J. Semicond. >  In Press

Photoic crystal nanobeam cavity devices for on-chip integrated silicon photonics

Daquan Yang 1, , , Xiao Liu 1, , Xiaogang Li 1, , Bing Duan 1, , Aiqiang Wang 1, and Yunfeng Xiao 2, 3, 4, 5, ,

+ Author Affiliations + Find other works by these authors

PDF

Turn off MathJax

Abstract: Integrated circuit (IC) industry has fully considered the fact that the Moore’s Law is slowing down or ending. Alternative solutions are highly and urgently desired to break the physical size limits in the More-than-Moore era. Integrated silicon photonics technology exhibits distinguished potential to achieve faster operation speed, less power dissipation, and lower cost in IC industry, because their COMS compatibility, fast response, and high monolithic integration capability. Particularly, compared with other on-chip resonators (e.g. microrings, 2D photonic crystal cavities) silicon-on-insulator (SOI)-based photonic crystal nanobeam cavity (PCNC) has emerged as a promising platform for on-chip integration, due to their attractive properties of ultra-high Q/V, ultra-compact footprints and convenient integration with silicon bus-waveguides. In this paper, we present a comprehensive review on recent progress of on-chip PCNC devices for lasing, modulation, switching/filting and label-free sensing, etc.

Key words: PCNCintegrated silicon photonicsMore-than-Moorelab-on-a-chiphybrid devices

Abstract: Integrated circuit (IC) industry has fully considered the fact that the Moore’s Law is slowing down or ending. Alternative solutions are highly and urgently desired to break the physical size limits in the More-than-Moore era. Integrated silicon photonics technology exhibits distinguished potential to achieve faster operation speed, less power dissipation, and lower cost in IC industry, because their COMS compatibility, fast response, and high monolithic integration capability. Particularly, compared with other on-chip resonators (e.g. microrings, 2D photonic crystal cavities) silicon-on-insulator (SOI)-based photonic crystal nanobeam cavity (PCNC) has emerged as a promising platform for on-chip integration, due to their attractive properties of ultra-high Q/V, ultra-compact footprints and convenient integration with silicon bus-waveguides. In this paper, we present a comprehensive review on recent progress of on-chip PCNC devices for lasing, modulation, switching/filting and label-free sensing, etc.

Key words: PCNCintegrated silicon photonicsMore-than-Moorelab-on-a-chiphybrid devices



References:

[1]

Shalf J M, Leland R. Computing beyond Moore's law. Computer, 2015, 48, 14

[2]

Liu M S, Liu Y, Wang H J, et al. Design of GeSn-based heterojunction-enhanced N-channel tunneling FET with improved subthreshold swing and ON-state current. IEEE Trans Electron Devices, 2015, 62, 1262

[3]

Yue Y Z, Hao Y, Zhang J C, et al. AlGaN/GaN MOS-HEMT with HfO2 dielectric and Al2O3 interfacial passivation layer grown by atomic layer deposition. IEEE Electron Device Lett, 2008, 29, 838

[4]

Markov I L. Limits on fundamental limits to computation. Nature, 2014, 512, 147

[5]

Wesling P. The Heterogeneous integration roadmap: Enabling technology for systems of the future. 2020 Pan Pacific Microelectronics Symposium (Pan Pacific), 2020, 1

[6]

Shalf J. The future of computing beyond Moore's Law. Phil Trans Royal Soc A, 2020, 378, 20190061

[7]

Pei J, Deng L, Song S, et al. Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature, 2019, 572, 106

[8]

Liu W L, Li M, Guzzon R S, et al. A fully reconfigurable photonic integrated signal processor. Nat Photon, 2016, 10, 190

[9]

Thomson D, Zilkie A, Bowers J E, et al. Roadmap on silicon photonics. J Opt, 2016, 18, 073003

[10]

Dai D X, Yin Y L, Yu L H, et al. Silicon-plus photonics. Front Optoelectron, 2016, 9, 436

[11]

Shi Y C, Chen J Y, Xu H N. Silicon-based on-chip diplexing/triplexing technologies and devices. Sci China Inf Sci, 2018, 61, 080402

[12]

Guo J S, Dai D X. Silicon nanophotonics for on-chip light manipulation. Chin Phys B, 2018, 27, 104208

[13]

Rong H S, Xu S B, Kuo Y H, et al. Low-threshold continuous-wave Raman silicon laser. Nat Photon, 2007, 1, 232

[14]

Sun X C, Liu J F, Kimerling L C, et al. Toward a germanium laser for integrated silicon photonics. IEEE J Sel Top Quantum Electron, 2010, 16, 124

[15]

Duan G H, Jany C, Le Liepvre A, et al. Hybrid III–V on silicon lasers for photonic integrated circuits on silicon. IEEE J Sel Top Quantum Electron, 2014, 20, 158

[16]

Yang Y C, Gao P, Li L Z, et al. Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat Commun, 2014, 5, 4232

[17]

Pyatkov F, Fütterling V, Khasminskaya S, et al. Cavity-enhanced light emission from electrically driven carbon nanotubes. Nat Photon, 2016, 10, 420

[18]

Chen B G, Wu H, Xin C G, et al. Flexible integration of free-standing nanowires into silicon photonics. Nat Commun, 2017, 8, 20

[19]

Liu J L, Xu G M, Liu F G, et al. Recent advances in polymer electro-optic modulators. RSC Adv, 2015, 5, 15784

[20]

Joyce H J, Gao Q, Hoe Tan H, et al. III –V semiconductor nanowires for optoelectronic device applications. Prog Quantum Electron, 2011, 35, 23

[21]

Bie Y Q, Grosso G, Heuck M, et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat Nanotech, 2017, 12, 1124

[22]

Liu M, Yin X B, Ulin-Avila E, et al. A graphene-based broadband optical modulator. Nature, 2011, 474, 64

[23]

Vahala K J. Optical microcavities. Nature, 2003, 424, 839

[24]

Song Q H. Emerging opportunities for ultra-high Q whispering gallery mode microcavities. Sci China Phys Mech Astron, 2019, 62, 74231

