J. Semicond. > Volume 36 > Issue 12 > Article Number: 125005

High-speed low-power voltage-programmed driving scheme for AMOLED displays

Xingheng Xia 1, , Weijing Wu 1, , , Xiaofeng Song 1, , Guanming Li 1, , Lei Zhou 2, , Lirong Zhang 2, , Miao Xu 1, , Lei Wang 1, and Junbiao Peng 1,

+ Author Affiliations + Find other works by these authors

PDF

Abstract: A new voltage-programmed driving scheme named the mixed parallel addressing scheme is presented for AMOLED displays, in which one compensation interval can be divided into the first compensation frame and the consequent N-1 post-compensation frames without periods of initialization and threshold voltage detection. The proposed driving scheme has the advantages of both high speed and low driving power due to the mixture of the pipeline technology and the threshold voltage one-time detection technology. Corresponding to the proposed driving scheme, we also propose a new voltage-programmed compensation pixel circuit, which consists of five TFTs and two capacitors(5T2C). In-Zn-O thin-film transistors(IZO TFTs) are used to build the proposed 5T2C pixel circuit. It is shown that the non-uniformity of the proposed pixel circuit is considerably reduced compared with that of the conventional 2T1C pixel circuit. The number of frames(N) preserved in the proposed driving scheme are measured and can be up to 35 with the variation of the OLED current remaining in an acceptable range. Moreover, the proposed voltage-programmed driving scheme can be more valuable for an AMOLED display with high resolution, and may also be applied to other compensation pixel circuits.

Key words: active-matrix organic light-emitting diode(AMOLED)low powerpixel circuitmixed parallel addressingoptoelectronic integrated circuits

Abstract: A new voltage-programmed driving scheme named the mixed parallel addressing scheme is presented for AMOLED displays, in which one compensation interval can be divided into the first compensation frame and the consequent N-1 post-compensation frames without periods of initialization and threshold voltage detection. The proposed driving scheme has the advantages of both high speed and low driving power due to the mixture of the pipeline technology and the threshold voltage one-time detection technology. Corresponding to the proposed driving scheme, we also propose a new voltage-programmed compensation pixel circuit, which consists of five TFTs and two capacitors(5T2C). In-Zn-O thin-film transistors(IZO TFTs) are used to build the proposed 5T2C pixel circuit. It is shown that the non-uniformity of the proposed pixel circuit is considerably reduced compared with that of the conventional 2T1C pixel circuit. The number of frames(N) preserved in the proposed driving scheme are measured and can be up to 35 with the variation of the OLED current remaining in an acceptable range. Moreover, the proposed voltage-programmed driving scheme can be more valuable for an AMOLED display with high resolution, and may also be applied to other compensation pixel circuits.

Key words: active-matrix organic light-emitting diode(AMOLED)low powerpixel circuitmixed parallel addressingoptoelectronic integrated circuits



References:

[1]

Dawson R M A, Shen Z, Furest D A. The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays[J]. IEDM Tech Dig, 1998: 875.

[2]

Park S H K, Hwang , Ryu M. Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel[J]. Adv Mater, 2009, 21: 678.

[3]

Nathan A, Kumar A, Sakariya K. Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic[J]. IEEE J Solid-State Circuits, 2004, 39(9): 1477.

[4]

Lee K Y, Hsu Y P, Chao P C. A new compensation method for emission degradation in an AMOLED display via an external algorithm, new pixel circuit, and models of prior measurements[J]. J Display Technol, 2014, 10(3): 189.

[5]

Wang C, Leng C, Wang L. An accurate and fast current-biased voltage-programmed AMOLED pixel circuit with OLED biased in AC mode[J]. J Display Technol.

[6]

Ho C H, Lu C, Roy K. An enhanced voltage programming pixel circuit for compensating GB-induced variations in poly-Si TFTs for AMOLED displays[J]. J Display Technol, 2014, 10(5): 345.

[7]

Song X F, Luo J G, Zhou L. A new poly-Si TFT compensation pixel circuit employing AC driving mode for AMOLED displays[J]. Journal of Semiconductors, 2013, 34(12): 125011.

