J. Semicond. > Volume 38 > Issue 12 > Article Number: 124004

Optical properties of Zn-diffused InP layers for the planar-type InGaAs/InP photodetectors

Guifeng Chen 1, , Mengxue Wang 1, 2, , Wenxian Yang 2, , Ming Tan 2, , Yuanyuan Wu 2, , Pan Dai 2, , Yuyang Huang 3, and Shulong Lu 2, ,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: Zn diffusion into InP was carried out ex-situ using a new Zn diffusion technique with zinc phosphorus particles placed around InP materials as zinc source in a semi-closed chamber formed by a modified diffusion furnace. The optical characteristics of the Zn-diffused InP layer for the planar-type InGaAs/InP PIN photodetectors grown by molecular beam epitaxy (MBE) has been investigated by photoluminescence (PL) measurements. The temperature-dependent PL spectrum of Zn-diffused InP samples at different diffusion temperatures showed that band-to-acceptor transition dominates the PL emission, which indicates that Zn was commendably diffused into InP layer as the acceptor. High quality Zn-diffused InP layer with typically smooth surface was obtained at 580 °C for 10 min. Furthermore, more interstitial Zn atoms were activated to act as acceptors after a rapid annealing process. Based on the above Zn-diffusion technique, a 50 μm planar-type InGaAs/InP PIN photodector device was fabricated and exhibited a low dark current of 7.73 pA under a reverse bias potential of −5 V and a high breakdown voltage of larger than 41 V (I < 10 μA). In addition, a high responsivity of 0.81 A/W at 1.31 μm and 0.97 A/W at 1.55 μm was obtained in the developed PIN photodetector.

Key words: Zn diffusionsemi-closedInGaAs/InP PIN photodetectorsphotoluminescence (PL)dark currentresponsivity

Abstract: Zn diffusion into InP was carried out ex-situ using a new Zn diffusion technique with zinc phosphorus particles placed around InP materials as zinc source in a semi-closed chamber formed by a modified diffusion furnace. The optical characteristics of the Zn-diffused InP layer for the planar-type InGaAs/InP PIN photodetectors grown by molecular beam epitaxy (MBE) has been investigated by photoluminescence (PL) measurements. The temperature-dependent PL spectrum of Zn-diffused InP samples at different diffusion temperatures showed that band-to-acceptor transition dominates the PL emission, which indicates that Zn was commendably diffused into InP layer as the acceptor. High quality Zn-diffused InP layer with typically smooth surface was obtained at 580 °C for 10 min. Furthermore, more interstitial Zn atoms were activated to act as acceptors after a rapid annealing process. Based on the above Zn-diffusion technique, a 50 μm planar-type InGaAs/InP PIN photodector device was fabricated and exhibited a low dark current of 7.73 pA under a reverse bias potential of −5 V and a high breakdown voltage of larger than 41 V (I < 10 μA). In addition, a high responsivity of 0.81 A/W at 1.31 μm and 0.97 A/W at 1.55 μm was obtained in the developed PIN photodetector.

Key words: Zn diffusionsemi-closedInGaAs/InP PIN photodetectorsphotoluminescence (PL)dark currentresponsivity



References:

[1]

Jin L F, Zhang Y T, Wang H Y. Accelerated aging of InGaAs PIN photoelectric detectors[J]. Chin J Lasers, 2014, 41(10): 1008002. doi: 10.3788/CJL

[2]

Yue Z G. Xenics InGaAs SWIR detector is part of Proba-V space mission[J]. Infrares, 2013, 34(7): 19.

[3]

Liu S Q, Han Q, Yang X H. Fabrication and characterization of high-speed and high-efficience photodetector[J]. Laser Optoelectrons Prog, 2012, 49(2): 138.

[4]

Dave H, Dewan C, Paul S. AWiFS camera for Resourcesat. Asia-Pacific Remote Sensing Symposium[J]. International Society for Optics and Photonics, 2006: 23.

