ou H, Kuo J M. Dual-material gate (DMG) field effect transistor[J]. IEEE Trans Electron Devices, 1999, 46(5): 865. doi: 10.1109/16.760391

[11]

Zhou X, Long W. A novel hetero-material gate (HMG) MOSFET for deep-submicron ULSI technology[J]. IEEE Transactions on Electron Devices, 1998, 45(12): 2546. doi: 10.1109/16.735743

[12]

Amin SI, Sarin RK. Charge-plasma based dual-material and gate-stacked architecture of junctionless transistor for enhanced analog performance[J]. Superlattices Microstruct, 2015, 88: 582. doi: 10.1016/j.spmi.2015.10.017

[13]

Sharma S K, Raj B, Khosla M. Subthreshold performance of In1-xGax as based dual metal with gate stack cylindrical/surrounding gate nanowire MOSFET for low power analog applications[J]. J Nanoelectron Optoelectron, 2017, 12(2): 171. doi: 10.1166/jno.2017.1961

[14]

Kumar S, Raj B. Analysis of ION and ambipolar current for dual-material gate-drain overlapped DG-TFET[J]. J Nanoelectron Optoelectron, 2016, 11(3): 323. doi: 10.1166/jno.2016.1902

[15]

Anand S, Sarin RK. Dual material gate doping-less tunnel FET with hetero gate dielectric for enhancement of analog/RF performance[J]. J Semicond, 2017, 38(2): 024001. doi: 10.1088/1674-4926/38/2/024001

[1]

Gopalakrishnan K, Griffin P B, Plummer J D. I-MOS: a novel semiconductor device with a subthreshold slope lower than kT/q[J]. IEEE Electron Devices Meeting, 2002: 289.

[2]

Gopalakrishnan K, Griffin P B, Plummer J D. Impact ionization MOS (I-MOS)-Part I: device and circuit simulations[J]. IEEE Trans Eelectron devices, 2005, 52(1): 69. doi: 10.1109/TED.2004.841344

[3]

Saad I, Zuhir H M, Seng C B. Characterization of vertical strained SiGe impact ionization MOSFET for ultra-sensitive biosensor application[J]. IEEE International Conference on Semiconductor Electronics, 2014: 154.

[4]

Singh S, Kondekar P N. Analytical modeling of Schottky tunneling source impact ionization MOSFET with reduced breakdown voltage[J]. Eng Sci Technol, 2016, 19(1): 421.

[5]

Choi W Y, Song J Y, Lee J D. A novel biasing scheme for I-MOS (impact-ionization MOS) devices[J]. IEEE Trans Nanotechnol, 2005, 4(3): 322. doi: 10.1109/TNANO.2005.847001

[6]

Ramaswamy S, Kumar M J. Junctionless impact ionization MOS: proposal and investigation[J]. IEEE Trans Electron Devices, 2014, 61(12): 4295. doi: 10.1109/TED.2014.2361343

[7]

Hassani FA, Fathipour M, Mehran M. A comparison study between double and single gate p-IMOS[J]. IEEE AFRICON, 2007: 1.

[8]

ATLAS Device Simulation Software, Silvaco International, Santa Clara, CA, USA, 2014

[9]

Dixit A, Singh S, Kondekar P N. Parameters optimization of lateral impact ionization MOS (LIMOS)[J]. IEEE Global High Tech Congress on Electronics (GHTCE), 2013: 56.

[10]

Long W, Ou H, Kuo J M. Dual-material gate (DMG) field effect transistor[J]. IEEE Trans Electron Devices, 1999, 46(5): 865. doi: 10.1109/16.760391

[11]

Zhou X, Long W. A novel hetero-material gate (HMG) MOSFET for deep-submicron ULSI technology[J]. IEEE Transactions on Electron Devices, 1998, 45(12): 2546. doi: 10.1109/16.735743

[12]

Amin SI, Sarin RK. Charge-plasma based dual-material and gate-stacked architecture of junctionless transistor for enhanced analog performance[J]. Superlattices Microstruct, 2015, 88: 582. doi: 10.1016/j.spmi.2015.10.017

[13]

Sharma S K, Raj B, Khosla M. Subthreshold performance of In1-xGax as based dual metal with gate stack cylindrical/surrounding gate nanowire MOSFET for low power analog applications[J]. J Nanoelectron Optoelectron, 2017, 12(2): 171. doi: 10.1166/jno.2017.1961

[14]

Kumar S, Raj B. Analysis of ION and ambipolar current for dual-material gate-drain overlapped DG-TFET[J]. J Nanoelectron Optoelectron, 2016, 11(3): 323. doi: 10.1166/jno.2016.1902

[15]

Anand S, Sarin RK. Dual material gate doping-less tunnel FET with hetero gate dielectric for enhancement of analog/RF performance[J]. J Semicond, 2017, 38(2): 024001. doi: 10.1088/1674-4926/38/2/024001

Search

Advanced Search >>

GET CITATION

S Singh, A Raman, N Kumar. Design and optimization analysis of dual material gate on DG-IMOS[J]. J. Semicond., 2017, 38(12): 124003. doi: 10.1088/1674-4926/38/12/124003.

Export: BibTex EndNote

Article Metrics

Article views: 1776 Times PDF downloads: 15 Times Cited by: 0 Times

History

Manuscript received: 17 April 2017 Manuscript revised: 24 June 2017 Online: Corrected proof: 15 November 2017 Published: 01 December 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误