[8]

Goh J C, Jang J, Cho K S. A new a-Si:H thin-film transistor pixel circuit for active-matrix organic light-emitting diodes[J]. IEEE Electron Device Lett, 2003, 24(9): 583.

[9]

Lee H J, Kim J H, Han M K. A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED[J]. IEEE Electron Device Lett, 2005, 26(12): 897.

[10]

Lin C L, Chen Y C. A novel LTPS-TFT pixel circuit compensating for TFT threshold-voltage shift and OLED degradation for AMOLED[J]. IEEE Electron Device Lett, 2007, 28(2): 129.

[11]

Lu H Y, Chang T C, Tai Y H. A new pixel circuit compensating for brightness variation in large size and high resolution AMOLED displays[J]. J Display Technol, 2007, 3(4): 398.

[12]

Wu W J, Zhou L, Yao R H. A new voltage-programmed pixel circuit for enhancing the uniformity of AMOLED displays[J]. IEEE Electron Device Lett, 2011, 32(7): 931.

[13]

Zhang Y W, Chen W B. A new LTPS TFT AC pixel circuit for an AMOLED[J]. Journal of Semiconductors, 2013, 34(1): 015009.

[14]

Chaji G R, Nathan A. Parallel addressing scheme for voltage programmed active-matrix OLED displays[J]. IEEE Trans Electron Devices, 2007, 54(5): 1095.

[15]

Park D W, Kang C K, Park Y S. High-speed pixel circuits for large-sized 3-D AMOLED displays[J]. J Soc Inf Display, 2011, 19(4): 329.

[16]

Chaji G R, Nathan A. Low-power low-cost voltage-programmed a-Si:H AMOLED display for portable devices[J]. J Display Technol, 2008, 4(2): 233.

[17]

Wu W J, Xia X H, Li G M. High-speed voltage-programmed pixel circuit for AMOLED displays employing threshold voltage one-time detection method[J]. IEEE Electron Device Lett, 2013, 34(9): 1148.

[18]

Han C W, Han M K, Nam W J. A top-emitting organic light-emitting diode employing a top-cathode connected to amorphous silicon TFT[J]. J Electrochem Soc, 2007, 154(10): 306.

[19]

Hekmatshoar B H, Kattamis A Z, Cherenack K. A novel TFT-OLED integration for OLED-independent pixel programming in amorphous-Si AMOLED pixels[J]. J Soc Inf Display, 2008, 16(1): 183.

[20]

Yao R H, Zhang L R, Zhou L. A new compensation pixel circuit with all-p-type TFTs for AMOLED displays[J]. Displays, 2013, 34(3): 187.

[21]

Park H S, Shin H S, Lee W. A new thin-film transistor pixel structure suppressing the leakage current effects on AMOLED[J]. IEEE Electron Device Lett, 2009, 30(3): 240.

[22]

Lu M H M, Hack M, Hewitt R. Power consumption and temperature increase in large area active-matrix OLED displays[J]. J Display Technol, 2008, 4(1): 47.

[23]

Zhang L, Li J, Zhang X W. High performance ZnO-thin-film transistor with Ta2O5 dielectrics fabricated at room temperature[J]. Appl Phys Lett, 2009, 95(7): 072112.

[24]

Park S H K, Hwang C S, Ryu M. Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel[J]. Adv Mater, 2009, 21: 678.

[25]

Nomura K, Ohta H, Takagi A. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors[J]. Nature, 2004, 432(7061): 488.

[26]

Yabuta H, Sano M, Abe K. High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature RF-magnetron sputtering[J]. Appl Phys Lett, 2006, 89(11): 112.

[27]

Xu H, Lan L F, Xu M. High performance indium-zinc-oxide thin-film transistors fabricated with a back-channel-etch-technique[J]. Appl Phys Lett, 2011, 99(25): 253501.

[28]

Lan L F, Zhao M J, Xiong N N. Low-voltage high-stability indium-zinc oxide thin-film transistor gated by anodized neodymium-doped aluminum[J]. IEEE Electron Device Lett, 2012, 33(6): 827.