[5]

Macdougal M H, Geske J C, Wang C. Short-wavelength infrared imaging using low dark current InGaAs detector arrays and vertical-cavity surface-emitting laser illuminators[J]. Mathematics Teacher, 2011, 50(6): 1011.

[6]

Wang Y S, Chang S J, Tsai C L. 10-Gb/s planar InGaAs P–I–N photodetectors[J]. IEEE Sens J, 2010, 10(10): 1559. doi: 10.1109/JSEN.2010.2046888

[7]

Pereira J T, Torres J. Frequency response optimization of dual depletion InGaAs/InP PIN photodiodes[J]. Photonic Sens, 2016, 6(1): 63. doi: 10.1007/s13320-015-0296-2

[8]

Wang G, Yoneda Y, Aono H. Highly reliable high performance waveguide-integrated InP/InGaAs pin photodiodes for 40 Gbit/s fibre-optical communication application[J]. Electron Lett, 2003, 39(15): 1147. doi: 10.1049/el:20030725

[9]

Lee Y L, Huang C C, Ho C L. Planar InGaAs p–i–n photodiodes with transparent-conducting-based antireflection and double-path reflector[J]. IEEE Electron Device Letters, 2013, 34(11): 1406. doi: 10.1109/LED.2013.2281830

[10]

Skrimshire C P, Farr J R, Sloan D F. Reliability of mesa and planar InGaAs PIN photodiodes[J]. IEE Proce J Optoelectron, 1990, 137(1): 74. doi: 10.1049/ip-j.1990.0015

[11]

Ravi M R, Dasgupta A, Dasgupta N. Silicon nitride and polyimide capping layers on InGaAs/InP PIN photodetector after sulfur treatment[J]. J Cryst Growth, 2004, 268(3-4): 359. doi: 10.1016/j.jcrysgro.2004.04.054

[12]

Chan L Y, Yu K M, Ben-Tzur M. Lattice location of diffused Zn atoms in GaAs and InP single crystals[J]. J Appl Phys, 1991, 69(5): 2998. doi: 10.1063/1.348613

[13]

Islam M, Feng J Y, Berkovich A. InGaAs/InP PIN photodetector arrays made by MOCVD based zinc diffusion processes[J]. SPIE Defense+Security, 2016: 98190G.

[14]

Ettenberg M H, Lange M J, Sugg A R. Zinc diffusion in InAsP/InGaAs heterostructures[J]. J Electron Mater, 1999, 28(12): 1433. doi: 10.1007/s11664-999-0136-5

[15]

Wada M, Izumi K, Sakakibara K. Diffusion of zinc acceptors in InAsP by the metal–organic vapor-phase diffusion technique[J]. Appl Phys Lett, 1997, 71(7): 900. doi: 10.1063/1.119682

[16]

Pitts O J, Hisko M, Benyon W. MOCVD based zinc diffusion process for planar InP/InGaAs avalanche photodiode fabrication[J]. International Conference on Indium Phosphide and Related Materials, 2012: 225.

[17]

Howard A J, Pathangey B, Hayakawa Y. Application of the point-defect analysis technique to zinc doping of MOCVD indium phosphide[J]. Semicond Sci Technol, 2003, 18(8): 723. doi: 10.1088/0268-1242/18/8/301

[18]

Tang H, Wu X, Zhang K. High uniformity InGaAs linear mesa-type SWIR focal plane arrays[J]. Infrared Mater Devices Appl, 2008, 6835: 683516.

