G F Chen, M X Wang, W X Yang, M Tan, Y Y Wu, P Dai, Y Y Huang, S L Lu. Optical properties of Zn-diffused InP layers for the planar-type InGaAs/InP photodetectors[J]. J. Semicond., 2017, 38(12): 124004. doi: 10.1088/1674-4926/38/12/124004.
Guifeng Chen 1, , Mengxue Wang 1, 2, , Wenxian Yang 2, , Ming Tan 2, , Yuanyuan Wu 2, , Pan Dai 2, , Yuyang Huang 3, and Shulong Lu 2, ,
Abstract: Zn diffusion into InP was carried out ex-situ using a new Zn diffusion technique with zinc phosphorus particles placed around InP materials as zinc source in a semi-closed chamber formed by a modified diffusion furnace. The optical characteristics of the Zn-diffused InP layer for the planar-type InGaAs/InP PIN photodetectors grown by molecular beam epitaxy (MBE) has been investigated by photoluminescence (PL) measurements. The temperature-dependent PL spectrum of Zn-diffused InP samples at different diffusion temperatures showed that band-to-acceptor transition dominates the PL emission, which indicates that Zn was commendably diffused into InP layer as the acceptor. High quality Zn-diffused InP layer with typically smooth surface was obtained at 580 °C for 10 min. Furthermore, more interstitial Zn atoms were activated to act as acceptors after a rapid annealing process. Based on the above Zn-diffusion technique, a 50 μm planar-type InGaAs/InP PIN photodector device was fabricated and exhibited a low dark current of 7.73 pA under a reverse bias potential of −5 V and a high breakdown voltage of larger than 41 V (I < 10 μA). In addition, a high responsivity of 0.81 A/W at 1.31 μm and 0.97 A/W at 1.55 μm was obtained in the developed PIN photodetector.
Key words: Zn diffusion, semi-closed, InGaAs/InP PIN photodetectors, photoluminescence (PL), dark current, responsivity
Abstract: Zn diffusion into InP was carried out ex-situ using a new Zn diffusion technique with zinc phosphorus particles placed around InP materials as zinc source in a semi-closed chamber formed by a modified diffusion furnace. The optical characteristics of the Zn-diffused InP layer for the planar-type InGaAs/InP PIN photodetectors grown by molecular beam epitaxy (MBE) has been investigated by photoluminescence (PL) measurements. The temperature-dependent PL spectrum of Zn-diffused InP samples at different diffusion temperatures showed that band-to-acceptor transition dominates the PL emission, which indicates that Zn was commendably diffused into InP layer as the acceptor. High quality Zn-diffused InP layer with typically smooth surface was obtained at 580 °C for 10 min. Furthermore, more interstitial Zn atoms were activated to act as acceptors after a rapid annealing process. Based on the above Zn-diffusion technique, a 50 μm planar-type InGaAs/InP PIN photodector device was fabricated and exhibited a low dark current of 7.73 pA under a reverse bias potential of −5 V and a high breakdown voltage of larger than 41 V (I < 10 μA). In addition, a high responsivity of 0.81 A/W at 1.31 μm and 0.97 A/W at 1.55 μm was obtained in the developed PIN photodetector.