[25]

Deotare P B, McCutcheon M W, Frank I W, et al. High quality factor photonic crystal nanobeam cavities. Appl Phys Lett, 2009, 94, 121106

[26]

Quan Q M, Deotare P B, Loncar M. Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide. Appl Phys Lett, 2010, 96, 203102

[27]

Zhang Y, Khan M, Huang Y, et al. Photonic crystal nanobeam lasers. Appl Phys Lett, 2010, 97, 051104

[28]

Ahn B H, Kang J H, Kim M K, et al. One-dimensional parabolic-beam photonic crystal laser. Opt Express, 2010, 18, 5654

[29]

Gong Y Y, Ellis B, Shambat G, et al. Nanobeam photonic crystal cavity quantum dot laser. Opt Express, 2010, 18, 8781

[30]

Lu T W, Chiu L H, Lin P T, et al. One-dimensional photonic crystal nanobeam lasers on a flexible substrate. Appl Phys Lett, 2011, 99, 071101

[31]

Fegadolli W S, Kim S H, Postigo P A, et al. Hybrid single quantum well InP/Si nanobeam lasers for silicon photonics. Opt Lett, 2013, 38, 4656

[32]

Lee P T, Lu T W, Chiu L H. Dielectric-band photonic crystal nanobeam lasers. J Lightwave Technol, 2013, 31, 36

[33]

Jeong K Y, No Y S, Hwang Y, et al. Electrically driven nanobeam laser. Nat Commun, 2013, 4, 2822

[34]

Niu N, Woolf A, Wang D Q, et al. Ultra-low threshold gallium nitride photonic crystal nanobeam laser. Appl Phys Lett, 2015, 106, 231104

[35]

Triviño N V, Butté R, Carlin J F, et al. Continuous wave blue lasing in III-nitride nanobeam cavity on silicon. Nano Lett, 2015, 15, 1259

[36]

Yang Z L, Pelton M, Fedin I, et al. A room temperature continuous-wave nanolaser using colloidal quantum wells. Nat Commun, 2017, 8, 143

[37]

Lee J, Karnadi I, Kim J T, et al. Printed nanolaser on silicon. ACS Photonics, 2017, 4, 2117

[38]

Li Y Z, Zhang J X, Huang D D, et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat Nanotech, 2017, 12, 987

[39]

Jagsch S T, Triviño N V, Lohof F, et al. A quantum optical study of thresholdless lasing features in high-β nitride nanobeam cavities. Nat Commun, 2018, 9, 564

[40]

He Z, Chen B, Hua Y, et al. CMOS compatible high-performance nanolasing based on perovskite-SiN hybrid integration. Adv Opt Mater, 2020, 8, 2000453

[41]

Wu S F, Buckley S, Schaibley J R, et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 2015, 520, 69

[42]

Jacobsen R S, Andersen K N, Borel P I, et al. Strained silicon as a new electro-optic material. Nature, 2006, 441, 199

[43]

Hochberg M, Baehr-Jones T, Wang G X, et al. Terahertz all-optical modulation in a silicon–polymer hybrid system. Nat Mater, 2006, 5, 703

[44]

Soref R, Bennett B. Electrooptical effects in silicon. IEEE J Quantum Electron, 1987, 23, 123

[45]

Qi B, Yu P, Li Y B, et al. Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity. IEEE Photon Technol Lett, 2011, 23, 992

[46]

Javid M R, Miri M, Zarifkar A. Design of a compact high-speed optical modulator based on a hybrid plasmonic nanobeam cavity. Opt Commun, 2018, 410, 652

[47]

Hendrickson J, Soref R, Sweet J, et al. Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation. Opt Express, 2014, 22, 3271

[48]

Shakoor A, Nozaki K, Kuramochi E, et al. Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy. Opt Express, 2014, 22, 28623

[49]

Jafari Z, Zarifkar A, Miri M, et al. All-optical modulation in a graphene-covered slotted silicon nano-beam cavity. J Lightwave Technol, 2018, 36, 4051

[50]

Liu M, Yin X B, Zhang X. Double-layer graphene optical modulator. Nano Lett, 2012, 12, 1482

[51]

Qiu C Y, Gao W L, Vajtai R, et al. Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator. Nano Lett, 2014, 14, 6811

[52]

Du W, Li E P, Hao R. Tunability analysis of a graphene-embedded ring modulator. IEEE Photon Technol Lett, 2014, 26, 2008

[53]

Pan T, Qiu C Y, Wu J Y, et al. Analysis of an electro-optic modulator based on a graphene-silicon hybrid 1D photonic crystal nanobeam cavity. Opt Express, 2015, 23, 23357

[54]

Liu H Q, Liu P G, Bian L A, et al. Electro-optic modulator side-coupled with a photonic crystal nanobeam loaded graphene/ Al2O3 multilayer stack. Opt Mater Express, 2018, 8, 761

[55]

Inoue S I, Otomo A. Electro-optic polymer/silicon hybrid slow light modulator based on one-dimensional photonic crystal waveguides. Appl Phys Lett, 2013, 103, 171101

[56]

Yan H, Xu X C, Chung C J, et al. One-dimensional photonic crystal slot waveguide for silicon-organic hybrid electro-optic modulators. Opt Lett, 2016, 41, 5466

[57]

Witmer J D, Hill J T, Safavi-Naeini A H. Design of nanobeam photonic crystal resonators for a silicon-on-lithium-niobate platform. Opt Express, 2016, 24, 5876

[58]

Witmer J D, Valery J A, Arrangoiz-Arriola P, et al. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate. Sci Rep, 2017, 7, 46313

[59]

Fegadolli W S, Oliveira J E B, Almeida V R, et al. Compact and low power consumption tunable photonic crystal nanobeam cavity. Opt Express, 2013, 21, 3861

[60]

Hadian Siahkal-Mahalle B, Abedi K. Ultra-compact low loss electro-optical nanobeam cavity modulator embedded photonic crystal. Opt Quant Electron, 2019, 51, 128