[19]

Kurishima K, Kobayashi T, Ito H. Control of Zn diffusion in InP/InGaAs heterojunction bipolar transistor structures grown by metalorganic vapor phase epitaxy[J]. J Appl Phys, 1996, 79(8): 4017. doi: 10.1063/1.361830

[20]

Huang C C, Ho C L, Lee Y L. Large-area planar InGaAs p–i–n photodiodes with Mg driven-in by rapid thermal diffusion[J]. IEEE Electron Device Letters, 2014, 35(12): 1278. doi: 10.1109/LED.2014.2362687

[21]

Huang C C, Ho C L, Wu M C. Large-area planar wavelength-extended InGaAs p–i–n photodiodes by using rapid thermal diffusion with spin-on dopant technique[J]. IEEE Electron Device Lett, 2015, 36(8): 820. doi: 10.1109/LED.2015.2445471

[22]

Erman M, Gillardin G, Bris J L. Characterization of Fe-doped semi-insulating InP by low temperature and room temperature spatially resolved photoluminescence[J]. J Cryst Growth, 1989, 96(3): 469. doi: 10.1016/0022-0248(89)90041-9

[23]

Moon Y, Si S, Yoon E. Low temperature photoluminescence characteristics of Zn-doped InP grown by metalorganic chemical vapor deposition[J]. J Appl Phys, 1998, 83(4): 2261. doi: 10.1063/1.366966

[24]

Dingle R. Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc oxide[J]. Phys Rev Lett, 1969, 23(11): 579. doi: 10.1103/PhysRevLett.23.579

[25]

Kim T S, Lester S D, Streetman B G. Studies of the 1.35-eV photoluminescence band in InP[J]. J Appl Phys, 1987, 62(4): 1363. doi: 10.1063/1.339639

[26]

Temkin H, Dutt B V, Bonner W A. Photoluminescence study of native defects in InP[J]. Appl Phys Lett, 1981, 38(6): 431. doi: 10.1063/1.92386

[27]

Hsu J K, Juang C, Lee B J. Photoluminescence studies of interstitial Zn in InP due to rapid thermal annealing[J]. J Vac Sci Technol B, 1994, 12(3): 1416. doi: 10.1116/1.587310

[28]

Montie E A, Gurp G J V. Photoluminescence of Zn-diffused and annealed InP[J]. J Appl Phys, 1989, 66(11): 5549. doi: 10.1063/1.343659

[29]

Wong C D, Bube R H. Bulk and surface effects of heat treatment of p-type InP crystals[J]. J Appl Phys, 1984, 55(10): 3804. doi: 10.1063/1.332889

[30]

Hess K, Stath N, Benz K W. Liquid phase epitaxy of InP[J]. J Electrocheml Soc, 1974, 121(9): 1208. doi: 10.1149/1.2402014

[31]

Kubota E, Ohmori Y, Sugii K. Electrical and optical properties of Mg, Ca, and Zn doped InP crystals grown by the synthesis, solute diffusion technique[J]. J Appl Phys, 1984, 55(10): 3779. doi: 10.1063/1.332934

[32]

Yoon K H, Lee Y H, Yeo D H. The characteristics of Zn-doped InP using spin-on dopant as a diffusion source[J]. J of Electron Mater, 2002, 31(4): 244. doi: 10.1007/s11664-002-0139-y

[33]

Borghesi A, Guizzetti G, Patrini M. Infrared study and characterization of Zn diffused InP[J]. J Appl Phys, 1993, 74(4): 2445. doi: 10.1063/1.354681

[34]

Ishikawa T, Inata T, Kondo K. Annealing effect in Si-doped GaAs and AlGaAs layers grown by MBE[J]. Electron Lett, 1986, 22(4): 189. doi: 10.1049/el:19860132

[1]

Jin L F, Zhang Y T, Wang H Y. Accelerated aging of InGaAs PIN photoelectric detectors[J]. Chin J Lasers, 2014, 41(10): 1008002. doi: 10.3788/CJL

[2]

Yue Z G. Xenics InGaAs SWIR detector is part of Proba-V space mission[J]. Infrares, 2013, 34(7): 19.

[3]

Liu S Q, Han Q, Yang X H. Fabrication and characterization of high-speed and high-efficience photodetector[J]. Laser Optoelectrons Prog, 2012, 49(2): 138.

[4]

Dave H, Dewan C, Paul S. AWiFS camera for Resourcesat. Asia-Pacific Remote Sensing Symposium[J]. International Society for Optics and Photonics, 2006: 23.

