J. Semicond. >  In Press

A 0.1–1.5 GHz multi-octave quadruple-stacked CMOS power amplifier

Shizhe Wei 1, , Haifeng Wu 2, , , Qian Lin 3, and Mingzhe Zhang 1,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: In this letter, we design and analyze 0.1–1.5 GHz multi-octave quadruple-stacked CMOS power amplifier (PA) in 0.18 μm CMOS technology. By using two-stage quadruple-stacked topology and feedback technology, the proposed PA realizes an ultra-wideband CMOS PA in a small chip area. Wideband impedance matching is achieved with smaller chip dimension. The effects of feedback resistors on the RF performance are also discussed for this stacked-FET PA. The PA shows measured input return loss (< –10.8 dB) and output return loss (< –9.6 dB) in the entire bandwidth. A saturated output power of 22 dBm with maximum 20% power added efficiency (PAE) is also measured with the drain voltage at 5 V. The chip size is 0.44 mm2 including all pads.

Key words: power amplifierCMOSstackedmulti-octaveresistive matching

Abstract: In this letter, we design and analyze 0.1–1.5 GHz multi-octave quadruple-stacked CMOS power amplifier (PA) in 0.18 μm CMOS technology. By using two-stage quadruple-stacked topology and feedback technology, the proposed PA realizes an ultra-wideband CMOS PA in a small chip area. Wideband impedance matching is achieved with smaller chip dimension. The effects of feedback resistors on the RF performance are also discussed for this stacked-FET PA. The PA shows measured input return loss (< –10.8 dB) and output return loss (< –9.6 dB) in the entire bandwidth. A saturated output power of 22 dBm with maximum 20% power added efficiency (PAE) is also measured with the drain voltage at 5 V. The chip size is 0.44 mm2 including all pads.

Key words: power amplifierCMOSstackedmulti-octaveresistive matching



References:

[1]

Jin J, Shi J, Ai B L, et al. A highly linear power amplifier for WLAN. J Semicond, 2016, 37(2), 025006

[2]

Gong J, Li W, Hu J T, et al. An 8–18 GHz power amplifier with novel gain fluctuation compensation technique in 65 nm CMOS. J Semicond, 2018, 39(12), 125008

[3]

Park J S, Wang Y J, Pellerano S, et al. A CMOS wideband current-mode digital polar power amplifier with built-in AM–PM distortion self-compensation. IEEE J Solid-State Circuits, 2018, 53(2), 340

[4]

Wang H, Sideris C, Hajimiri A, et al. A CMOS broadband power amplifier with a transformer-based high-order output matching network. IEEE J Solid-State Circuits, 2018, 45(12), 2709

[5]

Xia J, Fang X, Boumaiza S. 60-GHz power amplifier in 45-nm SOI-CMOS using stacked transformer-based parallel power combiner. IEEE Microwave Wireless Compons Lett, 2018, 28(8), 711

[6]

Ahn H T, Allstot D J. A 0.5–8.5-GHz fully differential CMOS distributed amplifier. IEEE J Solid-State Circuits, 2002, 37(8), 985

[7]

Hsu H C, Wang Z W, Ma G K. A low power CMOS full-band UWB power amplifier using wideband RLC matching method. Electron Devices and Solid-State Circuits Conf Dig Tech Papers, 2005, 233

[8]

Huang P C, Tsai Z M, Lin K Y, et al. A high-efficiency, broadband CMOS power amplifier for cognitive radio applications. Trans Microwave Theory Tech, 2010, 58(12), 3556

[9]

Chou M L, Wang H K, Chiu H C, et al. A broadband Darlington power amplifier using 0.5 µm GaN-on-SiC HEMT process. 2016 URSI Asia-Pacific Radio Science Conference, 2016, 1947

[10]

Wu H F, Liao X J, Lin Q, et al. A compact ultrabroadband stacked traveling-wave GaN on Si power amplifier. IEEE Trans Microwave Theory Tech, 2018, 66(7), 3306

[11]

Thome F, Leuther A, Schlechtweg M, et al. Broadband high-power W-band amplifier MMICs based on stacked-HEMT unit cells. Trans Microwave Theory Tech, 2018, 66(3), 1312

[12]

Wu C, Lin Y, Y Hsiao, Chou C, et al. Design of a 60-GHz high-output power stacked- FET power amplifier using transformer-based voltage-type power combining in 65-nm CMOS. Trans Microwave Theory Tech, 2018, 66(10), 4595

[13]

Pornpromlikit S, Jeong J, Presti C D, et al. A watt-level stacked-FET linear power amplifier in Silicon-on-Insulator CMOS. IEEE Trans Microwave Theory Tech, 2010, 58(1), 57