[61]

Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146, 351

[62]

Mak K F, Sfeir M Y, Wu Y, et al. Measurement of the optical conductivity of graphene. Phys Rev Lett, 2008, 101, 196405

[63]

Yin Y W, Proietti R, Ye X H, et al. LIONS: An AWGR-based low-latency optical switch for high-performance computing and data centers. IEEE J Sel Top Quantum Electron, 2013, 19, 3600409

[64]

Chen K, Singla A, Singh A, et al. OSA: an optical switching architecture for data center networks with unprecedented flexibility. IEEE/ACM Trans Networking, 2014, 22, 498

[65]

Qiu C Y, Gao W L, Soref R, et al. Reconfigurable electro-optical directed-logic circuit using carrier-depletion micro-ring resonators. Opt Lett, 2014, 39, 6767

[66]

Lira H L R, Manipatruni S, Lipson M. Broadband hitless silicon electro-optic switch for on-chip optical networks. Opt Express, 2009, 17, 22271

[67]

Dong P, Liao S R, Liang H, et al. Submilliwatt, ultrafast and broadband electro-optic silicon switches. Opt Express, 2010, 18, 25225

[68]

Zhou H Y, Qiu C Y, Xu Z Z, et al. A 2 × 2 silicon thermo-optic switch based on nanobeam cavities with ultra-small mode volumes. 2016 IEEE 13th International Conference on Group IV Photonics (GFP), 2016, 10

[69]

Zhou H Y, Qiu C Y, Jiang X H, et al. Compact, submilliwatt, 2 × 2 silicon thermo-optic switch based on photonic crystal nanobeam cavities. Photon Res, 2017, 5, 108

[70]

Cheng Z W, Dong J J, Zhang X L. Ultracompact optical switch using a single semisymmetric Fano nanobeam cavity. Opt Lett, 2020, 45, 2363

[71]

Soref R, Hendrickson J. Proposed ultralow-energy dual photonic-crystal nanobeam devices for on-chip N × N switching, logic, and wavelength multiplexing. Opt Express, 2015, 23, 32582

[72]

Soref R, Hendrickson J R, Sweet J. Simulation of germanium nanobeam electro-optical 2 × 2 switches and 1 × 1 modulators for the 2 to 5 µm infrared region. Opt Express, 2016, 24, 9369

[73]

Zhou H Y, Qiu C Y, Wu J Y, et al. 2 × 2 electro-optic switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities. Conference on Lasers and Electro-Optics, 2016, JTh2A.105

[74]

Bazin A, Lenglé K, Gay M, et al. Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells. Appl Phys Lett, 2014, 104, 011102

[75]

Dong G N, Deng W T, Hou J, et al. Ultra-compact multi-channel all-optical switches with improved switching dynamic characteristics. Opt Express, 2018, 26, 25630

[76]

Meng Z M, Chen C B, Qin F. Theoretical investigation of integratable photonic crystal nanobeam all-optical switching with ultrafast response and ultralow switching energy. J Phys D, 2020, 53, 205105

[77]

Liu Y, Qin F, Meng Z M, et al. All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs. Opt Express, 2011, 19, 1945

[78]

Lengle K, Nguyen T N, Gay M, et al. Modulation contrast optimization for wavelength conversion of a 20 Gbit/s data signal in hybrid InP/SOI photonic crystal nanocavity. Opt Lett, 2014, 39, 2298

[79]

Ji H, Galili M, Hu H, et al. 1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide. IEEE Photon Technol Lett, 2010, 22, 1762

[80]

Dong G N, Wang Y L, Zhang X L. High-contrast and low-power all-optical switch using Fano resonance based on a silicon nanobeam cavity. Opt Lett, 2018, 43, 5977

[81]

Meng Z M, Hu Y H, Wang C, et al. Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavities for low-power and ultrafast all-optical switching. Photonics Nanostruct, 2014, 12, 83

[82]

Asghari M, Krishnamoorthy A V. Energy-efficient communication. Nat Photon, 2011, 5, 268

[83]

Pan J, Huo Y J, Yamanaka K, et al. Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning. Appl Phys Lett, 2008, 92, 103114

[84]

Eichenfield M, Camacho R, Chan J, et al. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature, 2009, 459, 550

[85]

Li M, Pernice W H P, Tang H X. Tunable bipolar optical interactions between guided lightwaves. Nat Photon, 2009, 3, 464

[86]

Gu L L, Jiang W, Chen X N, et al. Thermooptically tuned photonic crystal waveguide silicon-on-insulator Mach–Zehnder interferometers. IEEE Photon Technol Lett, 2007, 19, 342

[87]

Espinola R L, Tsai M C, Yardley J T, et al. Fast and low-power thermooptic switch on thin silicon-on-insulator. IEEE Photon Technol Lett, 2003, 15, 1366

[88]

Dong P, Qian W, Liang H, et al. Thermally tunable silicon racetrack resonators with ultralow tuning power. Opt Express, 2010, 18, 20298

[89]

Zhang Y, He Y, Zhu Q M, et al. Single-resonance silicon nanobeam filter with an ultra-high thermo-optic tuning efficiency over a wide continuous tuning range. Opt Lett, 2018, 43, 4518

[90]

Matsko A B. Practical applications of microresonators in optics and photonics. London: CRC Press, 2009

[91]

Fan X D. Advanced photonic structures for biological and chemical detection. New York: Springer New York, 2009

[92]

Sharma A, Xie S R, Zeltner R, et al. On-the-fly particle metrology in hollow-core photonic crystal fibre. Opt Express, 2019, 27, 34496

[93]

Xiao Y F, Gong Q H. Optical microcavity: From fundamental physics to functional photonics devices. Sci Bull, 2016, 61, 185

[94]

Zhi Y Y, Yu X C, Gong Q H, et al. Single nanoparticle detection using optical microcavities. Adv Mater, 2017, 29, 1604920

[95]

Shao L B, Jiang X F, Yu X C, et al. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv Mater, 2013, 25, 5616

[96]

