ARTICLES

Multi-channel 28-GHz millimeter-wave signal generation on a silicon photonic chip with automated polarization control

Ruiyuan Cao, Yu He, Qingming Zhu, Jingchi Li, Shaohua An, Yong Zhang and Yikai Su

+ Author Affiliations

 Corresponding author: Yikai Su, Email: yikaisu@sjtu.edu.cn

PDF

Turn off MathJax

Abstract: We propose and experimentally demonstrate an integrated silicon photonic scheme to generate multi-channel millimeter-wave (MMW) signals for 5G multi-user applications. The fabricated silicon photonic chip has a footprint of 1.1 × 2.1 mm2 and integrates 7 independent channels each having on-chip polarization control and heterodyne mixing functions. 7 channels of 4-Gb/s QPSK baseband signals are delivered via a 2-km multi-core fiber (MCF) and coupled into the chip with a local oscillator (LO) light. The polarization state of each signal light is automatically adjusted and aligned with that of the LO light, and then 7 channels of 28-GHz MMW carrying 4-Gb/s QPSK signals are generated by optical heterodyne beating. Automated polarization-control function of each channel is also demonstrated with ~7-ms tuning time and ~27-dB extinction ratio.

Key words: multi-channelmillimeter-wave (MMW) generationsilicon photonic integrated circuitssilicon polarization control (SPC)