[5]

Macdougal M H, Geske J C, Wang C. Short-wavelength infrared imaging using low dark current InGaAs detector arrays and vertical-cavity surface-emitting laser illuminators[J]. Mathematics Teacher, 2011, 50(6): 1011.

[6]

Wang Y S, Chang S J, Tsai C L. 10-Gb/s planar InGaAs P–I–N photodetectors[J]. IEEE Sens J, 2010, 10(10): 1559. doi: 10.1109/JSEN.2010.2046888

[7]

Pereira J T, Torres J. Frequency response optimization of dual depletion InGaAs/InP PIN photodiodes[J]. Photonic Sens, 2016, 6(1): 63. doi: 10.1007/s13320-015-0296-2

[8]

Wang G, Yoneda Y, Aono H. Highly reliable high performance waveguide-integrated InP/InGaAs pin photodiodes for 40 Gbit/s fibre-optical communication application[J]. Electron Lett, 2003, 39(15): 1147. doi: 10.1049/el:20030725

[9]

Lee Y L, Huang C C, Ho C L. Planar InGaAs p–i–n photodiodes with transparent-conducting-based antireflection and double-path reflector[J]. IEEE Electron Device Letters, 2013, 34(11): 1406. doi: 10.1109/LED.2013.2281830

[10]

Skrimshire C P, Farr J R, Sloan D F. Reliability of mesa and planar InGaAs PIN photodiodes[J]. IEE Proce J Optoelectron, 1990, 137(1): 74. doi: 10.1049/ip-j.1990.0015

[11]

Ravi M R, Dasgupta A, Dasgupta N. Silicon nitride and polyimide capping layers on InGaAs/InP PIN photodetector after sulfur treatment[J]. J Cryst Growth, 2004, 268(3-4): 359. doi: 10.1016/j.jcrysgro.2004.04.054

[12]

Chan L Y, Yu K M, Ben-Tzur M. Lattice location of diffused Zn atoms in GaAs and InP single crystals[J]. J Appl Phys, 1991, 69(5): 2998. doi: 10.1063/1.348613

[13]

Islam M, Feng J Y, Berkovich A. InGaAs/InP PIN photodetector arrays made by MOCVD based zinc diffusion processes[J]. SPIE Defense+Security, 2016: 98190G.

[14]

Ettenberg M H, Lange M J, Sugg A R. Zinc diffusion in InAsP/InGaAs heterostructures[J]. J Electron Mater, 1999, 28(12): 1433. doi: 10.1007/s11664-999-0136-5

[15]

Wada M, Izumi K, Sakakibara K. Diffusion of zinc acceptors in InAsP by the metal–organic vapor-phase diffusion technique[J]. Appl Phys Lett, 1997, 71(7): 900. doi: 10.1063/1.119682

[16]

Pitts O J, Hisko M, Benyon W. MOCVD based zinc diffusion process for planar InP/InGaAs avalanche photodiode fabrication[J]. International Conference on Indium Phosphide and Related Materials, 2012: 225.

[17]

Howard A J, Pathangey B, Hayakawa Y. Application of the point-defect analysis technique to zinc doping of MOCVD indium phosphide[J]. Semicond Sci Technol, 2003, 18(8): 723. doi: 10.1088/0268-1242/18/8/301

[18]

Tang H, Wu X, Zhang K. High uniformity InGaAs linear mesa-type SWIR focal plane arrays[J]. Infrared Mater Devices Appl, 2008, 6835: 683516.