[29]

Li M, Lan L, Xu M. Performance improvement of oxide thin-film transistors with a two-step-annealing method[J]. Solid State Electron, 2014, 91: 9.

[1]

Dawson R M A, Shen Z, Furest D A. The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays[J]. IEDM Tech Dig, 1998: 875.

[2]

Park S H K, Hwang , Ryu M. Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel[J]. Adv Mater, 2009, 21: 678.

[3]

Nathan A, Kumar A, Sakariya K. Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic[J]. IEEE J Solid-State Circuits, 2004, 39(9): 1477.

[4]

Lee K Y, Hsu Y P, Chao P C. A new compensation method for emission degradation in an AMOLED display via an external algorithm, new pixel circuit, and models of prior measurements[J]. J Display Technol, 2014, 10(3): 189.

[5]

Wang C, Leng C, Wang L. An accurate and fast current-biased voltage-programmed AMOLED pixel circuit with OLED biased in AC mode[J]. J Display Technol.

[6]

Ho C H, Lu C, Roy K. An enhanced voltage programming pixel circuit for compensating GB-induced variations in poly-Si TFTs for AMOLED displays[J]. J Display Technol, 2014, 10(5): 345.

[7]

Song X F, Luo J G, Zhou L. A new poly-Si TFT compensation pixel circuit employing AC driving mode for AMOLED displays[J]. Journal of Semiconductors, 2013, 34(12): 125011.

[8]

Goh J C, Jang J, Cho K S. A new a-Si:H thin-film transistor pixel circuit for active-matrix organic light-emitting diodes[J]. IEEE Electron Device Lett, 2003, 24(9): 583.

[9]

Lee H J, Kim J H, Han M K. A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED[J]. IEEE Electron Device Lett, 2005, 26(12): 897.

[10]

Lin C L, Chen Y C. A novel LTPS-TFT pixel circuit compensating for TFT threshold-voltage shift and OLED degradation for AMOLED[J]. IEEE Electron Device Lett, 2007, 28(2): 129.

[11]

Lu H Y, Chang T C, Tai Y H. A new pixel circuit compensating for brightness variation in large size and high resolution AMOLED displays[J]. J Display Technol, 2007, 3(4): 398.

[12]

Wu W J, Zhou L, Yao R H. A new voltage-programmed pixel circuit for enhancing the uniformity of AMOLED displays[J]. IEEE Electron Device Lett, 2011, 32(7): 931.

[13]

Zhang Y W, Chen W B. A new LTPS TFT AC pixel circuit for an AMOLED[J]. Journal of Semiconductors, 2013, 34(1): 015009.

[14]

Chaji G R, Nathan A. Parallel addressing scheme for voltage programmed active-matrix OLED displays[J]. IEEE Trans Electron Devices, 2007, 54(5): 1095.

[15]

Park D W, Kang C K, Park Y S. High-speed pixel circuits for large-sized 3-D AMOLED displays[J]. J Soc Inf Display, 2011, 19(4): 329.

[16]

Chaji G R, Nathan A. Low-power low-cost voltage-programmed a-Si:H AMOLED display for portable devices[J]. J Display Technol, 2008, 4(2): 233.

[17]

Wu W J, Xia X H, Li G M. High-speed voltage-programmed pixel circuit for AMOLED displays employing threshold voltage one-time detection method[J]. IEEE Electron Device Lett, 2013, 34(9): 1148.

[18]

Han C W, Han M K, Nam W J. A top-emitting organic light-emitting diode employing a top-cathode connected to amorphous silicon TFT[J]. J Electrochem Soc, 2007, 154(10): 306.

[19]

Hekmatshoar B H, Kattamis A Z, Cherenack K. A novel TFT-OLED integration for OLED-independent pixel programming in amorphous-Si AMOLED pixels[J]. J Soc Inf Display, 2008, 16(1): 183.

[20]

Yao R H, Zhang L R, Zhou L. A new compensation pixel circuit with all-p-type TFTs for AMOLED displays[J]. Displays, 2013, 34(3): 187.