Key words:
Zn diffusion, semi-closed, InGaAs/InP PIN photodetectors, photoluminescence (PL), dark current, responsivity
References:
[1] |
Jin L F, Zhang Y T, Wang H Y. Accelerated aging of InGaAs PIN photoelectric detectors[J]. Chin J Lasers, 2014, 41(10): 1008002. doi: 10.3788/CJL |
[2] |
Yue Z G. Xenics InGaAs SWIR detector is part of Proba-V space mission[J]. Infrares, 2013, 34(7): 19. |
[3] |
Liu S Q, Han Q, Yang X H. Fabrication and characterization of high-speed and high-efficience photodetector[J]. Laser Optoelectrons Prog, 2012, 49(2): 138. |
[4] |
Dave H, Dewan C, Paul S. AWiFS camera for Resourcesat. Asia-Pacific Remote Sensing Symposium[J]. International Society for Optics and Photonics, 2006: 23. |
[5] |
Macdougal M H, Geske J C, Wang C. Short-wavelength infrared imaging using low dark current InGaAs detector arrays and vertical-cavity surface-emitting laser illuminators[J]. Mathematics Teacher, 2011, 50(6): 1011. |
[6] |
Wang Y S, Chang S J, Tsai C L. 10-Gb/s planar InGaAs P–I–N photodetectors[J]. IEEE Sens J, 2010, 10(10): 1559. doi: 10.1109/JSEN.2010.2046888 |
[7] |
Pereira J T, Torres J. Frequency response optimization of dual depletion InGaAs/InP PIN photodiodes[J]. Photonic Sens, 2016, 6(1): 63. doi: 10.1007/s13320-015-0296-2 |
[8] |
Wang G, Yoneda Y, Aono H. Highly reliable high performance waveguide-integrated InP/InGaAs pin photodiodes for 40 Gbit/s fibre-optical communication application[J]. Electron Lett, 2003, 39(15): 1147. doi: 10.1049/el:20030725 |
[9] |
Lee Y L, Huang C C, Ho C L. Planar InGaAs p–i–n photodiodes with transparent-conducting-based antireflection and double-path reflector[J]. IEEE Electron Device Letters, 2013, 34(11): 1406. doi: 10.1109/LED.2013.2281830 |
[10] |
Skrimshire C P, Farr J R, Sloan D F. Reliability of mesa and planar InGaAs PIN photodiodes[J]. IEE Proce J Optoelectron, 1990, 137(1): 74. doi: 10.1049/ip-j.1990.0015 |
[11] |
Ravi M R, Dasgupta A, Dasgupta N. Silicon nitride and polyimide capping layers on InGaAs/InP PIN photodetector after sulfur treatment[J]. J Cryst Growth, 2004, 268(3-4): 359. doi: 10.1016/j.jcrysgro.2004.04.054 |
[12] |
Chan L Y, Yu K M, Ben-Tzur M. Lattice location of diffused Zn atoms in GaAs and InP single crystals[J]. J Appl Phys, 1991, 69(5): 2998. doi: 10.1063/1.348613 |
[13] |
Islam M, Feng J Y, Berkovich A. InGaAs/InP PIN photodetector arrays made by MOCVD based zinc diffusion processes[J]. SPIE Defense+Security, 2016: 98190G. |
[14] |
Ettenberg M H, Lange M J, Sugg A R. Zinc diffusion in InAsP/InGaAs heterostructures[J]. J Electron Mater, 1999, 28(12): 1433. doi: 10.1007/s11664-999-0136-5 |
[15] |
Wada M, Izumi K, Sakakibara K. Diffusion of zinc acceptors in InAsP by the metal–organic vapor-phase diffusion technique[J]. Appl Phys Lett, 1997, 71(7): 900. doi: 10.1063/1.119682 |
[16] |
Pitts O J, Hisko M, Benyon W. MOCVD based zinc diffusion process for planar InP/InGaAs avalanche photodiode fabrication[J]. International Conference on Indium Phosphide and Related Materials, 2012: 225. |
[17] |
Howard A J, Pathangey B, Hayakawa Y. Application of the point-defect analysis technique to zinc doping of MOCVD indium phosphide[J]. Semicond Sci Technol, 2003, 18(8): 723. doi: 10.1088/0268-1242/18/8/301 |
[18] |
