ARTICLES

Silicon-integrated high-speed mode and polarization switch-and-selector

Yihang Dong1, Yong Zhang1, , Jian Shen1, Zihan Xu1, Xihua Zou2 and Yikai Su1,

+ Author Affiliations

 Corresponding author: Yong Zhang, yongzhang@sjtu.edu.cn; Yikai Su, yikaisu@sjtu.edu.cn

PDF

Turn off MathJax

Abstract: On-chip optical communications are growingly aiming at multimode operation together with mode-division multiplexing to further increase the transmission capacity. Optical switches, which are capable of optical signals switching at the nodes, play a key role in optical networks. We demonstrate a 2 × 2 electro-optic Mach–Zehnder interferometer-based mode- and polarization-selective switch fabricated by standard complementary metal–oxide–semiconductor process. An electro optic tuner based on a PN-doped junction in one of the Mach–Zehnder interferometer arms enables dynamic switching in 11 ns. For all the channels, the overall insertion losses and inter-modal crosstalk values are below 9.03 and –15.86 dB at 1550 nm, respectively.

Key words: mode and polarization switch-and-selectorsilicon photonicshigh speed



[1]
Winzer P J, Neilson D T, Chraplyvy A R. Fiber-optic transmission and networking: The previous 20 and the next 20 years. Opt Express, 2018, 26, 24190 doi: 10.1364/OE.26.024190
[2]
Stern B, Zhu X L, Chen C P, et al. On-chip mode-division multiplexing switch. Optica, 2015, 2, 530 doi: 10.1364/OPTICA.2.000530
[3]
Xiong Y L, Priti R B, Liboiron-Ladouceur O. High-speed two-mode switch for mode-division multiplexing optical networks. Optica, 2017, 4, 1098 doi: 10.1364/OPTICA.4.001098
[4]
Yao Y H, Cheng Z, Dong J J, et al. Performance of integrated optical switches based on 2D materials and beyond. Front Optoelectron, 2020, 13, 129 doi: 10.1007/s12200-020-1058-3
[5]
Zhao Y H, Wang X, Gao D S, et al. On-chip programmable pulse processor employing cascaded MZI-MRR structure. Front Optoelectron, 2019, 12, 148 doi: 10.1007/s12200-018-0846-5
[6]
Su Y K, Zhang Y, Qiu C Y, et al. Silicon photonic platform for passive waveguide devices: Materials, fabrication, and applications. Adv Mater Technol, 2020, 5, 1901153 doi: 10.1002/admt.201901153
[7]
Luo L W, Ophir N, Chen C P, et al. WDM-compatible mode-division multiplexing on a silicon chip. Nat Commun, 2014, 5, 3069 doi: 10.1038/ncomms4069
[8]
Jia H, Yang S L, Zhou T, et al. WDM-compatible multimode optical switching system-on-chip. Nanophotonics, 2019, 8, 889 doi: 10.1515/nanoph-2019-0005
[9]
Han L S, Kuo B P P, Alic N, et al. Silicon Photonic Wavelength and Mode Selective Switch for WDM-MDM networks. 2019 Optical Fiber Communication Conference (OFC), 2019, 1
[10]
Jia H, Zhou T, Zhang L, et al. Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip. Opt Express, 2017, 25, 20698 doi: 10.1364/OE.25.020698
[11]
Zhang Y, He Y, Zhu Q M, et al. On-chip silicon photonic 2 × 2 mode- and polarization-selective switch with low inter-modal crosstalk. Photon Res, 2017, 5, 521 doi: 10.1364/PRJ.5.000521
[12]
Zhang Y, Zhang R H, Zhu Q M, et al. Architecture and devices for silicon photonic switching in wavelength, polarization and mode. J Light Technol, 2019, 38, 215 doi: 10.1109/JLT.2019.2946171
[13]
Dai D, Wang J, Shi Y. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt Lett, 2013, 38, 1422 doi: 10.1364/OL.38.001422
[14]