Li B B, Clements W R, Yu X C, et al. Single nanoparticle detection using split-mode microcavity Raman lasers. PNAS, 2014, 111, 14657

[97]

Yang D Q, Wang A Q, Chen J H, et al. Real-time monitoring of hydrogel phase transition in an ultrahigh Q microbubble resonator. Photonics Res, 2020, 8, 497

[98]

Yang D Q, Duan B, Liu X, et al. Photonic crystal nanobeam cavities for nanoscale optical sensing: A review. Micromachines, 2020, 11, 72

[99]

Quan Q M, Floyd D L, Burgess I B, et al. Single particle detection in CMOS compatible photonic crystal nanobeam cavities. Opt Express, 2013, 21, 32225

[100]

Rahman M G A, Velha P, de la Rue R M, et al. Silicon-on-insulator (SOI) nanobeam optical cavities for refractive index based sensing. Opt Sens Detect II, 2012, 8439, 84391Q

[101]

Yao K Y, Shi Y C. High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing. Opt Express, 2012, 20, 27039

[102]

Quan Q M, Burgess I B, Tang S K Y, et al. High-Q, low index-contrast polymeric photonic crystal nanobeam cavities. Opt Express, 2011, 19, 22191

[103]

Xu P P, Yao K Y, Zheng J J, et al. Slotted photonic crystal nanobeam cavity with parabolic modulated width stack for refractive index sensing. Opt Express, 2013, 21, 26908

[104]

Yang D Q, Kita S, Liang F, et al. High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing. Appl Phys Lett, 2014, 105, 063118

[105]

Kim S, Kim H M, Lee Y H. Single nanobeam optical sensor with a high Q-factor and high sensitivity. Opt Lett, 2015, 40, 5351

[106]

Rodriguez G A, Markov P, Cartwright A P, et al. Photonic crystal nanobeam biosensors based on porous silicon. Opt Express, 2019, 27, 9536

[107]

Gopinath A, Miyazono E, Faraon A, et al. Engineering and mapping nanocavity emission via precision placement of DNA origami. Nature, 2016, 535, 401

[108]

Mandal S, Erickson D. Nanoscale optofluidic sensor arrays. Opt Express, 2008, 16, 1623

[109]

Yang D Q, Wang C, Ji Y F. Silicon on-chip 1D photonic crystal nanobeam bandstop filters for the parallel multiplexing of ultra-compact integrated sensor array. Opt Express, 2016, 24, 16267

[110]

Hagino H, Takahashi Y, Tanaka Y, et al. Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities. Phys Rev B, 2009, 79, 085112

[111]

Afzal F O, Halimi S I, Weiss S M. Efficient side-coupling to photonic crystal nanobeam cavities via state-space overlap. J Opt Soc Am B, 2019, 36, 585

[112]

Liang F, Clarke N, Patel P, et al. Scalable photonic crystal chips for high sensitivity protein detection. Opt Express, 2013, 21, 32306

[113]

Frank I W, Deotare P B, McCutcheon M W, et al. Programmable photonic crystal nanobeam cavities. Opt Express, 2010, 18, 8705

[114]

Panettieri D, O'Faolain L, Grande M. Control of Q-factor in nanobeam cavities on substrate. 2016 18th International Conference on Transparent Optical Networks (ICTON), 2016, 1

[115]

Xiong Y L, Wangüemert-Pérez J G, Xu D X, et al. Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance. Opt Lett, 2014, 39, 6931

[1]

Shalf J M, Leland R. Computing beyond Moore's law. Computer, 2015, 48, 14

[2]

Liu M S, Liu Y, Wang H J, et al. Design of GeSn-based heterojunction-enhanced N-channel tunneling FET with improved subthreshold swing and ON-state current. IEEE Trans Electron Devices, 2015, 62, 1262

[3]

Yue Y Z, Hao Y, Zhang J C, et al. AlGaN/GaN MOS-HEMT with HfO2 dielectric and Al2O3 interfacial passivation layer grown by atomic layer deposition. IEEE Electron Device Lett, 2008, 29, 838

[4]

Markov I L. Limits on fundamental limits to computation. Nature, 2014, 512, 147

[5]

Wesling P. The Heterogeneous integration roadmap: Enabling technology for systems of the future. 2020 Pan Pacific Microelectronics Symposium (Pan Pacific), 2020, 1

[6]

Shalf J. The future of computing beyond Moore's Law. Phil Trans Royal Soc A, 2020, 378, 20190061

[7]

Pei J, Deng L, Song S, et al. Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature, 2019, 572, 106

[8]

Liu W L, Li M, Guzzon R S, et al. A fully reconfigurable photonic integrated signal processor. Nat Photon, 2016, 10, 190

[9]

Thomson D, Zilkie A, Bowers J E, et al. Roadmap on silicon photonics. J Opt, 2016, 18, 073003

[10]

Dai D X, Yin Y L, Yu L H, et al. Silicon-plus photonics. Front Optoelectron, 2016, 9, 436

[11]

Shi Y C, Chen J Y, Xu H N. Silicon-based on-chip diplexing/triplexing technologies and devices. Sci China Inf Sci, 2018, 61, 080402

[12]

Guo J S, Dai D X. Silicon nanophotonics for on-chip light manipulation. Chin Phys B, 2018, 27, 104208

[13]

Rong H S, Xu S B, Kuo Y H, et al. Low-threshold continuous-wave Raman silicon laser. Nat Photon, 2007, 1, 232

[14]

Sun X C, Liu J F, Kimerling L C, et al. Toward a germanium laser for integrated silicon photonics. IEEE J Sel Top Quantum Electron, 2010, 16, 124

[15]

Duan G H, Jany C, Le Liepvre A, et al. Hybrid III–V on silicon lasers for photonic integrated circuits on silicon. IEEE J Sel Top Quantum Electron, 2014, 20, 158

[16]

Yang Y C, Gao P, Li L Z, et al. Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat Commun, 2014, 5, 4232

[17]

Pyatkov F, Fütterling V, Khasminskaya S, et al. Cavity-enhanced light emission from electrically driven carbon nanotubes. Nat Photon, 2016, 10, 420