Tang H, Wu X, Zhang K. High uniformity InGaAs linear mesa-type SWIR focal plane arrays[J]. Infrared Mater Devices Appl, 2008, 6835: 683516. |
[19] |
Kurishima K, Kobayashi T, Ito H. Control of Zn diffusion in InP/InGaAs heterojunction bipolar transistor structures grown by metalorganic vapor phase epitaxy[J]. J Appl Phys, 1996, 79(8): 4017. doi: 10.1063/1.361830 |
[20] |
Huang C C, Ho C L, Lee Y L. Large-area planar InGaAs p–i–n photodiodes with Mg driven-in by rapid thermal diffusion[J]. IEEE Electron Device Letters, 2014, 35(12): 1278. doi: 10.1109/LED.2014.2362687 |
[21] |
Huang C C, Ho C L, Wu M C. Large-area planar wavelength-extended InGaAs p–i–n photodiodes by using rapid thermal diffusion with spin-on dopant technique[J]. IEEE Electron Device Lett, 2015, 36(8): 820. doi: 10.1109/LED.2015.2445471 |
[22] |
Erman M, Gillardin G, Bris J L. Characterization of Fe-doped semi-insulating InP by low temperature and room temperature spatially resolved photoluminescence[J]. J Cryst Growth, 1989, 96(3): 469. doi: 10.1016/0022-0248(89)90041-9 |
[23] |
Moon Y, Si S, Yoon E. Low temperature photoluminescence characteristics of Zn-doped InP grown by metalorganic chemical vapor deposition[J]. J Appl Phys, 1998, 83(4): 2261. doi: 10.1063/1.366966 |
[24] |
Dingle R. Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc oxide[J]. Phys Rev Lett, 1969, 23(11): 579. doi: 10.1103/PhysRevLett.23.579 |
[25] |
Kim T S, Lester S D, Streetman B G. Studies of the 1.35-eV photoluminescence band in InP[J]. J Appl Phys, 1987, 62(4): 1363. doi: 10.1063/1.339639 |
[26] |
Temkin H, Dutt B V, Bonner W A. Photoluminescence study of native defects in InP[J]. Appl Phys Lett, 1981, 38(6): 431. doi: 10.1063/1.92386 |
[27] |
Hsu J K, Juang C, Lee B J. Photoluminescence studies of interstitial Zn in InP due to rapid thermal annealing[J]. J Vac Sci Technol B, 1994, 12(3): 1416. doi: 10.1116/1.587310 |
[28] |
Montie E A, Gurp G J V. Photoluminescence of Zn-diffused and annealed InP[J]. J Appl Phys, 1989, 66(11): 5549. doi: 10.1063/1.343659 |
[29] |
Wong C D, Bube R H. Bulk and surface effects of heat treatment of p-type InP crystals[J]. J Appl Phys, 1984, 55(10): 3804. doi: 10.1063/1.332889 |
[30] |
Hess K, Stath N, Benz K W. Liquid phase epitaxy of InP[J]. J Electrocheml Soc, 1974, 121(9): 1208. doi: 10.1149/1.2402014 |
[31] |
Kubota E, Ohmori Y, Sugii K. Electrical and optical properties of Mg–, Ca–, and Zn– doped InP crystals grown by the synthesis, solute diffusion technique[J]. J Appl Phys, 1984, 55(10): 3779. doi: 10.1063/1.332934 |
[32] |
Yoon K H, Lee Y H, Yeo D H. The characteristics of Zn-doped InP using spin-on dopant as a diffusion source[J]. J of Electron Mater, 2002, 31(4): 244. doi: 10.1007/s11664-002-0139-y |
[33] |
Borghesi A, Guizzetti G, Patrini M. Infrared study and characterization of Zn diffused InP[J]. J Appl Phys, 1993, 74(4): 2445. doi: 10.1063/1.354681 |
[34] |
Ishikawa T, Inata T, Kondo K. Annealing effect in Si-doped GaAs and AlGaAs layers grown by MBE[J]. Electron Lett, 1986, 22(4): 189. doi: 10.1049/el:19860132 |
[1] |
Jin L F, Zhang Y T, Wang H Y. Accelerated aging of InGaAs PIN photoelectric detectors[J]. Chin J Lasers, 2014, 41(10): 1008002. doi: 10.3788/CJL |
[2] |
Yue Z G. Xenics InGaAs SWIR detector is part of Proba-V space mission[J]. Infrares, 2013, 34(7): 19. |