[1]
Agiwal M, Roy A, Saxena N. Next generation 5G wireless networks: A comprehensive survey. IEEE Commun Surv Tut, 2016, 18(3), 1617 doi: 10.1109/COMST.2016.2532458
[2]
Han S F, I C L, Xu Z K, et al. Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun Mag, 2015, 53(1), 186 doi: 10.1109/MCOM.2015.7010533
[3]
Pi Z, Khan F. An introduction to millimeter-wave mobile broadband systems. IEEE Commun Mag, 2011, 49(6), 101 doi: 10.1109/MCOM.2011.5783993
[4]
Sulyman A I, Nassar A T, Samimi M K, et al. Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. IEEE Commun Mag, 2014, 52(9), 78 doi: 10.1109/MCOM.2014.6894456
[5]
Roh W, Ji-Yun Seol J Y, Park J, et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Commun Mag, 2014, 52(2), 106 doi: 10.1109/MCOM.2014.6736750
[6]
Rappaport T S. Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 2013, 1(1), 335 doi: 10.1109/ACCESS.2013.2260813
[7]
Heath R W. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 2016, 10(3), 436 doi: 10.1109/JSTSP.2016.2523924
[8]
Gao X, Dai L, Sayeed A M. Low RF-complexity technologies to enable millimeter-wave MIMO with large antenna array for 5G wireless communications. IEEE Commun Mag, 2018, 56(4), 211 doi: 10.1109/MCOM.2018.1600727
[9]
Rebeiz G. Millimeter-wave large-scale phased-arrays for 5G systems. Microwave Symposium (IMS), IEEE MTT-S International, 2015, 1
[10]
Gao X. Energy-efficient hybrid analog and digital precoding for mm-Wave MIMO systems with large antenna arrays. IEEE J Sel Areas Commun, 2016, 34(4), 998 doi: 10.1109/JSAC.2016.2549418
[11]
Li M. Harnessing optical forces in integrated photonic circuits. Nature, 2008, 456(7221), 480 doi: 10.1038/nature07545
[12]
Marpaung D. Integrated microwave photonics. Laser Photonics Rev, 2013, 7(4), 506 doi: 10.1002/lpor.201200032
[13]
Zhang W, Yao J. Silicon-based integrated microwave photonics. IEEE J Quantum Electron, 2016, 52(1), 1 doi: 10.1109/JQE.2015.2501639
[14]
Guzmán R, Carpintero G, Gordon C, et al. Millimeter-wave signal generation for a wireless transmission system based on on-chip photonic integrated circuit structures. Opt Lett, 2016, 41(20), 4843 doi: 10.1364/OL.41.004843
[15]
Amato F, Serafino G, Ghelfi P. Ultra-fast beam steering of a phased-array antenna based on packaged photonic integrated circuits. IEEE European Conference on Optical Communication (ECOC), 2018, Tu3H
[16]
Carpintero G. Microwave photonic integrated circuits for millimeter-wave wireless communications. IEEE/OSA J Lightw Technol, 2014, 32(20), 3495 doi: 10.1109/JLT.2014.2321573
[17]
Carpintero G. 95 GHz millimeter wave signal generation using an arrayed waveguide grating dual wavelength semiconductor laser. Opt Lett, 2012, 37(17), 3657 doi: 10.1364/OL.37.003657
[18]
Yao J. Photonic integrated circuits for microwave signal generation and processing. Conference on Lasers and Electro-Optics (CLEO), 2018, JTh4D.1
[19]
Khan M H. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat Photon, 2010, 4(2), 117 doi: 10.1038/nphoton.2009.266
[20]
Yao J. Microwave photonics. IEEE/OSA J Lightw Technol, 2009, 27(3), 314 doi: 10.1109/JLT.2008.2009551
[21]
Cao R Y, He Y, Yao J P. Integrated multi-channel millimeter wave photonic generation based on a silicon chip with automated polarization control. IEEE European Conference on Optical Communication (ECOC), 2018, We2.43
[22]
Ma M L, Murray K, Ye M Y, et al. Silicon photonic polarization receiver with automated stabilization for arbitrary input polarizations. Conference on Lasers and Electro-Optics (CLEO), 2016, STu4G.8
[23]
Zhu M, Zhang L, Wang J, et al. Radio-over-fiber access architecture for integrated broadband wireless services. IEEE/OSA J Lightw Technol, 2013, 31(23), 3614 doi: 10.1109/JLT.2013.2286564
[24]
Macho A. Next-generation optical fronthaul systems using multicore fiber media. IEEE/OSA J Lightw Technol, 2016, 34(20), 4819 doi: 10.1109/JLT.2016.2573038
[25]
Kanno A, Dat P T, Kuri T, et al. Evaluation of frequency fluctuation in fiber-wireless link with direct IQ down-converter. IEEE European Conference on Optical Communication (ECOC), 2017, We.3.6.3
[26]
Tan K. Ultra-broadband fabrication-tolerant polarization splitter and rotator. Optical Fiber Communication Conference, 2017, Th1G.7
[27]
Yariv A. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photon Technol Lett, 2002, 14(4), 483 doi: 10.1109/68.992585
[28]
Luo L. WDM-compatible mode-division multiplexing on a silicon chip. Nat Commun, 2014, 5, 3069 doi: 10.1038/ncomms4069
[29]
Zhu Q, et al. Wide-range automated wavelength calibration over a full FSR in a dual-ring based silicon photonic switch. Optical Fiber Communication Conference (OFC), 2018, Th3C.1
[30]
Bergano N S, Kerfoot F W, Davidsion C R. Margin measurements in optical amplifier system. IEEE Photon Technol Lett, 1993, 5(3), 304 doi: 10.1109/68.205619
Fig. 1.  (Color online) The proposed multi-channel FWI system architecture based on the silicon photonic MMW generator.

Fig. 2.  (Color online) (a) Micrograph of the fabricated chip. (b) Schematic diagrams of the polarization tuning units. (c) Normalized PMϕ1, Δϕ2) with different optical power ratios and initial phase differences between the two inputs of the first MMI. (d) Photograph of the polarization control sub-system. (e) Schematic diagram of the control sub-system.

Fig. 3.  (Color online) Pseudo-code of the global minimum-power searching algorithm.

Fig. 4.  (Color online) Progresses of the proposed algorithm and the algorithm in Ref. [22] when a local minima exists in the normalized PMϕ1, Δϕ2) with a 75% to 25% power ratio and a π/2 phase difference between the two inputs of the first MMI.

Fig. 5.  (Color online) Experimental setup of the multi-channel MMW signals generation base on the proposed silicon photonic MMW generator.

Fig. 6.  (Color online) On-chip automated polarization-tuning progresses of the 7-channel signal lights.

Fig. 7.  (Color online) (a) Waveforms and the demodulated constellation diagrams of the generated 7-channel QPSK MMW signals. (b) Optical spectrum of channel-1 of the MMW signal before the heterodyne beating. (c) Electrical spectrum of channel-1 of the MMW signal after the heterodyne beating. (d) Measured SNRs of the 7 channels of demodulated QPSK signal.