[14]

Razavi B. Design of analog CMOS integrated circuits. Boston: McGraw-Hill, 2001

[15]

Dabag H T, Hanafi B, Golcuk F, et al. Analysis and design of stacked-FET millimeter-wave power amplifiers. IEEE Trans Microwave Theory Tech, 2013, 61(4), 1543

[1]

Jin J, Shi J, Ai B L, et al. A highly linear power amplifier for WLAN. J Semicond, 2016, 37(2), 025006

[2]

Gong J, Li W, Hu J T, et al. An 8–18 GHz power amplifier with novel gain fluctuation compensation technique in 65 nm CMOS. J Semicond, 2018, 39(12), 125008

[3]

Park J S, Wang Y J, Pellerano S, et al. A CMOS wideband current-mode digital polar power amplifier with built-in AM–PM distortion self-compensation. IEEE J Solid-State Circuits, 2018, 53(2), 340

[4]

Wang H, Sideris C, Hajimiri A, et al. A CMOS broadband power amplifier with a transformer-based high-order output matching network. IEEE J Solid-State Circuits, 2018, 45(12), 2709

[5]

Xia J, Fang X, Boumaiza S. 60-GHz power amplifier in 45-nm SOI-CMOS using stacked transformer-based parallel power combiner. IEEE Microwave Wireless Compons Lett, 2018, 28(8), 711

[6]

Ahn H T, Allstot D J. A 0.5–8.5-GHz fully differential CMOS distributed amplifier. IEEE J Solid-State Circuits, 2002, 37(8), 985

[7]

Hsu H C, Wang Z W, Ma G K. A low power CMOS full-band UWB power amplifier using wideband RLC matching method. Electron Devices and Solid-State Circuits Conf Dig Tech Papers, 2005, 233

[8]

Huang P C, Tsai Z M, Lin K Y, et al. A high-efficiency, broadband CMOS power amplifier for cognitive radio applications. Trans Microwave Theory Tech, 2010, 58(12), 3556

[9]

Chou M L, Wang H K, Chiu H C, et al. A broadband Darlington power amplifier using 0.5 µm GaN-on-SiC HEMT process. 2016 URSI Asia-Pacific Radio Science Conference, 2016, 1947

[10]

Wu H F, Liao X J, Lin Q, et al. A compact ultrabroadband stacked traveling-wave GaN on Si power amplifier. IEEE Trans Microwave Theory Tech, 2018, 66(7), 3306

[11]

Thome F, Leuther A, Schlechtweg M, et al. Broadband high-power W-band amplifier MMICs based on stacked-HEMT unit cells. Trans Microwave Theory Tech, 2018, 66(3), 1312

[12]

Wu C, Lin Y, Y Hsiao, Chou C, et al. Design of a 60-GHz high-output power stacked- FET power amplifier using transformer-based voltage-type power combining in 65-nm CMOS. Trans Microwave Theory Tech, 2018, 66(10), 4595

[13]

Pornpromlikit S, Jeong J, Presti C D, et al. A watt-level stacked-FET linear power amplifier in Silicon-on-Insulator CMOS. IEEE Trans Microwave Theory Tech, 2010, 58(1), 57

[14]

Razavi B. Design of analog CMOS integrated circuits. Boston: McGraw-Hill, 2001

[15]

Dabag H T, Hanafi B, Golcuk F, et al. Analysis and design of stacked-FET millimeter-wave power amplifiers. IEEE Trans Microwave Theory Tech, 2013, 61(4), 1543

[1]

Gao Tongqiang, Zhang Chun, Chi Baoyong, Wang Zhihua. A CMOS Power Amplifier with 100% and 18% Modulation Depth for Mobile RFID Readers. J. Semicond., 2008, 29(6): 1044.

[2]

Jin Boshi, Li Lewei, Wu Qun, Yang Guohui, Zhang Kuang. A highly linear fully integrated CMOS power amplifier with an analog predistortion technique. J. Semicond., 2011, 32(5): 054006. doi: 10.1088/1674-4926/32/5/054006

[3]

Jin Boshi, Wu Qun, Yang Guohui, Meng Fanyi, Fu Jiahui. A Fully-Integrated Dual Band CMOS Power Amplifier Based on an Active Matching Transformer. J. Semicond., 2008, 29(11): 2204.