[3] |
Liu S Q, Han Q, Yang X H. Fabrication and characterization of high-speed and high-efficience photodetector[J]. Laser Optoelectrons Prog, 2012, 49(2): 138. |
[4] |
Dave H, Dewan C, Paul S. AWiFS camera for Resourcesat. Asia-Pacific Remote Sensing Symposium[J]. International Society for Optics and Photonics, 2006: 23. |
[5] |
Macdougal M H, Geske J C, Wang C. Short-wavelength infrared imaging using low dark current InGaAs detector arrays and vertical-cavity surface-emitting laser illuminators[J]. Mathematics Teacher, 2011, 50(6): 1011. |
[6] |
Wang Y S, Chang S J, Tsai C L. 10-Gb/s planar InGaAs P–I–N photodetectors[J]. IEEE Sens J, 2010, 10(10): 1559. doi: 10.1109/JSEN.2010.2046888 |
[7] |
Pereira J T, Torres J. Frequency response optimization of dual depletion InGaAs/InP PIN photodiodes[J]. Photonic Sens, 2016, 6(1): 63. doi: 10.1007/s13320-015-0296-2 |
[8] |
Wang G, Yoneda Y, Aono H. Highly reliable high performance waveguide-integrated InP/InGaAs pin photodiodes for 40 Gbit/s fibre-optical communication application[J]. Electron Lett, 2003, 39(15): 1147. doi: 10.1049/el:20030725 |
[9] |
Lee Y L, Huang C C, Ho C L. Planar InGaAs p–i–n photodiodes with transparent-conducting-based antireflection and double-path reflector[J]. IEEE Electron Device Letters, 2013, 34(11): 1406. doi: 10.1109/LED.2013.2281830 |
[10] |
Skrimshire C P, Farr J R, Sloan D F. Reliability of mesa and planar InGaAs PIN photodiodes[J]. IEE Proce J Optoelectron, 1990, 137(1): 74. doi: 10.1049/ip-j.1990.0015 |
[11] |
Ravi M R, Dasgupta A, Dasgupta N. Silicon nitride and polyimide capping layers on InGaAs/InP PIN photodetector after sulfur treatment[J]. J Cryst Growth, 2004, 268(3-4): 359. doi: 10.1016/j.jcrysgro.2004.04.054 |
[12] |
Chan L Y, Yu K M, Ben-Tzur M. Lattice location of diffused Zn atoms in GaAs and InP single crystals[J]. J Appl Phys, 1991, 69(5): 2998. doi: 10.1063/1.348613 |
[13] |
Islam M, Feng J Y, Berkovich A. InGaAs/InP PIN photodetector arrays made by MOCVD based zinc diffusion processes[J]. SPIE Defense+Security, 2016: 98190G. |
[14] |
Ettenberg M H, Lange M J, Sugg A R. Zinc diffusion in InAsP/InGaAs heterostructures[J]. J Electron Mater, 1999, 28(12): 1433. doi: 10.1007/s11664-999-0136-5 |
[15] |
Wada M, Izumi K, Sakakibara K. Diffusion of zinc acceptors in InAsP by the metal–organic vapor-phase diffusion technique[J]. Appl Phys Lett, 1997, 71(7): 900. doi: 10.1063/1.119682 |
[16] |
Pitts O J, Hisko M, Benyon W. MOCVD based zinc diffusion process for planar InP/InGaAs avalanche photodiode fabrication[J]. International Conference on Indium Phosphide and Related Materials, 2012: 225. |
[17] |
Howard A J, Pathangey B, Hayakawa Y. Application of the point-defect analysis technique to zinc doping of MOCVD indium phosphide[J]. Semicond Sci Technol, 2003, 18(8): 723. doi: 10.1088/0268-1242/18/8/301 |
[18] |
Tang H, Wu X, Zhang K. High uniformity InGaAs linear mesa-type SWIR focal plane arrays[J]. Infrared Mater Devices Appl, 2008, 6835: 683516. |
[19] |
Kurishima K, Kobayashi T, Ito H. Control of Zn diffusion in InP/InGaAs heterojunction bipolar transistor structures grown by metalorganic vapor phase epitaxy[J]. J Appl Phys, 1996, 79(8): 4017. doi: 10.1063/1.361830 |
[20] |