[18]

Chen B G, Wu H, Xin C G, et al. Flexible integration of free-standing nanowires into silicon photonics. Nat Commun, 2017, 8, 20

[19]

Liu J L, Xu G M, Liu F G, et al. Recent advances in polymer electro-optic modulators. RSC Adv, 2015, 5, 15784

[20]

Joyce H J, Gao Q, Hoe Tan H, et al. III –V semiconductor nanowires for optoelectronic device applications. Prog Quantum Electron, 2011, 35, 23

[21]

Bie Y Q, Grosso G, Heuck M, et al. A MoTe2-based light-emitting diode and photodetector for silicon photonic integrated circuits. Nat Nanotech, 2017, 12, 1124

[22]

Liu M, Yin X B, Ulin-Avila E, et al. A graphene-based broadband optical modulator. Nature, 2011, 474, 64

[23]

Vahala K J. Optical microcavities. Nature, 2003, 424, 839

[24]

Song Q H. Emerging opportunities for ultra-high Q whispering gallery mode microcavities. Sci China Phys Mech Astron, 2019, 62, 74231

[25]

Deotare P B, McCutcheon M W, Frank I W, et al. High quality factor photonic crystal nanobeam cavities. Appl Phys Lett, 2009, 94, 121106

[26]

Quan Q M, Deotare P B, Loncar M. Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide. Appl Phys Lett, 2010, 96, 203102

[27]

Zhang Y, Khan M, Huang Y, et al. Photonic crystal nanobeam lasers. Appl Phys Lett, 2010, 97, 051104

[28]

Ahn B H, Kang J H, Kim M K, et al. One-dimensional parabolic-beam photonic crystal laser. Opt Express, 2010, 18, 5654

[29]

Gong Y Y, Ellis B, Shambat G, et al. Nanobeam photonic crystal cavity quantum dot laser. Opt Express, 2010, 18, 8781

[30]

Lu T W, Chiu L H, Lin P T, et al. One-dimensional photonic crystal nanobeam lasers on a flexible substrate. Appl Phys Lett, 2011, 99, 071101

[31]

Fegadolli W S, Kim S H, Postigo P A, et al. Hybrid single quantum well InP/Si nanobeam lasers for silicon photonics. Opt Lett, 2013, 38, 4656

[32]

Lee P T, Lu T W, Chiu L H. Dielectric-band photonic crystal nanobeam lasers. J Lightwave Technol, 2013, 31, 36

[33]

Jeong K Y, No Y S, Hwang Y, et al. Electrically driven nanobeam laser. Nat Commun, 2013, 4, 2822

[34]

Niu N, Woolf A, Wang D Q, et al. Ultra-low threshold gallium nitride photonic crystal nanobeam laser. Appl Phys Lett, 2015, 106, 231104

[35]

Triviño N V, Butté R, Carlin J F, et al. Continuous wave blue lasing in III-nitride nanobeam cavity on silicon. Nano Lett, 2015, 15, 1259

[36]

Yang Z L, Pelton M, Fedin I, et al. A room temperature continuous-wave nanolaser using colloidal quantum wells. Nat Commun, 2017, 8, 143

[37]

Lee J, Karnadi I, Kim J T, et al. Printed nanolaser on silicon. ACS Photonics, 2017, 4, 2117

[38]

Li Y Z, Zhang J X, Huang D D, et al. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat Nanotech, 2017, 12, 987

[39]

Jagsch S T, Triviño N V, Lohof F, et al. A quantum optical study of thresholdless lasing features in high-β nitride nanobeam cavities. Nat Commun, 2018, 9, 564

[40]

He Z, Chen B, Hua Y, et al. CMOS compatible high-performance nanolasing based on perovskite-SiN hybrid integration. Adv Opt Mater, 2020, 8, 2000453

[41]

Wu S F, Buckley S, Schaibley J R, et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 2015, 520, 69

[42]

Jacobsen R S, Andersen K N, Borel P I, et al. Strained silicon as a new electro-optic material. Nature, 2006, 441, 199

[43]

Hochberg M, Baehr-Jones T, Wang G X, et al. Terahertz all-optical modulation in a silicon–polymer hybrid system. Nat Mater, 2006, 5, 703

[44]

Soref R, Bennett B. Electrooptical effects in silicon. IEEE J Quantum Electron, 1987, 23, 123

[45]

Qi B, Yu P, Li Y B, et al. Analysis of electrooptic modulator with 1-D slotted photonic crystal nanobeam cavity. IEEE Photon Technol Lett, 2011, 23, 992

[46]

Javid M R, Miri M, Zarifkar A. Design of a compact high-speed optical modulator based on a hybrid plasmonic nanobeam cavity. Opt Commun, 2018, 410, 652

[47]

Hendrickson J, Soref R, Sweet J, et al. Ultrasensitive silicon photonic-crystal nanobeam electro-optical modulator: Design and simulation. Opt Express, 2014, 22, 3271

[48]

Shakoor A, Nozaki K, Kuramochi E, et al. Compact 1D-silicon photonic crystal electro-optic modulator operating with ultra-low switching voltage and energy. Opt Express, 2014, 22, 28623

[49]

Jafari Z, Zarifkar A, Miri M, et al. All-optical modulation in a graphene-covered slotted silicon nano-beam cavity. J Lightwave Technol, 2018, 36, 4051

[50]

Liu M, Yin X B, Zhang X. Double-layer graphene optical modulator. Nano Lett, 2012, 12, 1482

[51]

Qiu C Y, Gao W L, Vajtai R, et al. Efficient modulation of 1.55 μm radiation with gated graphene on a silicon microring resonator. Nano Lett, 2014, 14, 6811

[52]

Du W, Li E P, Hao R. Tunability analysis of a graphene-embedded ring modulator. IEEE Photon Technol Lett, 2014, 26, 2008

[53]

Pan T, Qiu C Y, Wu J Y, et al. Analysis of an electro-optic modulator based on a graphene-silicon hybrid 1D photonic crystal nanobeam cavity. Opt Express, 2015, 23, 23357