[4]

Zhixiong Ren, Kefeng Zhang, Lanqi Liu, Cong Li, Xiaofei Chen, Dongsheng Liu, Zhenglin Liu, Xuecheng Zou. On-chip power-combining techniques for watt-level linear power amplifiers in 0.18 μm CMOS. J. Semicond., 2015, 36(9): 095002. doi: 10.1088/1674-4926/36/9/095002

[5]

Guo Feng, Li Zhiqun, Chen Dongdong, Li Haisong, Wang Zhigong. Design of a Wideband CMOS Variable Gain Amplifier. J. Semicond., 2007, 28(12): 1967.

[6]

Li Wenyuan, Wang Zhigong, . Low-Power CMOS IC for Function Electrical Stimulation of Nerves. J. Semicond., 2007, 28(3): 393.

[7]

Li Xuechu, Gao Qingyun, Qin Shicai. A Low-Power High-Frequency CMOS Peak Detector. J. Semicond., 2006, 27(10): 1707.

[8]

Ding Jingfeng, Wang Zhigong, Zhu En, Zhang Li, Wang Gui. 12Gb/s 0.25μm CMOS Low-Power 1∶4 Demultiplexer. J. Semicond., 2006, 27(1): 19.

[9]

Wang Ziqiang, Chi Baoyong, Wang Zhihua. A CMOS Wideband Variable Gain Amplifier. J. Semicond., 2005, 26(12): 2401.

[10]

Baoyong Chi, Zheng Song, Lixue Kuang, Haikun Jia, Xiangyu Meng, Zhihua Wang. CMOS mm-wave transceivers for Gbps wireless communication. J. Semicond., 2016, 37(7): 071001. doi: 10.1088/1674-4926/37/7/071001

[11]

Liu Ke, Yang Haigang. A CMOS Dynamic Comparator for Pipelined ADCs with Improved Speed/Power Ratio. J. Semicond., 2008, 29(1): 75.

[12]

Wang Honglai, Zhang Xiaoxing, Dai Yujie, Lü Yingjie, Toshimasa Matsuoka, Wang Jun, Kenji Taniguchi. A low-voltage low-power CMOS voltage reference based on subthreshold MOSFETs. J. Semicond., 2011, 32(8): 085009. doi: 10.1088/1674-4926/32/8/085009

[13]

Liu Baohong, Zhou Jianjun, Mao Junfa. Design of a 0.5 V CMOS cascode low noise amplifier for multi-gigahertz applications. J. Semicond., 2012, 33(1): 015006. doi: 10.1088/1674-4926/33/1/015006

[14]

Li Bing, Zhuang Yiqi, Long Qiang, Jin Zhao, Li Zhenrong, Jin Gang. Design of a 0.18μm CMOS multi-band compatible low power GNSS receiver RF frontend. J. Semicond., 2011, 32(3): 035007. doi: 10.1088/1674-4926/32/3/035007

[15]

Yao Jinke, Chi Baoyong, Wang Zhihua. A Novel Low Power ASK Receiver with AGC Loop. J. Semicond., 2007, 28(3): 337.

[16]

Pang Zegui, Zhuang Yiqi, Li Xiaoming, Li Jun. A Low-Voltage, High Efficiency Power Generation Structure for UHF RFID. J. Semicond., 2008, 29(2): 293.

[17]

Han Shuguang, Chi Baoyong, Wang Zhihua. A 2.4GHz Low Power ASK Transmitter for Wireless Capsule Endoscope Applications. J. Semicond., 2006, 27(6): 988.

[18]

Zhu Zhangming, Liu Lianxi, Yang Yintang, Lei Han. A high efficiency PWM CMOS class-D audio power amplifier. J. Semicond., 2009, 30(2): 025001. doi: 10.1088/1674-4926/30/2/025001

[19]

Yu Yunfeng, Yue Jianlian, Xiao Shimao, Zhuang Haixiao, Ma Chengyan, Ye Tianchun. A low-power CMOS frequency synthesizer for GPS receivers. J. Semicond., 2010, 31(6): 065012. doi: 10.1088/1674-4926/31/6/065012

[20]

Han Kefeng, Cao Shengguo, Tan Xi, Yan Na, Wang Junyu, Tang Zhangwen, Min Hao. A 900 MHz, 21 dBm CMOS linear power amplifier with 35% PAE for RFID readers. J. Semicond., 2010, 31(12): 125005. doi: 10.1088/1674-4926/31/12/125005

Search

Advanced Search >>

Article Metrics

Article views: 92 Times PDF downloads: 11 Times Cited by: 0 Times

History

Manuscript received: 26 August 2019 Manuscript revised: 07 December 2019 Online: Accepted Manuscript: 13 February 2020 Uncorrected proof: 21 February 2020

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误