[21]

Park H S, Shin H S, Lee W. A new thin-film transistor pixel structure suppressing the leakage current effects on AMOLED[J]. IEEE Electron Device Lett, 2009, 30(3): 240.

[22]

Lu M H M, Hack M, Hewitt R. Power consumption and temperature increase in large area active-matrix OLED displays[J]. J Display Technol, 2008, 4(1): 47.

[23]

Zhang L, Li J, Zhang X W. High performance ZnO-thin-film transistor with Ta2O5 dielectrics fabricated at room temperature[J]. Appl Phys Lett, 2009, 95(7): 072112.

[24]

Park S H K, Hwang C S, Ryu M. Transparent and photo-stable ZnO thin-film transistors to drive an active matrix organic-light-emitting-diode display panel[J]. Adv Mater, 2009, 21: 678.

[25]

Nomura K, Ohta H, Takagi A. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors[J]. Nature, 2004, 432(7061): 488.

[26]

Yabuta H, Sano M, Abe K. High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature RF-magnetron sputtering[J]. Appl Phys Lett, 2006, 89(11): 112.

[27]

Xu H, Lan L F, Xu M. High performance indium-zinc-oxide thin-film transistors fabricated with a back-channel-etch-technique[J]. Appl Phys Lett, 2011, 99(25): 253501.

[28]

Lan L F, Zhao M J, Xiong N N. Low-voltage high-stability indium-zinc oxide thin-film transistor gated by anodized neodymium-doped aluminum[J]. IEEE Electron Device Lett, 2012, 33(6): 827.

[29]

Li M, Lan L, Xu M. Performance improvement of oxide thin-film transistors with a two-step-annealing method[J]. Solid State Electron, 2014, 91: 9.

[1]

Hongda Chen, Zan Zhang, Beiju Huang, Luhong Mao, Zanyun Zhang. Progress in complementary metal-oxide-semiconductor silicon photonics and optoelectronic integrated circuits. J. Semicond., 2015, 36(12): 121001. doi: 10.1088/1674-4926/36/12/121001

[2]

Jiao Hong, Yuling Liu, Baoguo Zhang, Xinhuan Niu, Liying Han. A new kind of chelating agent with low pH value applied in the TSV CMP slurry. J. Semicond., 2015, 36(12): 126001. doi: 10.1088/1674-4926/36/12/126001

[3]

Rongrui Liu, Yubing Wang, Dongdong Yin, Han Ye, Xiaohong Yang, Qin Han. A high-efficiency grating coupler between single-mode fiber and silicon-on-insulator waveguide. J. Semicond., 2017, 38(5): 054007. doi: 10.1088/1674-4926/38/5/054007

[4]

Qin Ge, Hongqi Tao, Xuming Yu. A 1.8-3 GHz-band high efficiency GaAs pHEMT power amplifier MMIC. J. Semicond., 2015, 36(12): 125003. doi: 10.1088/1674-4926/36/12/125003

[5]

H. Bendjedidi, A. Attaf, H. Saidi, M. S. Aida, S. Semmari, A. Bouhdjar, Y. Benkhetta. Properties of n-type SnO2 semiconductor prepared by spray ultrasonic technique for photovoltaic applications. J. Semicond., 2015, 36(12): 123002. doi: 10.1088/1674-4926/36/12/123002

[6]

Ke Liu, Zhankun Du, Li Shao, Xiao Ma. A trimming technique for capacitive SAR ADC as sensor interface. J. Semicond., 2015, 36(12): 125004. doi: 10.1088/1674-4926/36/12/125004

[7]

Shaohua Jia, Yuling Liu, Chenwei Wang, Chenqi Yan. Influence of oxidant passivation on controlling dishing in alkaline chemical mechanical planarization. J. Semicond., 2015, 36(12): 126002. doi: 10.1088/1674-4926/36/12/126002

[8]

Zhao Yong, Wang Wanjun, Shao Haifeng, Yang Jianyi, Wang Minghua, Jiang Xiaoqing. Influence of doping position on the extinction ratio of Mach-Zehnder-interference based silicon optical modulators. J. Semicond., 2012, 33(1): 014009. doi: 10.1088/1674-4926/33/1/014009

[9]