[54]

Liu H Q, Liu P G, Bian L A, et al. Electro-optic modulator side-coupled with a photonic crystal nanobeam loaded graphene/ Al2O3 multilayer stack. Opt Mater Express, 2018, 8, 761

[55]

Inoue S I, Otomo A. Electro-optic polymer/silicon hybrid slow light modulator based on one-dimensional photonic crystal waveguides. Appl Phys Lett, 2013, 103, 171101

[56]

Yan H, Xu X C, Chung C J, et al. One-dimensional photonic crystal slot waveguide for silicon-organic hybrid electro-optic modulators. Opt Lett, 2016, 41, 5466

[57]

Witmer J D, Hill J T, Safavi-Naeini A H. Design of nanobeam photonic crystal resonators for a silicon-on-lithium-niobate platform. Opt Express, 2016, 24, 5876

[58]

Witmer J D, Valery J A, Arrangoiz-Arriola P, et al. High-Q photonic resonators and electro-optic coupling using silicon-on-lithium-niobate. Sci Rep, 2017, 7, 46313

[59]

Fegadolli W S, Oliveira J E B, Almeida V R, et al. Compact and low power consumption tunable photonic crystal nanobeam cavity. Opt Express, 2013, 21, 3861

[60]

Hadian Siahkal-Mahalle B, Abedi K. Ultra-compact low loss electro-optical nanobeam cavity modulator embedded photonic crystal. Opt Quant Electron, 2019, 51, 128

[61]

Bolotin K I, Sikes K J, Jiang Z, et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun, 2008, 146, 351

[62]

Mak K F, Sfeir M Y, Wu Y, et al. Measurement of the optical conductivity of graphene. Phys Rev Lett, 2008, 101, 196405

[63]

Yin Y W, Proietti R, Ye X H, et al. LIONS: An AWGR-based low-latency optical switch for high-performance computing and data centers. IEEE J Sel Top Quantum Electron, 2013, 19, 3600409

[64]

Chen K, Singla A, Singh A, et al. OSA: an optical switching architecture for data center networks with unprecedented flexibility. IEEE/ACM Trans Networking, 2014, 22, 498

[65]

Qiu C Y, Gao W L, Soref R, et al. Reconfigurable electro-optical directed-logic circuit using carrier-depletion micro-ring resonators. Opt Lett, 2014, 39, 6767

[66]

Lira H L R, Manipatruni S, Lipson M. Broadband hitless silicon electro-optic switch for on-chip optical networks. Opt Express, 2009, 17, 22271

[67]

Dong P, Liao S R, Liang H, et al. Submilliwatt, ultrafast and broadband electro-optic silicon switches. Opt Express, 2010, 18, 25225

[68]

Zhou H Y, Qiu C Y, Xu Z Z, et al. A 2 × 2 silicon thermo-optic switch based on nanobeam cavities with ultra-small mode volumes. 2016 IEEE 13th International Conference on Group IV Photonics (GFP), 2016, 10

[69]

Zhou H Y, Qiu C Y, Jiang X H, et al. Compact, submilliwatt, 2 × 2 silicon thermo-optic switch based on photonic crystal nanobeam cavities. Photon Res, 2017, 5, 108

[70]

Cheng Z W, Dong J J, Zhang X L. Ultracompact optical switch using a single semisymmetric Fano nanobeam cavity. Opt Lett, 2020, 45, 2363

[71]

Soref R, Hendrickson J. Proposed ultralow-energy dual photonic-crystal nanobeam devices for on-chip N × N switching, logic, and wavelength multiplexing. Opt Express, 2015, 23, 32582

[72]

Soref R, Hendrickson J R, Sweet J. Simulation of germanium nanobeam electro-optical 2 × 2 switches and 1 × 1 modulators for the 2 to 5 µm infrared region. Opt Express, 2016, 24, 9369

[73]

Zhou H Y, Qiu C Y, Wu J Y, et al. 2 × 2 electro-optic switch with fJ/bit switching power based on dual photonic crystal nanobeam cavities. Conference on Lasers and Electro-Optics, 2016, JTh2A.105

[74]

Bazin A, Lenglé K, Gay M, et al. Ultrafast all-optical switching and error-free 10 Gbit/s wavelength conversion in hybrid InP-silicon on insulator nanocavities using surface quantum wells. Appl Phys Lett, 2014, 104, 011102

[75]

Dong G N, Deng W T, Hou J, et al. Ultra-compact multi-channel all-optical switches with improved switching dynamic characteristics. Opt Express, 2018, 26, 25630

[76]

Meng Z M, Chen C B, Qin F. Theoretical investigation of integratable photonic crystal nanobeam all-optical switching with ultrafast response and ultralow switching energy. J Phys D, 2020, 53, 205105

[77]

Liu Y, Qin F, Meng Z M, et al. All-optical logic gates based on two-dimensional low-refractive-index nonlinear photonic crystal slabs. Opt Express, 2011, 19, 1945

[78]

Lengle K, Nguyen T N, Gay M, et al. Modulation contrast optimization for wavelength conversion of a 20 Gbit/s data signal in hybrid InP/SOI photonic crystal nanocavity. Opt Lett, 2014, 39, 2298

[79]

Ji H, Galili M, Hu H, et al. 1.28-Tb/s demultiplexing of an OTDM DPSK data signal using a silicon waveguide. IEEE Photon Technol Lett, 2010, 22, 1762

[80]

Dong G N, Wang Y L, Zhang X L. High-contrast and low-power all-optical switch using Fano resonance based on a silicon nanobeam cavity. Opt Lett, 2018, 43, 5977

[81]

Meng Z M, Hu Y H, Wang C, et al. Design of high-Q silicon-polymer hybrid photonic crystal nanobeam microcavities for low-power and ultrafast all-optical switching. Photonics Nanostruct, 2014, 12, 83

[82]

Asghari M, Krishnamoorthy A V. Energy-efficient communication. Nat Photon, 2011, 5, 268