[19]

Kurishima K, Kobayashi T, Ito H. Control of Zn diffusion in InP/InGaAs heterojunction bipolar transistor structures grown by metalorganic vapor phase epitaxy[J]. J Appl Phys, 1996, 79(8): 4017. doi: 10.1063/1.361830

[20]

Huang C C, Ho C L, Lee Y L. Large-area planar InGaAs p–i–n photodiodes with Mg driven-in by rapid thermal diffusion[J]. IEEE Electron Device Letters, 2014, 35(12): 1278. doi: 10.1109/LED.2014.2362687

[21]

Huang C C, Ho C L, Wu M C. Large-area planar wavelength-extended InGaAs p–i–n photodiodes by using rapid thermal diffusion with spin-on dopant technique[J]. IEEE Electron Device Lett, 2015, 36(8): 820. doi: 10.1109/LED.2015.2445471

[22]

Erman M, Gillardin G, Bris J L. Characterization of Fe-doped semi-insulating InP by low temperature and room temperature spatially resolved photoluminescence[J]. J Cryst Growth, 1989, 96(3): 469. doi: 10.1016/0022-0248(89)90041-9

[23]

Moon Y, Si S, Yoon E. Low temperature photoluminescence characteristics of Zn-doped InP grown by metalorganic chemical vapor deposition[J]. J Appl Phys, 1998, 83(4): 2261. doi: 10.1063/1.366966

[24]

Dingle R. Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc oxide[J]. Phys Rev Lett, 1969, 23(11): 579. doi: 10.1103/PhysRevLett.23.579

[25]

Kim T S, Lester S D, Streetman B G. Studies of the 1.35-eV photoluminescence band in InP[J]. J Appl Phys, 1987, 62(4): 1363. doi: 10.1063/1.339639

[26]

Temkin H, Dutt B V, Bonner W A. Photoluminescence study of native defects in InP[J]. Appl Phys Lett, 1981, 38(6): 431. doi: 10.1063/1.92386

[27]

Hsu J K, Juang C, Lee B J. Photoluminescence studies of interstitial Zn in InP due to rapid thermal annealing[J]. J Vac Sci Technol B, 1994, 12(3): 1416. doi: 10.1116/1.587310

[28]

Montie E A, Gurp G J V. Photoluminescence of Zn-diffused and annealed InP[J]. J Appl Phys, 1989, 66(11): 5549. doi: 10.1063/1.343659

[29]

Wong C D, Bube R H. Bulk and surface effects of heat treatment of p-type InP crystals[J]. J Appl Phys, 1984, 55(10): 3804. doi: 10.1063/1.332889

[30]

Hess K, Stath N, Benz K W. Liquid phase epitaxy of InP[J]. J Electrocheml Soc, 1974, 121(9): 1208. doi: 10.1149/1.2402014

[31]

Kubota E, Ohmori Y, Sugii K. Electrical and optical properties of Mg, Ca, and Zn doped InP crystals grown by the synthesis, solute diffusion technique[J]. J Appl Phys, 1984, 55(10): 3779. doi: 10.1063/1.332934

[32]

Yoon K H, Lee Y H, Yeo D H. The characteristics of Zn-doped InP using spin-on dopant as a diffusion source[J]. J of Electron Mater, 2002, 31(4): 244. doi: 10.1007/s11664-002-0139-y

[33]

Borghesi A, Guizzetti G, Patrini M. Infrared study and characterization of Zn diffused InP[J]. J Appl Phys, 1993, 74(4): 2445. doi: 10.1063/1.354681

[34]

Ishikawa T, Inata T, Kondo K. Annealing effect in Si-doped GaAs and AlGaAs layers grown by MBE[J]. Electron Lett, 1986, 22(4): 189. doi: 10.1049/el:19860132

Search

Advanced Search >>

GET CITATION

G F Chen, M X Wang, W X Yang, M Tan, Y Y Wu, P Dai, Y Y Huang, S L Lu. Optical properties of Zn-diffused InP layers for the planar-type InGaAs/InP photodetectors[J]. J. Semicond., 2017, 38(12): 124004. doi: 10.1088/1674-4926/38/12/124004.

Export: BibTex EndNote

Article Metrics

Article views: 2043 Times PDF downloads: 54 Times Cited by: 0 Times

History

Manuscript received: 10 April 2017 Manuscript revised: 19 May 2017 Online: Uncorrected proof: 11 November 2017 Corrected proof: 15 November 2017 Published: 01 December 2017

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误