Shujie Pan, Victoria Cao, Mengya Liao, Ying Lu, Zizhuo Liu, Mingchu Tang, Siming Chen, Alwyn Seeds, Huiyun Liu. Recent progress in epitaxial growth of III–V quantum-dot lasers on silicon substrate. J. Semicond., 2019, 40(10): 101302. doi: 10.1088/1674-4926/40/10/101302

[10]

Yunchou Zhao, Hao Jia, Jianfeng Ding, Lei Zhang, Xin Fu, Lin Yang. Five-port silicon optical router based on Mach-Zehnder optical switches for photonic networks-on-chip. J. Semicond., 2016, 37(11): 114008. doi: 10.1088/1674-4926/37/11/114008

[11]

Xuhan Guo, An He, Yikai Su. Recent advances of heterogeneously integrated III–V laser on Si. J. Semicond., 2019, 40(10): 101304. doi: 10.1088/1674-4926/40/10/101304

[12]

Yu Zhou, Xinxing Li, Renbing Tan, Wei Xue, Yongdan Huang, Shitao Lou, Baoshun Zhang, Hua Qin. Extraction of terahertz emission from a grating-coupled high-electron-mobility transistor. J. Semicond., 2013, 34(2): 022002. doi: 10.1088/1674-4926/34/2/022002

[13]

Xiaoxin Wang, Jifeng Liu. Emerging technologies in Si active photonics. J. Semicond., 2018, 39(6): 061001. doi: 10.1088/1674-4926/39/6/061001

[14]

Chen Yuan, Jincheng Dai, Hao Jia, Jianfeng Ding, Lei Zhang, Xin Fu, Lin Yang. Design of a C-band polarization rotator-splitter based on a mode-evolution structure and an asymmetric directional coupler. J. Semicond., 2018, 39(12): 124008. doi: 10.1088/1674-4926/39/12/124008

[15]

Daquan Yang, Xiao Liu, Xiaogang Li, Bing Duan, Aiqiang Wang, Yunfeng Xiao. Photoic crystal nanobeam cavity devices for on-chip integrated silicon photonics. J. Semicond., 2020, 41(12): -1.

[16]

Xiaogang Tong, Jun Liu, Chenyang Xue. High-Q micro-ring resonators and grating couplers for silicon-on-insulator integrated photonic circuits. J. Semicond., 2013, 34(8): 085006. doi: 10.1088/1674-4926/34/8/085006

[17]

Wenqi Wei, Qi Feng, Zihao Wang, Ting Wang, Jianjun Zhang. Perspective: optically-pumped III–V quantum dot microcavity lasers via CMOS compatible patterned Si (001) substrates. J. Semicond., 2019, 40(10): 101303. doi: 10.1088/1674-4926/40/10/101303

[18]

Xinlun Cai. Progress in integrating III–V semiconductors on silicon could drive silicon photonics forward. J. Semicond., 2019, 40(10): 100301. doi: 10.1088/1674-4926/40/10/100301

[19]

Chen Shaowu, Tu Xiaoguang, Yu Hejun, Fan Zhongchao, Xu Xuejun, Yu Jinzhong. Challenges and Solution of Fabrication Techniques for Silicon-Based NanD-Photonics Devices。. J. Semicond., 2007, 28(S1): 568.

[20]

Huang Beiju, Chen Hongda, , Liu Jinbin, Gu Ming. A High-Performance Silicon Electro-Optic Phase Modulator with a Triple MOS Capacitor. J. Semicond., 2006, 27(12): 2089.

Search

Advanced Search >>

GET CITATION

X H Xia, W J Wu, X F Song, G M Li, L Zhou, L R Zhang, M Xu, L Wang, J B Peng. High-speed low-power voltage-programmed driving scheme for AMOLED displays[J]. J. Semicond., 2015, 36(12): 125005. doi: 10.1088/1674-4926/36/12/125005.

Export: BibTex EndNote

Article Metrics

Article views: 1305 Times PDF downloads: 9 Times Cited by: 0 Times

History

Manuscript received: 07 January 2014 Manuscript revised: Online: Published: 01 December 2015

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误