[83]

Pan J, Huo Y J, Yamanaka K, et al. Aligning microcavity resonances in silicon photonic-crystal slabs using laser-pumped thermal tuning. Appl Phys Lett, 2008, 92, 103114

[84]

Eichenfield M, Camacho R, Chan J, et al. A picogram- and nanometre-scale photonic-crystal optomechanical cavity. Nature, 2009, 459, 550

[85]

Li M, Pernice W H P, Tang H X. Tunable bipolar optical interactions between guided lightwaves. Nat Photon, 2009, 3, 464

[86]

Gu L L, Jiang W, Chen X N, et al. Thermooptically tuned photonic crystal waveguide silicon-on-insulator Mach–Zehnder interferometers. IEEE Photon Technol Lett, 2007, 19, 342

[87]

Espinola R L, Tsai M C, Yardley J T, et al. Fast and low-power thermooptic switch on thin silicon-on-insulator. IEEE Photon Technol Lett, 2003, 15, 1366

[88]

Dong P, Qian W, Liang H, et al. Thermally tunable silicon racetrack resonators with ultralow tuning power. Opt Express, 2010, 18, 20298

[89]

Zhang Y, He Y, Zhu Q M, et al. Single-resonance silicon nanobeam filter with an ultra-high thermo-optic tuning efficiency over a wide continuous tuning range. Opt Lett, 2018, 43, 4518

[90]

Matsko A B. Practical applications of microresonators in optics and photonics. London: CRC Press, 2009

[91]

Fan X D. Advanced photonic structures for biological and chemical detection. New York: Springer New York, 2009

[92]

Sharma A, Xie S R, Zeltner R, et al. On-the-fly particle metrology in hollow-core photonic crystal fibre. Opt Express, 2019, 27, 34496

[93]

Xiao Y F, Gong Q H. Optical microcavity: From fundamental physics to functional photonics devices. Sci Bull, 2016, 61, 185

[94]

Zhi Y Y, Yu X C, Gong Q H, et al. Single nanoparticle detection using optical microcavities. Adv Mater, 2017, 29, 1604920

[95]

Shao L B, Jiang X F, Yu X C, et al. Detection of single nanoparticles and lentiviruses using microcavity resonance broadening. Adv Mater, 2013, 25, 5616

[96]

Li B B, Clements W R, Yu X C, et al. Single nanoparticle detection using split-mode microcavity Raman lasers. PNAS, 2014, 111, 14657

[97]

Yang D Q, Wang A Q, Chen J H, et al. Real-time monitoring of hydrogel phase transition in an ultrahigh Q microbubble resonator. Photonics Res, 2020, 8, 497

[98]

Yang D Q, Duan B, Liu X, et al. Photonic crystal nanobeam cavities for nanoscale optical sensing: A review. Micromachines, 2020, 11, 72

[99]

Quan Q M, Floyd D L, Burgess I B, et al. Single particle detection in CMOS compatible photonic crystal nanobeam cavities. Opt Express, 2013, 21, 32225

[100]

Rahman M G A, Velha P, de la Rue R M, et al. Silicon-on-insulator (SOI) nanobeam optical cavities for refractive index based sensing. Opt Sens Detect II, 2012, 8439, 84391Q

[101]

Yao K Y, Shi Y C. High-Q width modulated photonic crystal stack mode-gap cavity and its application to refractive index sensing. Opt Express, 2012, 20, 27039

[102]

Quan Q M, Burgess I B, Tang S K Y, et al. High-Q, low index-contrast polymeric photonic crystal nanobeam cavities. Opt Express, 2011, 19, 22191

[103]

Xu P P, Yao K Y, Zheng J J, et al. Slotted photonic crystal nanobeam cavity with parabolic modulated width stack for refractive index sensing. Opt Express, 2013, 21, 26908

[104]

Yang D Q, Kita S, Liang F, et al. High sensitivity and high Q-factor nanoslotted parallel quadrabeam photonic crystal cavity for real-time and label-free sensing. Appl Phys Lett, 2014, 105, 063118

[105]

Kim S, Kim H M, Lee Y H. Single nanobeam optical sensor with a high Q-factor and high sensitivity. Opt Lett, 2015, 40, 5351

[106]

Rodriguez G A, Markov P, Cartwright A P, et al. Photonic crystal nanobeam biosensors based on porous silicon. Opt Express, 2019, 27, 9536

[107]

Gopinath A, Miyazono E, Faraon A, et al. Engineering and mapping nanocavity emission via precision placement of DNA origami. Nature, 2016, 535, 401

[108]

Mandal S, Erickson D. Nanoscale optofluidic sensor arrays. Opt Express, 2008, 16, 1623

[109]

Yang D Q, Wang C, Ji Y F. Silicon on-chip 1D photonic crystal nanobeam bandstop filters for the parallel multiplexing of ultra-compact integrated sensor array. Opt Express, 2016, 24, 16267

[110]

Hagino H, Takahashi Y, Tanaka Y, et al. Effects of fluctuation in air hole radii and positions on optical characteristics in photonic crystal heterostructure nanocavities. Phys Rev B, 2009, 79, 085112

[111]

Afzal F O, Halimi S I, Weiss S M. Efficient side-coupling to photonic crystal nanobeam cavities via state-space overlap. J Opt Soc Am B, 2019, 36, 585

[112]

Liang F, Clarke N, Patel P, et al. Scalable photonic crystal chips for high sensitivity protein detection. Opt Express, 2013, 21, 32306

[113]

Frank I W, Deotare P B, McCutcheon M W, et al. Programmable photonic crystal nanobeam cavities. Opt Express, 2010, 18, 8705

[114]

Panettieri D, O'Faolain L, Grande M. Control of Q-factor in nanobeam cavities on substrate. 2016 18th International Conference on Transparent Optical Networks (ICTON), 2016, 1

[115]

Xiong Y L, Wangüemert-Pérez J G, Xu D X, et al. Polarization splitter and rotator with subwavelength grating for enhanced fabrication tolerance. Opt Lett, 2014, 39, 6931

[1]

Chen Shaowu, Tu Xiaoguang, Yu Hejun, Fan Zhongchao, Xu Xuejun, Yu Jinzhong. Challenges and Solution of Fabrication Techniques for Silicon-Based NanD-Photonics Devices。. J. Semicond., 2007, 28(S1): 568.