Huang C C, Ho C L, Lee Y L. Large-area planar InGaAs p–i–n photodiodes with Mg driven-in by rapid thermal diffusion[J]. IEEE Electron Device Letters, 2014, 35(12): 1278. doi: 10.1109/LED.2014.2362687 |
[21] |
Huang C C, Ho C L, Wu M C. Large-area planar wavelength-extended InGaAs p–i–n photodiodes by using rapid thermal diffusion with spin-on dopant technique[J]. IEEE Electron Device Lett, 2015, 36(8): 820. doi: 10.1109/LED.2015.2445471 |
[22] |
Erman M, Gillardin G, Bris J L. Characterization of Fe-doped semi-insulating InP by low temperature and room temperature spatially resolved photoluminescence[J]. J Cryst Growth, 1989, 96(3): 469. doi: 10.1016/0022-0248(89)90041-9 |
[23] |
Moon Y, Si S, Yoon E. Low temperature photoluminescence characteristics of Zn-doped InP grown by metalorganic chemical vapor deposition[J]. J Appl Phys, 1998, 83(4): 2261. doi: 10.1063/1.366966 |
[24] |
Dingle R. Luminescent transitions associated with divalent copper impurities and the green emission from semiconducting zinc oxide[J]. Phys Rev Lett, 1969, 23(11): 579. doi: 10.1103/PhysRevLett.23.579 |
[25] |
Kim T S, Lester S D, Streetman B G. Studies of the 1.35-eV photoluminescence band in InP[J]. J Appl Phys, 1987, 62(4): 1363. doi: 10.1063/1.339639 |
[26] |
Temkin H, Dutt B V, Bonner W A. Photoluminescence study of native defects in InP[J]. Appl Phys Lett, 1981, 38(6): 431. doi: 10.1063/1.92386 |
[27] |
Hsu J K, Juang C, Lee B J. Photoluminescence studies of interstitial Zn in InP due to rapid thermal annealing[J]. J Vac Sci Technol B, 1994, 12(3): 1416. doi: 10.1116/1.587310 |
[28] |
Montie E A, Gurp G J V. Photoluminescence of Zn-diffused and annealed InP[J]. J Appl Phys, 1989, 66(11): 5549. doi: 10.1063/1.343659 |
[29] |
Wong C D, Bube R H. Bulk and surface effects of heat treatment of p-type InP crystals[J]. J Appl Phys, 1984, 55(10): 3804. doi: 10.1063/1.332889 |
[30] |
Hess K, Stath N, Benz K W. Liquid phase epitaxy of InP[J]. J Electrocheml Soc, 1974, 121(9): 1208. doi: 10.1149/1.2402014 |
[31] |
Kubota E, Ohmori Y, Sugii K. Electrical and optical properties of Mg–, Ca–, and Zn– doped InP crystals grown by the synthesis, solute diffusion technique[J]. J Appl Phys, 1984, 55(10): 3779. doi: 10.1063/1.332934 |
[32] |
Yoon K H, Lee Y H, Yeo D H. The characteristics of Zn-doped InP using spin-on dopant as a diffusion source[J]. J of Electron Mater, 2002, 31(4): 244. doi: 10.1007/s11664-002-0139-y |
[33] |
Borghesi A, Guizzetti G, Patrini M. Infrared study and characterization of Zn diffused InP[J]. J Appl Phys, 1993, 74(4): 2445. doi: 10.1063/1.354681 |
[34] |
Ishikawa T, Inata T, Kondo K. Annealing effect in Si-doped GaAs and AlGaAs layers grown by MBE[J]. Electron Lett, 1986, 22(4): 189. doi: 10.1049/el:19860132 |
G F Chen, M X Wang, W X Yang, M Tan, Y Y Wu, P Dai, Y Y Huang, S L Lu. Optical properties of Zn-diffused InP layers for the planar-type InGaAs/InP photodetectors[J]. J. Semicond., 2017, 38(12): 124004. doi: 10.1088/1674-4926/38/12/124004.
Article views: 2043 Times PDF downloads: 54 Times Cited by: 0 Times
Manuscript received: 10 April 2017 Manuscript revised: 19 May 2017 Online: Uncorrected proof: 11 November 2017 Corrected proof: 15 November 2017 Published: 01 December 2017
Journal of Semiconductors © 2017 All Rights Reserved 京ICP备05085259号-2