Liu Y Y, Shainline J M, Zeng X G, et al. Ultra-low-loss CMOS-compatible waveguide crossing arrays based on multimode Bloch waves and imaginary coupling. Opt Lett, 2014, 39, 335 doi: 10.1364/OL.39.000335
[15]
Siew S Y, Li B, Gao F, et al. Review of silicon photonics technology and platform development. J Light Technol, 2021, 39, 4374 doi: 10.1109/JLT.2021.3066203
[16]
Driscoll J B, Grote R R, Souhan B, et al. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt Lett, 2013, 38, 1854 doi: 10.1364/OL.38.001854
[17]
Chen W, Wang P, Yang J. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions. Opt Express, 2013, 21, 25113 doi: 10.1364/OE.21.025113
[18]
Uematsu T, Ishizaka Y, Kawaguchi Y, et al. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J Light Technol, 2012, 30, 2421 doi: 10.1109/JLT.2012.2199961
[19]
Sun Y, Xiong Y L, Ye W N. Experimental demonstration of a two-mode (de)multiplexer based on a taper-etched directional coupler. Opt Lett, 2016, 41, 3743 doi: 10.1364/OL.41.003743
[20]
Jia H, Zhang L, Ding J, et al. Microring modulator matrix integrated with mode multiplexer and de-multiplexer for on-chip optical interconnect. Opt Express, 2017, 25, 422 doi: 10.1364/OE.25.000422
[21]
Dai D, Mao M. Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits. Opt Express, 2015, 23, 28376 doi: 10.1364/OE.23.028376
[22]
Jiang W F, Miao J Y, Li T. Compact silicon 10-mode multi/demultiplexer for hybrid mode- and polarisation-division multiplexing system. Sci Rep, 2019, 9, 13223 doi: 10.1038/s41598-019-49763-0
[23]
Zhang Y, He Y, Wang H W, et al. Ultra-broadband mode size converter using on-chip metamaterial-based Luneburg lens. ACS Photonics, 2021, 8, 202 doi: 10.1021/acsphotonics.0c01269
[24]
Zheng X, Chang E, Amberg P, et al. A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control. Opt Express, 2014, 22, 12628 doi: 10.1364/OE.22.012628
[25]
Jayatilleka H, Murray K, Guillén-Torres M Á, et al. Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters. Opt Express, 2015, 23, 25084 doi: 10.1364/OE.23.025084
[26]
Dai D X, Li C L, Wang S P, et al. 10-channel mode (de)multiplexer with dual polarizations. Laser Photonics Rev, 2018, 12, 1700109 doi: 10.1002/lpor.201700109
[27]
Xu D X, Schmid J H, Reed G T, et al. Silicon photonic integration platform — have we found the sweet spot. IEEE J Sel Top Quantum Electron, 2014, 20, 189 doi: 10.1109/JSTQE.2014.2299634
[28]
Huang H Z, Huang Y T, He Y, et al. Demonstration of terabit coherent on-chip optical interconnects employing mode-division multiplexing. Opt Lett, 2021, 46, 2292 doi: 10.1364/OL.424727
[29]
Okuno M, Kato K, Nagase R, et al. Silica-based 8 × 8 optical matrix switch integrating new switching units with large fabrication tolerance. J Light Technol, 1999, 17, 771 doi: 10.1109/50.762891
[30]
Suzuki K, Cong G, Tanizawa K, et al. Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter. Opt Express, 2015, 23, 9086 doi: 10.1364/OE.23.009086
[31]
He Y, Zhang Y, Zhu Q M, et al. Silicon high-order mode (de)multiplexer on single polarization. J Light Technol, 2018, 36, 5746 doi: 10.1109/JLT.2018.2878529
Fig. 1.  (Color online) (a) Architecture of the proposed 2 × 2 HMPSA (The calculated mode patterns of the TE0, TE1, TM0 and TM1 modes are intensity profiles). Structures of (b) MMUX and (c) 2 × 2 high-speed MZI switch. (d) Cross-sectional view of the PN phase shifter. (MMUX-A: auxiliary mode multiplexer; MDEMUX-A: auxiliary mode de-multiplexer.)