[1]
Agiwal M, Roy A, Saxena N. Next generation 5G wireless networks: A comprehensive survey. IEEE Commun Surv Tut, 2016, 18(3), 1617 doi: 10.1109/COMST.2016.2532458
[2]
Han S F, I C L, Xu Z K, et al. Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5G. IEEE Commun Mag, 2015, 53(1), 186 doi: 10.1109/MCOM.2015.7010533
[3]
Pi Z, Khan F. An introduction to millimeter-wave mobile broadband systems. IEEE Commun Mag, 2011, 49(6), 101 doi: 10.1109/MCOM.2011.5783993
[4]
Sulyman A I, Nassar A T, Samimi M K, et al. Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. IEEE Commun Mag, 2014, 52(9), 78 doi: 10.1109/MCOM.2014.6894456
[5]
Roh W, Ji-Yun Seol J Y, Park J, et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Commun Mag, 2014, 52(2), 106 doi: 10.1109/MCOM.2014.6736750
[6]
Rappaport T S. Millimeter wave mobile communications for 5G cellular: It will work!. IEEE Access, 2013, 1(1), 335 doi: 10.1109/ACCESS.2013.2260813
[7]
Heath R W. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 2016, 10(3), 436 doi: 10.1109/JSTSP.2016.2523924
[8]
Gao X, Dai L, Sayeed A M. Low RF-complexity technologies to enable millimeter-wave MIMO with large antenna array for 5G wireless communications. IEEE Commun Mag, 2018, 56(4), 211 doi: 10.1109/MCOM.2018.1600727
[9]
Rebeiz G. Millimeter-wave large-scale phased-arrays for 5G systems. Microwave Symposium (IMS), IEEE MTT-S International, 2015, 1
[10]
Gao X. Energy-efficient hybrid analog and digital precoding for mm-Wave MIMO systems with large antenna arrays. IEEE J Sel Areas Commun, 2016, 34(4), 998 doi: 10.1109/JSAC.2016.2549418
[11]
Li M. Harnessing optical forces in integrated photonic circuits. Nature, 2008, 456(7221), 480 doi: 10.1038/nature07545
[12]
Marpaung D. Integrated microwave photonics. Laser Photonics Rev, 2013, 7(4), 506 doi: 10.1002/lpor.201200032
[13]
Zhang W, Yao J. Silicon-based integrated microwave photonics. IEEE J Quantum Electron, 2016, 52(1), 1 doi: 10.1109/JQE.2015.2501639
[14]
Guzmán R, Carpintero G, Gordon C, et al. Millimeter-wave signal generation for a wireless transmission system based on on-chip photonic integrated circuit structures. Opt Lett, 2016, 41(20), 4843 doi: 10.1364/OL.41.004843
[15]
Amato F, Serafino G, Ghelfi P. Ultra-fast beam steering of a phased-array antenna based on packaged photonic integrated circuits. IEEE European Conference on Optical Communication (ECOC), 2018, Tu3H
[16]
Carpintero G. Microwave photonic integrated circuits for millimeter-wave wireless communications. IEEE/OSA J Lightw Technol, 2014, 32(20), 3495 doi: 10.1109/JLT.2014.2321573
[17]
Carpintero G. 95 GHz millimeter wave signal generation using an arrayed waveguide grating dual wavelength semiconductor laser. Opt Lett, 2012, 37(17), 3657 doi: 10.1364/OL.37.003657
[18]
Yao J. Photonic integrated circuits for microwave signal generation and processing. Conference on Lasers and Electro-Optics (CLEO), 2018, JTh4D.1
[19]
Khan M H. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat Photon, 2010, 4(2), 117 doi: 10.1038/nphoton.2009.266
[20]
Yao J. Microwave photonics. IEEE/OSA J Lightw Technol, 2009, 27(3), 314 doi: 10.1109/JLT.2008.2009551
[21]
Cao R Y, He Y, Yao J P. Integrated multi-channel millimeter wave photonic generation based on a silicon chip with automated polarization control. IEEE European Conference on Optical Communication (ECOC), 2018, We2.43
[22]
Ma M L, Murray K, Ye M Y, et al. Silicon photonic polarization receiver with automated stabilization for arbitrary input polarizations. Conference on Lasers and Electro-Optics (CLEO), 2016, STu4G.8
[23]
Zhu M, Zhang L, Wang J, et al. Radio-over-fiber access architecture for integrated broadband wireless services. IEEE/OSA J Lightw Technol, 2013, 31(23), 3614 doi: 10.1109/JLT.2013.2286564
[24]
Macho A. Next-generation optical fronthaul systems using multicore fiber media. IEEE/OSA J Lightw Technol, 2016, 34(20), 4819 doi: 10.1109/JLT.2016.2573038
[25]
Kanno A, Dat P T, Kuri T, et al. Evaluation of frequency fluctuation in fiber-wireless link with direct IQ down-converter. IEEE European Conference on Optical Communication (ECOC), 2017, We.3.6.3
[26]
Tan K. Ultra-broadband fabrication-tolerant polarization splitter and rotator. Optical Fiber Communication Conference, 2017, Th1G.7
[27]
Yariv A. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photon Technol Lett, 2002, 14(4), 483 doi: 10.1109/68.992585
[28]
Luo L. WDM-compatible mode-division multiplexing on a silicon chip. Nat Commun, 2014, 5, 3069 doi: 10.1038/ncomms4069
[29]
Zhu Q, et al. Wide-range automated wavelength calibration over a full FSR in a dual-ring based silicon photonic switch. Optical Fiber Communication Conference (OFC), 2018, Th3C.1
[30]
Bergano N S, Kerfoot F W, Davidsion C R. Margin measurements in optical amplifier system. IEEE Photon Technol Lett, 1993, 5(3), 304 doi: 10.1109/68.205619
  • Search