[2]

Hongda Chen, Zan Zhang, Beiju Huang, Luhong Mao, Zanyun Zhang. Progress in complementary metal-oxide-semiconductor silicon photonics and optoelectronic integrated circuits. J. Semicond., 2015, 36(12): 121001. doi: 10.1088/1674-4926/36/12/121001

[3]

Hongfei Yao, Yuxiong Cao, Danyu Wu, Xiaoxi Ning, Yongbo Su, Zhi Jin. A 16.9 dBm InP DHBT W-band power amplifier with more than 20 dB gain. J. Semicond., 2013, 34(7): 075005. doi: 10.1088/1674-4926/34/7/075005

[4]

Yanlong Yin, Jiang Li, Yang Xu, Hon Ki Tsang, Daoxin Dai. Silicon-graphene photonic devices. J. Semicond., 2018, 39(6): 061009. doi: 10.1088/1674-4926/39/6/061009

[5]

Wang Yue, Wu Yuanda, Li Jianguang, An Junming, Wang Hongjie, Yin Xiaojie, Zhang Jiashun, Hu Xiongwei. Fabrication of Hybrid Sol-Gel SiO2 Optical Waveguide Devices by UV-Light Imprinting. J. Semicond., 2007, 28(7): 1130.

[6]

Xinlun Cai. Progress in integrating III–V semiconductors on silicon could drive silicon photonics forward. J. Semicond., 2019, 40(10): 100301. doi: 10.1088/1674-4926/40/10/100301

[7]

Feifan Xu, Xu Cen, Bin Liu, Danbei Wang, Tao Tao, Ting Zhi, Qi Wang, Zili Xie, Yugang Zhou, Youdou Zheng, Rong Zhang. High performance GaN-based hybrid white micro-LEDs integrated with quantum-dots. J. Semicond., 2020, 41(3): 032301. doi: 10.1088/1674-4926/41/3/032301

[8]

Xiaosong Zhao, Weihua Han, Hao Wang, Liuhong Ma, Xiaoming Li, Wang Zhang, Wei Yan, Fuhua Yang. Dopant atoms as quantum components in silicon nanoscale devices. J. Semicond., 2018, 39(6): 061003. doi: 10.1088/1674-4926/39/6/061003

[9]

Xiaoyan Shen, Zhigong Wang. Fully integrated circuit chip of microelectronic neural bridge. J. Semicond., 2014, 35(9): 095011. doi: 10.1088/1674-4926/35/9/095011

[10]

Dan Lu, Yiming He, Zhaosong Li, Lingjuan Zhao, Wei Wang. InP-based monolithically integrated few-mode devices. J. Semicond., 2018, 39(10): 101001. doi: 10.1088/1674-4926/39/10/101001

[11]

Peng Feng, Yejin Zhang, Yufei Wang, Lei Liu, Siriguleng Zhang, Hailing Wang, Wanhua Zheng. A novel hybrid III—V/silicon deformed micro-disk single-mode laser. J. Semicond., 2015, 36(2): 024012. doi: 10.1088/1674-4926/36/2/024012

[12]

He Yuliang, Shi Yi. Improving Characters of silicon devices Using by nc-si= H Films. J. Semicond., 2003, 24(S1): 192.

[13]

Yuan Bing, Lai Xinquan, Li Yanming, Ye Qiang, Jia Xinzhang. Design of an On-Chip Soft-Start Circuit Integrated in Buck Regulators. J. Semicond., 2008, 29(10): 2069.

[14]

Ding Lili, Guo Hongxia, Chen Wei, Fan Ruyu. Study of radiation-induced leakage current between adjacent devices in a CMOS integrated circuit. J. Semicond., 2012, 33(6): 064006. doi: 10.1088/1674-4926/33/6/064006

[15]

He Baoping, Zhou Heqin, Guo Hongxia, Zhou Hui, Luo Yinhong, Yao Zhibin, Zhang Fengqi. Total Dose Effect of Large-Scale Integrated Circuit Floating Gate ROM Devices. J. Semicond., 2006, 27(1): 121.

[16]

Huang Haiyun, Wang Dejun, Li Wenbo, Xu Yue, Qin Huibin, Hu Yongcai. A simplified compact model of miniaturized cross-shaped CMOS integrated Hall devices. J. Semicond., 2012, 33(8): 084005. doi: 10.1088/1674-4926/33/8/084005

[17]

Xue Chunlai, Yao Fei, Cheng Buwen, Wang Qiming. Effect of Substrate Structure on the Performance of a Silicon On-Chip Spiral Inductor. J. Semicond., 2006, 27(11): 1955.

[18]

Xiongfeng Fang, Lin Yang. Thermal effect analysis of silicon microring optical switch for on-chip interconnect. J. Semicond., 2017, 38(10): 104004. doi: 10.1088/1674-4926/38/10/104004

[19]

Chen Shaowu, Yu Jinzhong, Liu Jingwei, Wang Zhangtao, Xia Jinsong, Fan Zhongchao. Silicon-on-Insulator Based Optical Waveguide and Integrated Switch Matrix. J. Semicond., 2005, 26(S1): 212.

[20]

Wang Jiachou, Rong Weibin, Sun Lining, Li Xinxin. A Silicon Integrated Micro Positioning xy-Stage for Nano-Manipulation. J. Semicond., 2008, 29(10): 1932.

Search

Advanced Search >>

Article Metrics

Article views: 318 Times PDF downloads: 38 Times Cited by: 0 Times

History

Manuscript received: 27 May 2020 Manuscript revised: 06 August 2020 Online: Accepted Manuscript: 21 September 2020 Uncorrected proof: 25 September 2020

Email This Article

User name:
Email:*请输入正确邮箱
Code:*验证码错误