Fig. 2.  (Color online) (a) Micrograph of a silicon chip including a HMPSA. Magnified micrographs of (b) a PBS and a MMUX, (c) a PR, (d) a MZI switch and (e) waveguide crossings.

Fig. 3.  (Color online) Results of measured inter-modal crosstalk.

Fig. 4.  (Color online) Results of measured intra-modal crosstalk.

Fig. 5.  (Color online) Measured dynamic response of the switch. Yellow and blue curves represent the applied square-wave voltage signal and measured signal dynamic switching, respectively. The dotted lines donate the 10% and 90% of the peak voltage.

Table 1.   Measured insertion losses of the building blocks.

ItemLoss
Grating coupler for TE05.3 dB/facet
Grating coupler for TM06.4 dB/facet
PBS for TE00.98 dB
PBS for TM01.04 dB
PR for TE00.91 dB
PR for TM00.78 dB
MMUX for TE01.61 dB
MMUX for TM01.32 dB
DownLoad: CSV
[1]
Winzer P J, Neilson D T, Chraplyvy A R. Fiber-optic transmission and networking: The previous 20 and the next 20 years. Opt Express, 2018, 26, 24190 doi: 10.1364/OE.26.024190
[2]
Stern B, Zhu X L, Chen C P, et al. On-chip mode-division multiplexing switch. Optica, 2015, 2, 530 doi: 10.1364/OPTICA.2.000530
[3]
Xiong Y L, Priti R B, Liboiron-Ladouceur O. High-speed two-mode switch for mode-division multiplexing optical networks. Optica, 2017, 4, 1098 doi: 10.1364/OPTICA.4.001098
[4]
Yao Y H, Cheng Z, Dong J J, et al. Performance of integrated optical switches based on 2D materials and beyond. Front Optoelectron, 2020, 13, 129 doi: 10.1007/s12200-020-1058-3
[5]
Zhao Y H, Wang X, Gao D S, et al. On-chip programmable pulse processor employing cascaded MZI-MRR structure. Front Optoelectron, 2019, 12, 148 doi: 10.1007/s12200-018-0846-5
[6]
Su Y K, Zhang Y, Qiu C Y, et al. Silicon photonic platform for passive waveguide devices: Materials, fabrication, and applications. Adv Mater Technol, 2020, 5, 1901153 doi: 10.1002/admt.201901153
[7]
Luo L W, Ophir N, Chen C P, et al. WDM-compatible mode-division multiplexing on a silicon chip. Nat Commun, 2014, 5, 3069 doi: 10.1038/ncomms4069
[8]
Jia H, Yang S L, Zhou T, et al. WDM-compatible multimode optical switching system-on-chip. Nanophotonics, 2019, 8, 889 doi: 10.1515/nanoph-2019-0005
[9]
Han L S, Kuo B P P, Alic N, et al. Silicon Photonic Wavelength and Mode Selective Switch for WDM-MDM networks. 2019 Optical Fiber Communication Conference (OFC), 2019, 1
[10]
Jia H, Zhou T, Zhang L, et al. Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip. Opt Express, 2017, 25, 20698 doi: 10.1364/OE.25.020698
[11]
Zhang Y, He Y, Zhu Q M, et al. On-chip silicon photonic 2 × 2 mode- and polarization-selective switch with low inter-modal crosstalk. Photon Res, 2017, 5, 521 doi: 10.1364/PRJ.5.000521
[12]
Zhang Y, Zhang R H, Zhu Q M, et al. Architecture and devices for silicon photonic switching in wavelength, polarization and mode. J Light Technol, 2019, 38, 215 doi: 10.1109/JLT.2019.2946171
[13]
Dai D, Wang J, Shi Y. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light. Opt Lett, 2013, 38, 1422 doi: 10.1364/OL.38.001422
[14]
Liu Y Y, Shainline J M, Zeng X G, et al. Ultra-low-loss CMOS-compatible waveguide crossing arrays based on multimode Bloch waves and imaginary coupling. Opt Lett, 2014, 39, 335 doi: 10.1364/OL.39.000335
[15]
Siew S Y, Li B, Gao F, et al. Review of silicon photonics technology and platform development. J Light Technol, 2021, 39, 4374 doi: 10.1109/JLT.2021.3066203
[16]
Driscoll J B, Grote R R, Souhan B, et al. Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing. Opt Lett, 2013, 38, 1854 doi: 10.1364/OL.38.001854
[17]
Chen W, Wang P, Yang J. Mode multi/demultiplexer based on cascaded asymmetric Y-junctions. Opt Express, 2013, 21, 25113 doi: 10.1364/OE.21.025113
[18]
Uematsu T, Ishizaka Y, Kawaguchi Y, et al. Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission. J Light Technol, 2012, 30, 2421 doi: 10.1109/JLT.2012.2199961
[19]
Sun Y, Xiong Y L, Ye W N. Experimental demonstration of a two-mode (de)multiplexer based on a taper-etched directional coupler. Opt Lett, 2016, 41, 3743 doi: 10.1364/OL.41.003743
[20]
Jia H, Zhang L, Ding J, et al. Microring modulator matrix integrated with mode multiplexer and de-multiplexer for on-chip optical interconnect. Opt Express, 2017, 25, 422 doi: 10.1364/OE.25.000422
[21]
Dai D, Mao M. Mode converter based on an inverse taper for multimode silicon nanophotonic integrated circuits. Opt Express, 2015, 23, 28376 doi: 10.1364/OE.23.028376
[22]
Jiang W F, Miao J Y, Li T. Compact silicon 10-mode multi/demultiplexer for hybrid mode- and polarisation-division multiplexing system. Sci Rep, 2019, 9, 13223 doi: 10.1038/s41598-019-49763-0
[23]
Zhang Y, He Y, Wang H W, et al. Ultra-broadband mode size converter using on-chip metamaterial-based Luneburg lens. ACS Photonics, 2021, 8, 202 doi: 10.1021/acsphotonics.0c01269
[24]
Zheng X, Chang E, Amberg P, et al. A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control. Opt Express, 2014, 22, 12628 doi: 10.1364/OE.22.012628
[25]
Jayatilleka H, Murray K, Guillén-Torres M Á, et al. Wavelength tuning and stabilization of microring-based filters using silicon in-resonator photoconductive heaters. Opt Express, 2015, 23, 25084 doi: 10.1364/OE.23.025084
[26]
Dai D X, Li C L, Wang S P, et al. 10-channel mode (de)multiplexer with dual polarizations. Laser Photonics Rev, 2018, 12, 1700109 doi: 10.1002/lpor.201700109
[27]
Xu D X, Schmid J H, Reed G T, et al. Silicon photonic integration platform — have we found the sweet spot. IEEE J Sel Top Quantum Electron, 2014, 20, 189 doi: 10.1109/JSTQE.2014.2299634
[28]
Huang H Z, Huang Y T, He Y, et al. Demonstration of terabit coherent on-chip optical interconnects employing mode-division multiplexing. Opt Lett, 2021, 46, 2292 doi: 10.1364/OL.424727
[29]
Okuno M, Kato K, Nagase R, et al. Silica-based 8 × 8 optical matrix switch integrating new switching units with large fabrication tolerance. J Light Technol, 1999, 17, 771 doi: 10.1109/50.762891
[30]
Suzuki K, Cong G, Tanizawa K, et al. Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter. Opt Express, 2015, 23, 9086 doi: 10.1364/OE.23.009086
[31]
He Y, Zhang Y, Zhu Q M, et al. Silicon high-order mode (de)multiplexer on single polarization. J Light Technol, 2018, 36, 5746 doi: 10.1109/JLT.2018.2878529
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 2120 Times PDF downloads: 158 Times Cited by: 0 Times