    Advanced Search >>

    GET CITATION

    shu

    Export: BibTex EndNote

    Article Metrics

    Article views: 3526 Times PDF downloads: 60 Times Cited by: 0 Times

    History

    Received: 09 January 2019 Revised: 27 February 2019 Online: Accepted Manuscript: 10 April 2019Uncorrected proof: 12 April 2019Published: 08 May 2019

    Catalog

      Email This Article

      User name:
      Email:*请输入正确邮箱
      Code:*验证码错误
      Ruiyuan Cao, Yu He, Qingming Zhu, Jingchi Li, Shaohua An, Yong Zhang, Yikai Su. Multi-channel 28-GHz millimeter-wave signal generation on a silicon photonic chip with automated polarization control[J]. Journal of Semiconductors, 2019, 40(5): 052301. doi: 10.1088/1674-4926/40/5/052301 R Y Cao, Y He, Q M Zhu, J C Li, S H An, Y Zhang, Y K Su, Multi-channel 28-GHz millimeter-wave signal generation on a silicon photonic chip with automated polarization control[J]. J. Semicond., 2019, 40(5): 052301. doi: 10.1088/1674-4926/40/5/052301.Export: BibTex EndNote
      Citation:
      Ruiyuan Cao, Yu He, Qingming Zhu, Jingchi Li, Shaohua An, Yong Zhang, Yikai Su. Multi-channel 28-GHz millimeter-wave signal generation on a silicon photonic chip with automated polarization control[J]. Journal of Semiconductors, 2019, 40(5): 052301. doi: 10.1088/1674-4926/40/5/052301

      R Y Cao, Y He, Q M Zhu, J C Li, S H An, Y Zhang, Y K Su, Multi-channel 28-GHz millimeter-wave signal generation on a silicon photonic chip with automated polarization control[J]. J. Semicond., 2019, 40(5): 052301. doi: 10.1088/1674-4926/40/5/052301.
      Export: BibTex EndNote

      Multi-channel 28-GHz millimeter-wave signal generation on a silicon photonic chip with automated polarization control

      doi: 10.1088/1674-4926/40/5/052301
      More Information
      • Corresponding author: Email: yikaisu@sjtu.edu.cn
      • Received Date: 2019-01-09
      • Revised Date: 2019-02-27
      • Published Date: 2019-05-01

      Catalog

        /

        DownLoad:  Full-Size Img  PowerPoint
        Return
        Return