    History

    Received: 12 August 2021 Revised: 12 October 2021 Online: Accepted Manuscript: 14 December 2021Uncorrected proof: 23 December 2021Published: 01 February 2022

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Yihang Dong, Yong Zhang, Jian Shen, Zihan Xu, Xihua Zou, Yikai Su. Silicon-integrated high-speed mode and polarization switch-and-selector[J]. Journal of Semiconductors, 2022, 43(2): 022301. doi: 10.1088/1674-4926/43/2/022301 Y H Dong, Y Zhang, J Shen, Z H Xu, X H Zou, Y K Su, Silicon-integrated high-speed mode and polarization switch-and-selector[J]. J. Semicond., 2022, 43(2): 022301. doi: 10.1088/1674-4926/43/2/022301.Export: BibTex EndNote
      Citation:
      Yihang Dong, Yong Zhang, Jian Shen, Zihan Xu, Xihua Zou, Yikai Su. Silicon-integrated high-speed mode and polarization switch-and-selector[J]. Journal of Semiconductors, 2022, 43(2): 022301. doi: 10.1088/1674-4926/43/2/022301

      Y H Dong, Y Zhang, J Shen, Z H Xu, X H Zou, Y K Su, Silicon-integrated high-speed mode and polarization switch-and-selector[J]. J. Semicond., 2022, 43(2): 022301. doi: 10.1088/1674-4926/43/2/022301.
      Export: BibTex EndNote

      Silicon-integrated high-speed mode and polarization switch-and-selector

      doi: 10.1088/1674-4926/43/2/022301
      More Information
      • Author Bio:

        Yihang Dong got his BS from Shanghai University in 2020. Then he joined the State Key Laboratory of Advanced Optical Communication Systems and Networks with the guide of Professor Zhang for relative research

        Yong Zhang received his PhD degree from the Huazhong University of Science and Technology, Wuhan, China. He joined Shanghai Jiao Tong University, Shanghai, China, as an assistant professor in 2015 and became an associate professor in 2019. His research areas cover silicon photonics devices, polarization, and mode devices

        Yikai Su received his PhD degree in electrical engineering from Northwestern University, Evanston, IL, USA in 2001. He worked at Crawford Hill Laboratory of Bell Laboratories and then joined the Shanghai Jiao Tong University as a full professor in 2004. His research areas cover silicon photonic devices for information transmission and switching

      • Corresponding author: yongzhang@sjtu.edu.cnyikaisu@sjtu.edu.cn
      • Received Date: 2021-08-12
      • Revised Date: 2021-10-12
      • Published Date: 2022-02-10

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return